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Abstract. We consider a problem in parametric estimation: given n

samples from an unknown distribution, we want to estimate which dis-
tribution, from a given one-parameter family, produced the data. Fol-
lowing Schulman and Vazirani [12], we evaluate an estimator in terms
of the chance of being within a specified tolerance of the correct answer,
in the worst case. We provide optimal estimators for several families of
distributions on R. We prove that for distributions on a compact space,
there is always an optimal estimator that is translation-invariant, and
we conjecture that this conclusion also holds for any distribution on R.
By contrast, we give an example showing it does not hold for a certain
distribution on an infinite tree.

1. Introduction

Estimating probability distribution functions is a central problem in sta-
tistics. Specifically, beginning with an unknown probability distribution on
an underlying space X, one wants to be able to do two things: first, given
some empirical data sampled from the unknown probability distribution,
estimate which one of a presumed set of possible distributions produced the
data; and second, obtain bounds on how good this estimate is. For example,
the maximum likelihood estimator selects the distribution that maximizes
the probability (among those under consideration) of producing the observed
data. Depending on what properties of the estimator one is trying to eval-
uate, this may or may not be optimal. An extensive literature, dating back
to the early 20th century, addresses problems of this sort; see for example
[2, 3, 6, 8, 10, 13].

In this paper we consider one such problem. We presume samples are
coming from an unknown “translate” of a fixed known distribution. The
challenge is to guess the translation parameter. More precisely, we are given
a distribution µ on a space X, along with an action of a group G on X,
which defines a set of translated distributions µθ as follows:

(1) µθ(A) = µ({x : θx ∈ A})
for A ⊂ X. Thus in this context an estimator is a (measurable) function
e : Xn → G; the input x = (x1, . . . , xn) is the list of samples, and the output
e(x) is the estimate of θ, the translation parameter. For the majority of the
paper we will study the case of G = R acting by translations (changes in
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location) on X = R, and the group action will be written additively, as seen
beginning in Section 2.

We are interested in finding good estimators; thus we need a way of
measuring an estimator’s quality. A common way to do this is to measure
the mean squared error, in which case an optimal estimator minimizes this
error. Various results are known in this case; for instance the maximum
likelihood estimator (which agrees with the sample mean estimator),

e(x) =

(
1

n

∑
xi

)
− E(µ),

minimizes the mean squared error if µ is a Gaussian distribution on R.
In this paper we investigate a different and natural measure of quality

whereby we consider an estimator to succeed or fail according to whether
or not its estimate is within a certain threshold δ > 0 of the correct answer.
We then define the quality of the estimator to be the chance of success
in the worst case. This notion was introduced in [12] to analyze certain
approximation algorithms in computer science. Precisely, the δ-quality of e
is defined as

Qδ(e) = inf
θ

Qθ
δ(e)(2)

= inf
θ

Pr {d(e(x), θ) < δ : xi are chosen from µθ}
= inf

θ
µn

θ ({x : d(e(x), θ) < δ}),

where d is a metric on X and µn
θ is the product measure µθ×· · ·×µθ on Xn.1

Note that, depending on context, it is sometimes advantageous to define the
quality using a closed interval rather than an open one; for example in
the discrete case we could then interpret Qθ

0(e) as the probability that e
is exactly equal to θ. We write Q(e) when the value of δ is unambiguous.
For fixed δ, an (n-sample) estimator e is optimal if Qδ(e) ≥ Qδ(e

′) for all
(n-sample) estimators e′. Many authors use the term minimax to describe
optimal estimators. Note that much of the literature on this subject uses
the notion of loss functions and the associated risk R = 1 − Q; our point of
view is equivalent but more convenient for our purposes.

Motivated initially by analyzing an approximate algorithm for determin-
ing the average matching size in a graph, Schulman and Vazirani [12] intro-
duce the stronger notion of a majorizing estimator, which is optimal (by the
above definition) simultaneously for all δ > 0. This was previously studied
by Pitman [10], who considered several different optimality criteria and, for
each one, constructed optimal “shift-invariant” estimators (defined below).
Schulman and Vazirani focus on the Gaussian distribution and prove that
the mean estimator is the unique majorizing estimator in this case.

1In the case of perverse measures, µ, we must consider the probability as the sup of the
intersection of the set {d(e(x), θ) < δ} with all measurable sets. We will ignore this caveat
throughout. Indeed, we primarily focus on absolutely continuous measures (as [4] and [7]
have done, for example) and purely atomic measures.



