Game Playing

Games and AI

- A natural application!
- Two different kinds:
 - Single agent “solitaire” games
 - Adversarial multi-agent games
- The most common – turn-based, two-player, zero-sum games with perfect environment information.
 - Example: Chess
- Chance, imperfect information, multi-agent, cooperative-agent, non-deterministic aspects can be added.
- Frequently: hard to solve!

Kinds of Games

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect Information</td>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>Imperfect Information</td>
<td>battleship, blind tic-tac-toe</td>
<td>bridge, poker, nuclear war</td>
</tr>
</tbody>
</table>

Adversarial Games

- Typically, we will still consider a tree for the state space, start with an initial configuration of our game and then the successors is each possible move from that configuration.
- Big issue: size of search tree:
 - Chess – branching factor of ~35, games of 50+ moves per player common. 35^{40} possible configurations

Defining Games

- S_0 – initial state
- PLAYER(s) – player that has the move at s
- ACTIONS(s) – set of legal moves at s
- RESULT(s, a) – resulting state per the transition function
- TERMINAL-TEST(s) – function that determines whether or not the game is over.
- UTILITY(s, p) – utility/objective/payoff function for player p at terminal state s. Examples:
 - Chess – $0, 1, 1/2$
 - Backgammon – 0 to 192
Minimax

- Label our players MAX and MIN. This represents the target utility value in reference to our first player.
- MAX – the first player wants to maximize his or her utility, the higher the better (traditionally).
- MIN – our second player wants to minimize the first player’s utility with their move.
- Traditionally – expand all of our nodes then work backwards.
- We assume that our opponent will make optimal moves – minimax value represents best possible payoff against optimal opponent.

Exercise 5.3

Properties of Minimax

- Complete only if tree is finite.
- Optimal against an optimal opponent.
- Time complexity – exponential!
- Space complexity – linear!
α-β Pruning

- Trouble with Minimax – time! Exponential in the depth of the tree.
- How do we trim this? Pruning!
- Effectively cuts the time in half (still exponential).
- Pruning – elimination of subtrees/possible states without examining them due to some factor.
- Eliminate branches that cannot affect our final solution – still returns the same solution as minimax.

Dealing with Complexity

- Size is an issue (isn’t it always)? How do we deal with it?
- Option 1 – cutoff test – use a heuristic to estimate the utility of a given move at the set maximum depth. If that heuristic meets a threshold (dependent on if that level is a min or a max) then keep it, otherwise, discard.
- Option 2 – forward pruning – consider only a selection of n best moves, prune all others.
- Neither option is guaranteed to be optimal!

Games of Chance

- Frequently, our games will include some element of chance (commonly, dice).
- We can still use minimax/α-β pruning in this case, but a small adjustment is required.
- Between each max and min we will add a chance branch – this represents the roll that the player at that level could make, including the probabilities (for instance, with 2 die, 7 is the most common roll at ~17%).
- We can only calculate expected utility here!
In other games, only part of my environment is known— for instance, card games where the opponent’s cards are hidden.

Typically— just figure out all possible configurations and probabilities, and go from there.

Choose the action that has the highest expected utility regardless of the deal for your opponent.

Called averaging over clairvoyance— assumes that the environment becomes fully observable to both players immediately or soon after the first action.

Averaging over clairvoyance can lead you astray—

Day 1 — Road A leads to a heap of gold, Road B leads to a fork. Take the left fork and it leads to a bigger heap of gold. Take the right fork and you’ll be run over by a bus.

Day 2 — Road A leads to a heap of gold, Road B leads to a fork. Take the right fork and it leads to a bigger heap of gold. Take the left fork and you’ll be run over by a bus.

Day 3 - Road A leads to a heap of gold, Road B leads to a fork. One of the fork leads to a bigger heap of gold, but the other has that darned bus. Which fork do you take?

Exercise

5.16!