Intelligent Agents

Chapter 2

Reminders

Assignment 0 (lisp refresher) due 1/28

Lisp/emacs/AIMA tutorial: 11-1 today and Monday, 271 Soda

Outline

♦ Agents and environments
♦ Rationality
♦ PEAS (Performance measure, Environment, Actuators, Sensors)
♦ Environment types
♦ Agent types

Outline

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B, Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A, Clean], [A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Clean], [A, Dirty]</td>
<td>Suck</td>
</tr>
</tbody>
</table>

function REFLEX-VACUUM-AGENT([location, status]) returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the right function?
Can it be implemented in a small agent program?
Rationality

Fixed performance measure evaluates the environment sequence
- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for k dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rational \neq omniscient
- percepts may not supply all relevant information
Rational \neq clairvoyant
- action outcomes may not be as expected
Hence, rational \neq successful
Rational \Rightarrow exploration, learning, autonomy

Internet shopping agent

Performance measure??
Environment??
Actuators??
Sensors??

PEAS

To design a rational agent, we must specify the task environment
Consider, e.g., the task of designing an automated taxi:

Performance measure??
Environment??
Actuators??
Sensors??

Internet shopping agent

Performance measure?? price, quality, appropriateness, efficiency
Environment?? current and future WWW sites, vendors, shippers
Actuators?? display to user, follow URL, fill in form
Sensors?? HTML pages (text, graphics, scripts)

PEAS

To design a rational agent, we must specify the task environment
Consider, e.g., the task of designing an automated taxi:

Performance measure?? safety, destination, profits, legality, comfort, …
Environment?? US streets/freeways, traffic, pedestrians, weather, …
Actuators?? steering, accelerator, brake, horn, speaker/display, …
Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS, …

Environment types

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>Internet shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodic??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-agent??</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent
Agent types

Four basic types in order of increasing generality:
- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents

Reflex agents with state

Example

Simple reflex agents

Example

Goal-based agents
Utility-based agents

Agent

Environment

Sensors

State

What the world evolves

What my actions do

Utility

What it will be like if I do action A

How happy I will be in such a state

What action I should do now

Actuators

Chapter 2

Learning agents

Performance standard

Critical

Environment

Sensors

feedback

changes

Performance element

Problem generator

Learning element

learning goals

Agent

Actuators

Chapter 2

Summary

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

PEAS descriptions define task environments

Environments are categorized along several dimensions:
- observable?
- deterministic?
- episodic?
- static?
- discrete?
- single-agent?

Several basic agent architectures exist:
- reflex, reflex with state, goal-based, utility-based