Optimal Estimators for Threshold-Based Quality Measures 3

In the first part of this paper we investigate the optimal estimators for
several different classes of distributions on R. We conjecture that there is
always an optimal estimator e that is shift-invariant, i.e. e satisfies

e(x1 + c, . . . , xn + c) = e(x1, . . . , xn) + c

for all c, xi ∈ R. These estimators are typically easier to analyze than general
estimators, because the quality is the same everywhere, i.e. Q(e) = Qθ(e)
for every θ. Conditions under which invariant minimax estimators can be
obtained have been studied, for example, in [1], [9] and [11]. Indeed, some of
our existence results follow from the quite general Hunt-Stein theorem [11,
Theorem 9.5.5], but we give constructions that are very natural and explicit.
We obtain general bounds on the quality of shift-invariant estimators (Sec-
tion 2) and general estimators (Section 3), and then we apply these bounds
to several families of distributions (Section 4). In each case, we are able
to construct an optimal estimator that is shift-invariant. These examples
include the Gaussian and exponential distributions, among others.

These results motivate our study of shift-invariant estimators on other
spaces; these are estimators that are equivariant with respect to the induced
diagonal action of G on either the left or the right on Xn. That is, a left-
invariant estimator satisfies

(3) e(gx) = ge(x)

where

g(x1, . . . , xn) = (gx1, . . . , gxn).

Right-invariance is defined similarly.
In Section 5 we show that on a compact space X, if e is an estimator

for µ, then there is always a shift-invariant estimator with quality at least
as high as that of e. The idea is to construct a shift-invariant estimator s
as an average of the translates of e; this is essentially a simple proof of a
special case of the Hunt-Stein theorem. As there is no invariant probability
measure on R, the proof does not extend to the real case.

Finally, in the last section, we give an example due to L. Schulman which
shows that (on non-compact spaces) there may be no shift-invariant estima-
tor that is optimal. It continues to be an interesting problem to determine
conditions under which one can guarantee the existence of a shift-invariant
estimator that is optimal.

The authors thank V. Vazirani and L. Schulman for suggesting the prob-
lem that motivated this paper along with subsequent helpful discussions.
We are grateful to the reviewers for many helpful suggestions, especially for
correcting our proof of Lemma 7. As always, we thank Julie Landau, with-
out whose support and down-the-line backhand this work would not have
been possible.
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2. The real case: shift-invariant estimators

Let G = X = R, and consider the action of G on X by translations.
Because much of this paper is concerned with this context, we spell out once
more the parameters of the problem. We assume δ > 0 is fixed throughout.
We are given a probability distribution µ on R, and we are to guess which
distribution µθ produced a given collection x = (x1, . . . , xn) of data, where
µθ(A) = µ({x : x + θ ∈ A}). An estimator is a function e : R

n → R, and we
want to maximize its quality, which is given by

Q(e) = inf
θ

Qθ(e) = inf
θ

Pr {|e(x) − θ| < δ : xi are chosen from µθ}
= inf

θ
µn

θ ({x : |e(x) − θ| < δ}).

First some notation. We will write the group action additively and
likewise the induced diagonal action of G on R

n; in other words if x =
(x1, . . . , xn) ∈ R

n and a ∈ R, then x+ a denotes the point (x1 + a, . . . , xn +
a) ∈ R

n. Similarly if Y ⊂ R
n and A ⊂ R then Y +A = {y+a : y ∈ Y, a ∈ A}.

We also use the “interval notation” (x+a,x+b) for the set {x+t : a < t < b};
this is a segment of length (b−a)

√
n in R

n if a and b are finite. If f : R
n → R

is any function, and θ ∈ R, define fθ(x) = f(x − θ). If f : R → R, then

define f [n] : R
n → R by f [n](x) = f(x1)f(x2) · · · f(xn).

We now establish our upper bound on the quality of shift-invariant esti-
mators. Note that a shift-invariant estimator has the property that e(x −
e(x)) = 0. Also note that a shift-invariant estimator is determined uniquely
by its values on the coordinate hyperplane

X0 = {x ∈ R
n : x1 = 0},

and that a shift-invariant estimator exists for any choice of such values on
X0. In addition, for e shift-invariant,

µn
θ ({x : |e(x) − θ| < δ}) = µn

θ ({x : |e(x − θ)| < δ}) = µn ({x : |e(x)| < δ}) ,

so the quality can be ascertained by setting θ = 0.

Definition 1. For fixed n, let A denote the collection of all Borel subsets
A of the form

A =
⋃

x∈X0

x + (f(x) − δ, f(x) + δ) ,

where f : X0 → R is a Borel function. For fixed µ and n, define

Sµ,n = Sµ,n(δ) = sup
A∈A

{µn(A)}.

Theorem 2. Let µ and n be given. Then any shift-invariant n-sample
estimator e satisfies Q(e) ≤ Sµ,n.

Proof: Due to the observation above, it suffices to bound the quality of e
at θ = 0. But this quality is just µn(A) where A = e−1((−δ, δ)). Note that

A =
⋃

x∈X0

(x − e(x) − δ,x − e(x) + δ),
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and in particular A ∈ A. Thus the quality of e is at most Sµ,n. 2

Theorem 3. Let µ and n be given. If the sup in Definition 1 is achieved,
then there is a shift-invariant n-sample estimator with quality Sµ,n. For any
ǫ > 0, there is a shift-invariant n-sample estimator e with quality greater
than Sµ,n − ǫ.

Proof: For a given A ∈ A, we will define a shift-invariant estimator e with
the property that A ⊂ e−1((−δ, δ)). Then Q(e) ≥ µn(A). The theorem then
follows from the definition of Sµ,n.

So, fix A ∈ A. For each x ∈ R
n choose the supremum of those m’s and

the infimum of M ≥ m such that A∩ (x+R) ⊂ [x+m,x+M ]. Define e(x)
on X0 by e(x) = (M +m)/2, and then extend e to all of R

n to make it shift-
invariant. Now clearly A ⊆ e−1([−δ, δ]), since if x ∈ A then |M − m| ≤ 2δ.
This completes the proof. 2

3. The real case: general estimators

In this section we obtain a general upper bound on the quality of ran-
domized estimators, still in the case G = X = R. The arguments are similar
to those of the previous section.

Again δ is fixed throughout. A randomized estimator is a function Xn ×
Ω → R where Ω is a probability space of estimators; thus for fixed ω ∈ Ω,
e = ẽ(·, ω) is an estimator. The δ-quality of a randomized estimator ẽ is

Q(ẽ) = inf
θ

Qθ(ẽ)

where
Qθ(ẽ) = Eµn

θ {x | |ẽ(x) − θ| < δ} .

Definition 4. For fixed n, let

B = {B ⊂ R
n : B ∩ (B + 2kδ) = ∅ for all nonzero integers k}.

For fixed µ and n, define

Tµ,n = Tµ,n(δ) = sup
B∈B

{µn(B)}.

Comparing with Definition 1, we observe that A ⊂ B and hence Sµ,n ≤
Tµ,n.

Theorem 5. Let µ and n be given. Then any n-sample randomized estima-
tor ẽ satisfies Q(ẽ) ≤ Tµ,n.

Proof: We will give a complete proof in the case that µ is defined by
a density function f , and then indicate the modifications required for the
general case. The difference is purely technical; the ideas are the same.

Consider first a non-randomized estimator e. The performance of e at θ is
µn

θ

(
e−1((θ − δ, θ + δ))

)
. To simplify notation we will let Ie,θ denote the set
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e−1((θ − δ, θ + δ)) and we will suppress the subscript e when no ambiguity
exists. Since Q(e) is an infimum, the average performance of e at the k
points θi = 2δi, (i = 1, 2, . . . , k) is at least Q(e):

(4) Q(e) ≤ 1

k

k∑

i=1

µn
θi

(Iθi
)

Now we use the density function f . Recall that fθ(x) = f(x − θ). Define

f̃ on R
n by

f̃(x) = max
i

{f [n]
θi

(x)} = max
i

{fθi
(x1)fθi

(x2) · · · fθi
(xn)}.

Since the Iθi
are disjoint, we now have

Q(e) ≤ 1

k

k∑

i=1

∫

Iθi

f
[n]
θi

(x)dx

≤ 1

k

k∑

i=1

∫

Iθi

f̃(x)dx

≤ 1

k

∫
S

Iθi

f̃(x)dx

≤ 1

k

∫

Rn

f̃(x)dx

=
1

k

∫

{x1≤0}

f̃(x)dx +
1

k

∫

{0<x1<2δk}

f̃(x)dx +
1

k

∫

{x1≥2δk}

f̃(x)dx.(5)

We will bound the middle term by Tµ,n and show that the first and last
terms go to zero (independently of e) as k gets large. The bound on the
middle term is a consequence of the following claim.

Claim. For any a ∈ R,

∫

{a≤x1≤a+2δ}
f̃(x)dx ≤ Tµ,n.

To prove the claim, set Z = {x ∈ R
n : a ≤ x1 < a + 2δ}, and set

Zi = {x ∈ Z : i is the smallest index such that f̃(x) = f
[n]
θi

(x)}. Thus the
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Zi are disjoint and cover Z. Now

∫

{a≤x1≤a+2δ}
f̃(x)dx =

∑

i

∫

Zi

f̃(x)dx =
∑

i

∫

Zi

f
[n]
θi

(x)dx

=
∑

i

∫

Zi−θi

f [n](x)dx

=

∫
S

(Zi−θi)
f [n](x)dx

≤ Tµ,n.

The last equality follows from the fact that the Zi − θi are disjoint (recall
that θi = 2δi), and the final step follows because the set B = ∪(Zi − θi) is
in B. This proves the claim. 2

Next we show that 1
k

∫
{x1≤0} f̃(x)dx approaches zero as k grows. Recall

that θi = 2δi, and set zi =
∫
{x1≤0} f

[n]
2δi(x)dx =

∫
{x1≤−2δi} f [n](x)dx. The

function f is a probability density function, so f is nonnegative and has
total integral 1. The Dominated Convergence Theorem then implies that

the sequence {zi} is decreasing to 0. Bounding f̃(x) by
∑k

i=1 f
[n]
θi

(x) we
have

1

k

∫

{x1≤0}
f̃(x)dx ≤ 1

k

∫

{x1≤0}

k∑

i=1

f
[n]
θi

(x)dx =
1

k

k∑

i=1

zi → 0.

A similar argument shows that the term 1
k

∫
{x1≥2δk} f̃(x)dx goes to 0 as

k grows. Since (5) holds for all k, we have Q(e) ≤ Tµ,n for any estimator e.
We have shown that for any ǫ > 0, we can find k depending on ǫ and f

such that the average performance of an arbitrary estimator e on the k points
θi = 2δi is bounded above by Tµ,n + 2ǫ. Now, for a randomized estimator
ẽ, the quality is bounded above by its average performance on the same k
points, and that performance can be no better than the best estimator’s
performance. We conclude that Q(ẽ) ≤ Tµ,n + 2ǫ, and the theorem follows.

The proof is now complete in the case that µ has a density f . In general,
the argument requires minor technical adjustments. The first step that

requires modification is the definition of the function f̃ . Let

ν =
k∑

i=1

µn
θi

, gi =
dµn

θi

dµ̃
and f̃ = max(g1, . . . gk).

Then f̃ · ν = µ̃ and we work with µ̃ rather than f̃ , and the remainder of the
argument goes through with corresponding changes. 2
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4. The real case: examples

We have obtained bounds on quality for general estimators and for shift-
invariant ones. In this section we give several situations where the bounds
coincide, and therefore the optimal shift-invariant estimators constructed
in Section 2 are in fact optimal estimators, as promised by the Hunt-Stein
theorem. These examples include many familiar distributions, and they
provide evidence for the following conjecture.

Conjecture 1. Let µ be a distribution on R. Then there is an optimal
estimator for µ that is shift-invariant.

4.1. Warm-up: unimodal densities, one sample. Our first class of ex-
amples generalizes Gaussian distributions and many others. The argument
works only with one sample, but we will refine it in 4.2. Note that the
optimal estimator in this case is the maximum likelihood estimator.

We say that a density function is unimodal if for all y, {x : f(x) ≥ y} is
convex.

Example 4.1. Let µ be defined by a unimodal density function f . Then
there is a shift-invariant one-sample estimator that is optimal.

Proof: We first show that Tµ,1 = Sµ,1. It follows from the definition of
B that any set B ∈ B must have Lebesgue measure less than or equal to
2δ. Since f is unimodal,

∫
B

f(x)dx is maximized by concentrating B around
the peak of f ; thus the best B will be an interval that includes the peak
of f . But any interval in B is contained in A and thus Tµ,1 ≤ Sµ,1. Since
Sµ,1 ≤ Tµ,1 always, we have Tµ,1 = Sµ,1.

Now, recalling that Sµ,1 and Tµ,1 are defined as suprema, we observe that
the above argument shows that if one is achieved then so is the other. There-
fore the result follows from Theorems 3 and 5. 2

4.2. A sufficient condition. The next class is more restrictive than the
preceding, but with the stronger hypothesis we get a result for arbitrary n.
Any Gaussian distribution continues to satisfy the hypothesis.

Example 4.2. Let µ be a distribution defined by a density function of the
form f = eλ(x) with λ′(x) continuous and decreasing. Then for any n, there
is a shift-invariant n-sample estimator that is optimal.

Proof: For any fixed x ∈ X0, we define a function hx : R −→ R by

hx(t) = f [n](x + t) = eλ(x1+t)+···+λ(xn+t).

Since

h′
x
(t) = eλ(x1+t)+···+λ(xn+t)(λ′(x1 + t) + · · · + λ′(xn + t))

and λ′ is decreasing, it is clear that for each x, h′
x
(t) = 0 for at most one

value of t. Since hx(t) → 0 as t → ±∞, it follows that for any x, hx is a
unimodal function of t.
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Now the argument is similar to Example 4.1. We will show that Tµ,n =

Sµ,n. Since f [n] restricted to each orbit x + R is unimodal as we have just

shown, a set B ∈ B on which the integral of f [n] is maximized is obtained
by choosing an interval from each orbit. To make this more precise, for each
x ∈ X0, let tx be the center of the length 2δ interval I = (tx− δ, tx + δ) that
maximizes

∫
I
hx dt. Then let

A =
⋃

x∈X0

(x + tx − δ,x + tx + δ).

Now A ∈ A, and moreover µn(A) ≥ µn(B) for any B ∈ B, because∫
A∩(x+R) f [n] ≥

∫
B∩(x+R) f [n] for each x ∈ X0.

Thus supB∈B{µn(B)} is achieved by B = A ∈ A, and it follows that
Sµ,n = Tµ,n and that the best shift-invariant estimator is optimal. 2

4.3. Monotonic distributions on R
+. The third class of examples gen-

eralizes the exponential distribution, defined by the density f(x) = λe−λx

for x ≥ 0 and f(x) = 0 for x < 0. The optimal estimator in this case2 is not
the maximum likelihood estimator.

Example 4.3. Let µ be defined by a density function f that is decreasing
for x ≥ 0 and identically zero for x < 0. Then for any n, there is a shift-
invariant n-sample estimator that is optimal.

Proof: We construct the estimator as follows: for x ∈ R
n, define e(x) =

min{x1, ..., xn} − δ. Note that this is shift-invariant; therefore Q(e) can be
computed at θ = 0. That is, it suffices to show that Q0(e) = Tµ,n.

Let B = {x ∈ R
n : 0 ≤ min{x1, ..., xn} < 2δ}. Note that B = e−1([−δ, δ)),

and so µn(B) is the quality of e. Note also that B ∈ B (in fact B ∈ A), so
certainly µn(B) ≤ Tµ,n. We will show that any C ∈ B can be modified to
a set C ′ ∈ B such that C ′ ⊂ B and µn(C) ≤ µn(C ′). It then follows that
Tµ,n ≤ µn(B), and this will complete the proof.

So, let C ∈ B, and define C ′ = {x ∈ B : x + 2kδ ∈ C for some k ∈ Z}.
Note that k is determined uniquely by x. Now C ′ ⊂ B is in B, and by our
hypotheses on f , if x ∈ B then f [n](x) ≥ f [n](x + 2kδ) for every integer k.

Therefore µn(C ′) − µn(C) =
∫
C′ [f

[n](x) − f [n](x + 2kδ)]dµn ≥ 0. 2

4.4. Discrete distributions. Here we discuss purely atomic distributions
on finite sets of points. Because we are only trying to guess within δ of the
correct value of θ, there are many possible choices of estimators with the
same quality. Among the optimal ones is the maximum likelihood estimator.

2Note that in a typical estimation problem involving a family of exponential distributions,
one is trying to estimate the “scale” parameter λ rather than the “location” θ.
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Example 4.4. Let µ be a distribution on a finite set of points Z. There is
a shift-invariant one-sample estimator that is optimal. Furthermore, if all
of the pairwise distances between points of Z are distinct, then for every n
there is a shift-invariant n-sample estimator that is optimal.

Proof: We first treat the case n = 1. Since µ is discrete, the supremum
defining Sµ,1 is attained; therefore by Theorems 3 and 5 it suffices to show
that every estimator has quality at most Sµ,1.

Let Z = {z1, . . . , zr}, and for any z ∈ Z, let pz denote the mass at z.
For a finite set, we use | · | to denote the cardinality. Suppose that e is any
estimator.

Lemma 6. Let Y be any finite subset of R. Then

Q(e) ≤ Sµ,1
|Y + Z|
|Y | ,

where Y + Z denotes the set {y + z | y ∈ Y, z ∈ Z}.
Proof of Lemma: To prove the lemma we estimate the average quality

Qθ(e) over θ ∈ Y . We have
∑

θ∈Y

Qθ(e) =
∑

θ∈Y

µ(e−1(θ − δ, θ + δ) − θ) =
∑

θ∈Y

∑

z

pz

with the inner part of the last sum taken over those z ∈ Z that lie in
e−1(θ − δ, θ + δ) − θ. Using x to denote θ + z, this condition becomes
e(x) ∈ (θ − δ, θ + δ), and the right hand side above may be rewritten as

∑

θ∈Y

∑

z

pz =
∑

θ∈Y

∑

x

px−θ =
∑

x∈Y +Z

∑

θ

px−θ,

with the inner sum now taken over all θ with e(x) ∈ (θ − δ, θ + δ). This
latter condition implies that z is within δ of x − e(x). But by definition,
Sµ,1 is the maximum measure of any interval of length 2δ. Hence, for any
fixed x ∈ Y + Z, the inner sum is at most Sµ,1, and the entire sum is thus
bounded above by Sµ,1·|Y +Z|. Dividing by |Y | gives a bound for the average
quality over Y , and since Q(e) is defined as an infimum the lemma follows. 2

We now apply the lemma to complete the Example. Let k be a natural
number, and let

Yk = {h1z1 + · · · + hrzr : hi ∈ Z and 0 ≤ hi < k}.
Note that Yk ⊆ Yk+1 and |Yk| ≤ kr. It follows that for any ǫ > 0 there
exists k such that |Yk+1|/|Yk| < 1+ ǫ, for otherwise |Yk| would grow at least
exponentially in k. Using the fact that Yk +Z ⊆ Yk+1, the lemma applied to
Yk implies that Q(e) ≤ Sµ,1(1 + ǫ). Therefore Q(e) ≤ Sµ,1, and this finishes
the case n = 1.

Lastly, we consider an arbitrary n. If we are given samples x1, ..., xn and
if any xi 6= xj for some i and j, then by our hypothesis the shift θ is uniquely
determined. Thus we may assume that any optimal estimator picks the right
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θ in these cases, and the only question is what value the estimator returns
if all the samples are identical. The above analysis of the one sample case
can be used to show that any optimal shift-invariant estimator is optimal. 2

5. The compact case

So far we have dealt only with distributions on R, where the shift pa-
rameter is a translation. In every specific case that we have analyzed, we
have found a shift-invariant estimator among the optimal estimators. In
this section we prove that if G = X is a compact group acting on itself by
(left) multiplication, then at least for measures defined by density functions,
there is always a shift-invariant estimator as good as any given estimator.
In Section 6 we show that the compactness hypothesis cannot be eliminated
entirely; we do not know how much it can be weakened, if at all.

We will continue to use both G and X as notations, in order to empha-
size the distinction between the two roles played by this object. Eaton [3]
discusses estimators in a context in which the group G acts on both the pa-
rameter space Θ and the sample space X. In his work, the sample space X
is an arbitrary homogeneous space (i.e., a space with a transitive G-action).
In this generality, shift-invariant estimators may not exist, since there may
not even exist a function from Xn to Θ that preserves the G action. For
this reason, we choose to identify the sample space with the group G.

As usual G acts diagonally on Xn; we denote the orbit space by Y . An
element y of Y is an equivalence class y = [x] = {(gx1, . . . , gxn) : g ∈ G},
which we identify with G via (gx1, . . . , gxn) 7→ gx1. For x = (x1, . . . , xn) ∈
X we denote by x0 the point x−1

1 x; thus x0 is in the orbit of x and has first
coordinate 1. The set X0 = {x0 : x ∈ X} ⊂ Xn is naturally identified with
Y .

Equip G = X with a left- and right-invariant metric d, meaning that
d(gx, gy) = d(x, y) = d(xg, yg) for all x, y, g ∈ G. Let B(g) = Bδ(g) denote
the ball of radius δ around g ∈ G. If S is a subset of a measure space (T, α)
then we denote the measure of S variously by α(S),

∫
S

dα, or
∫
T

χS dα.
(The notation χS refers to the characteristic function of the set S.)

Fix δ and n, and let µ be an arbitrary measure on X. The following
technical lemma says that to evaluate an integral over Xn, we can integrate
over each G-orbit and then integrate the result over the orbit space.

Lemma 7. There exist measures ν on Y and αy on each orbit y such that
for any function F on Xn,

∫

Xn

F (x) dµn =

∫

Y

∫

G

F (gx0) dαy dν.

Proof: Let ϕ : Xn → Xn be defined by ϕ(x) = (x1, x
−1
1 x2, . . . , x

−1
1 xn)

and π be the image of µn with respect to ϕ, i.e, π(A) = µn{ϕ ∈ A} for all
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Borel A ⊂ Xn. Then
∫

F̃ (ϕ(x)) dµn(x) =

∫
F̃ (y)dπ(y)

for nonnegative Borel functions F̃ on Xn. Taking F̃ (y) = F (y1, y1y2, . . . , y1yn)
yields
∫

F (x)dµn(x) =

∫
F (y1, y1y2, . . . , y1yn)dπ(y)

=

∫
dν̃(y2, . . . , yn)

∫
F (y1, y1y2, . . . , y1yn)dα̃(y2,...,yn)(y1),

for some measures ν̃ and α̃. The right-hand side can then be written as
∫

X0

dν(x0)

∫

G

F (gx0)dαx0
(g),

where ν is an image of ν̃ with respect to the function (y2, . . . , yn) 7→ (1, y2, . . . , yn)
and αx0

= α̃(y2,...,yn) for x0 = (1, y2, . . . , yn), completing the proof. 2

Lemma 8. If s is a shift-invariant (n-sample) estimator then

Q(s) =

∫

Y

∫

G

χB(s(x0)−1) dαx0
dν.

Proof: Since s is shift-invariant, its quality can be computed at the iden-
tity. Thus Q(s) = Q1(s) = µn(s−1(B(1))) =

∫
Xn χs−1(B(1)) dµn. By Lemma

7, this integral can be decomposed as
∫

Y

∫

G

χs−1(B(1))(gx0) dαx0
dν.

Now, note that gx0 ∈ s−1(B(1)) if and only if gs(x0) ∈ B(1) if and only
if g ∈ B(s(x0)

−1). Thus the integral above is the same as the one in the
statement of the lemma, and we are done. 2

We are now ready to prove the result. Note that we do not prove that
optimal estimators exist—only that if they exist, then one of them is shift-
invariant.

Theorem 9. Let G = X be a compact group, let δ and n be given, and let µ
be defined by a density function. If e : Xn → G is any estimator then there
exists a shift-invariant estimator s with Q(s) ≥ Q(e).

Proof: Let e : Xn → G be any estimator. For each group element γ ∈ G,
we define a shift-invariant estimator sγ that agrees with e on the coset γX0:

sγ(g, gx2, . . . , gxn) = gγ−1e(γ, γx2, . . . , γxn).

We will show that there exists γ such that Q(sγ) ≥ Q(e).
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Denote by ρ the invariant (Haar) measure on G. Since Q(e) is defined as
an infimum, we have

Q(e) ≤
∫

θ∈G

Qθ(e) dρ =

∫

θ∈G

∫

Xn

χθ−1e−1(B(θ))(x) dµn dρ

=

∫

Xn

∫

θ∈G

χθ−1e−1(B(θ))(x) dρ dµn

=

∫

Y

∫

G

∫

θ∈G

χθ−1e−1(B(θ))(gx0) dρ dαx0
dν,(6)

where the last equality comes from Lemma 7. The condition that gx0 ∈
θ−1e−1(B(θ)) is equivalent to d(e(θgx0), θ) < δ. Now we make the substitu-
tion γ = θg. Thus θ = γg−1, and the condition becomes d(e(γx0), γg−1) < δ,
or, by invariance of the metric, d(γ−1e(γx0), g

−1) < δ. This says that
g−1 ∈ B(γ−1e(γx0)), or equivalently, g ∈ B(e(γx0)

−1γ).
This allows us to rewrite the triple integral (6), using the measure-preserving

transformation θ 7→ γ = θg, as∫

Y

∫

G

∫

θ∈G

χθ−1e−1(B(θ)) dρ dαx0
dν =

∫

Y

∫

G

∫

γ∈G

χB(e(γx0)−1γ) dρ dαx0
dν

=

∫

γ∈G

(∫

Y

∫

G

χB(e(γx0)−1γ) dαx0
dν

)
dρ

Now, comparing with Lemma 8, we see that the inner integral above is
exactly the quality of the shift-invariant estimator sγ .

We therefore have

Q(e) ≤
∫

γ

Q(sγ) dρ,

or in other words, the average quality of the shift-invariant estimators {sγ}
is at least Q(e). Therefore at least one of the sγ satisfies Q(sγ) ≥ Q(e). 2

6. A non-shift-invariant example

In the following example, suggested by L. Schulman, the optimal shift-
invariant estimator is not optimal. This provides an interesting complement
to Conjecture 1. Lehman and Casella [9, Section 5.3] also give examples of
this phenomenon.

Let X be the infinite trivalent tree, which we view as the Cayley graph
of the group G = (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z) = 〈a, b, c | a2 = b2 = c2 = 1〉. In
words, G is a discrete group generated by three elements a, b, and c, each
of order two and with no other relations. Each non-identity element of G
can be written uniquely as a finite word in the letters a, b, c with no letter
appearing twice in a row; we refer to such a word as the reduced form of the
group element. (We write 1 for the identity element of G.) Multiplication
in the group is performed by concatenating words and then canceling any
repeated letters in pairs. Evidently G is infinite. The Cayley graph X is a
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graph with one vertex labeled by each group element of G, and with an edge
joining vertices w and x if and only if w = xa, w = xb, or w = xc. Note that
this relation is symmetric, since a, b, and c each have order 2. Each vertex
of X has valence 3, and X is connected and contains no circuits, i.e. it is
a tree. Finally, X becomes a metric space by declaring each edge to have
length one.

Because of how we defined the edges of X, G acts naturally on the left of
X: given g ∈ G, the map g : X → X defined by g(x) = gx is an isometry
of X. So if δ > 0 is given, µ is a probability distribution, θ ∈ G, and e is an
estimator, then the shift µθ and the quality Qδ(e) are defined as usual by
(1) and (2).

We are ready to present the example. Suppose 0 < d < 1 is fixed, and
let µ be the probability distribution with atoms of weight 1/3 at the three
vertices a, b, c. Thus for θ ∈ G, the distribution µθ has atoms of weight 1/3
at the three neighbors θa, θb, θc of the vertex θ in X.

Example 6.1. There is an optimal one-sample estimator with quality 2/3,
but the quality of any shift-invariant one-sample estimator is at most 1/3.

Proof: Consider the one-sample estimator e that truncates the last letter
of the sample (unless the sample is the identity, in which case we arbitrarily
assign the value a). That is, for a vertex x of X,

e(x) =

{
w if x = wℓ is reduced, and ℓ = a, b, or c

a if x = 1.

Geometrically, this estimator takes a sample x and, unless x = 1, guesses
that the shift is the (unique) neighbor of x that is closer to 1.

We compute the quality of e. Note Q1(e) = 1, because if θ = 1 then the
sample will be a, b, or c, and the estimator is guaranteed to guess correctly.
In fact Qa(e) = 1 also, as is easily verified. For any other shift θ, the sample
is θℓ for ℓ = a, b, or c, and the estimator guesses correctly exactly when ℓ
differs from the last letter of θ. So Qθ(e) = 2/3, and Q(e) = infθ Qθ(e) =
2/3.

It is easy to see that this estimator is optimal. Suppose e′ is another
estimator and Q(e′) > 2/3. Since each local quality Qθ(e′) is either 0, 1/3,
2/3, or 1, we must have Qθ(e′) = 1 for all θ. This means e′ always guesses
correctly. But since there are different values of θ that can produce the same
sample, this is impossible.

Observe that the estimator e above is neither left- nor right-invariant. For
instance right-invariance fails, as e(ba · a) = e(b) = 1 6= ba = e(ba) · a, and
the same example shows the failure of left-invariance: e(b · aa) = id 6= ba =
be(aa).

Indeed, we conclude by showing that the quality of any shift-invariant one-
sample estimator e′ is at most 1/3. Suppose e′(1) = w. If e′ is left-invariant,
it follows that e′(x) = xw for all x; if e′ is right-invariant it follows that
e′(x) = wx for all x.
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Since δ < 1, the quality of e′ at θ = 1 is equal to the probability that
e′(x) = 1, given that x was sampled from µ. With equal probability x is a,
b, or c; since at most one of wa, wb, wc and one of aw, bw, cw can equal 1,
we conclude that Q(e′) ≤ Q1(e′) ≤ 1/3. 2

We remark that this example readily generalizes to other finitely gener-
ated groups with infinitely many ends: the key is that e is a two-to-one
map but with only one sample, a shift-invariant estimator is necessarily
one-to-one.
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