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Abstract. We analyze various local moves on knot diagrams to show
that Jones polynomials must have certain algebraic properties. In partic-
ular, we show that the Jones polynomial of a knot cannot be a nontrivial
monomial.

1. Introduction

A local move on a link diagram is the substitution of a given subdiagram
for another, that results in another link diagram. Reidemeister moves are
the standard examples of local moves, but a local move need not preserve
the link type, or even the number of components of the link. A local move
M is called an unknotting move if repeated applications of M , together with
Reidemeister moves, will unknot every knot. The simplest unknotting move
is a crossing change; a standard exercise in undergraduate knot theory is
to show that any diagram of a knot can be transformed into a diagram of
the unknot by crossing changes. The ∆-move, shown in figure 1, is also an

Figure 1. The ∆-move.

unknotting move [9], [10]. In section 2 we will examine the effect of the
∆-move on the Jones polynomial.

We assume the reader is familiar with Kauffman’s construction of the
Jones polynomial ([7], [1], etc.). For the knot diagram K, the bracket
polynomial is denoted 〈K〉, and the Jones polynomial is denoted fK(A) =

(−A3)−w〈K〉, where w is the writhe of K. We use A = t−1/4 for the inde-
terminate, and let d = −A2 −A−2, so that 〈©K〉 = d〈K〉. It is understood
that “polynomial” is to mean Laurent polynomial, since 〈K〉 ∈ Z[A,A−1].
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As usual, the entire knot is not always drawn in the calculation of the
bracket polynomial; two diagrams in a calculation should be presumed iden-
tical outside of the portion drawn. For example, part of the bracket calcu-
lation of a diagram containing the tangle T might be written

〈 〉

= p1

〈 〉

+ p2

〈 〉

,(1)

where p1 and p2 are polynomials in A. Thus if K is the knot formed by
closing the tangle T , we have 〈K〉 = p1d + p2. Note that tangles in this
paper will always be closed “above,” meaning the strands on the left side
will be connected to the corresponding strands on the right.

Similarly, the bracket calculation of a diagram containing a 3-tangle could
be written

〈 〉

= p1

〈 〉

+ p2

〈 〉

+ p3

〈 〉

+ p4

〈 〉

+ p5

〈 〉

,

where p1, p2, p3, p4, p5 are polynomials in A. If K is the diagram formed
by closing this 3-tangle T , then 〈K〉 = p1d

2 + p2d+ p3d+ p4 + p5.
When we write the traditional Jones polynomial with indeterminate t, we

use the notation V(t) = VK(t) ∈ Z[t1/2, t−1/2].

2. Local Moves and the Jones Polynomial

We first look at the effect of a crossing change on the Jones polynomial.
We consider two knots, K and K ′ whose diagrams differ by a single crossing
change, and we determine that the difference of their Jones polynomials
must be divisible by A12 − 1. Since every knot can be transformed into
any other by crossing changes, we have that the difference of any two Jones
polynomials (for knots) has this common factor.

Theorem 1. Let K and K ′ be two knots. Then fK(A)− fK ′(A) is divisible
by A12 − 1.

Proof. Any diagram with a crossing is equivalent1 to a diagram in figure 2.
(To see this, take a ball containing the crossing, lift it up out of the paper
and drag it to the far right of the diagram. Then move the NE and SE
strands above the remainder of the diagram.)

Figure 2. Two knots that differ by a crossing change.

1It is not necessary to draw the diagram this way; the calculations remain valid if we
leave the crossing in place anywhere in the diagram. For virtual knots (section 3) the
strands may need to be connected above and below.
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Let K be the diagram on the left of figure 2, and K ′ be the diagram on
the right. Take the writhe of K to be w, so the writhe of K ′ will be w ± 2.
We compute fK(A)− fK ′(A). Suppose that

〈 〉

= p1

〈 〉

+ p2

〈 〉

,

where p1 and p2 are polynomials in A. Then
〈 〉

= A
〈 〉

+A−1
〈 〉

= Ap1

〈 〉

+Ap2d
〈 〉

+A−1p1

〈 〉

+A−1p2

〈 〉

.

〈K〉 = Ap1 +Ap2d+A−1p1d+A−1p2

= p1(A+A−1d) + p2(Ad+A−1)

= p1(−A−3) + p2(−A3).

Thus fK(A) = (−A3)−w
[

p1(−A−3) + p2(−A3)
]

.

Similarly,
〈 〉

= A
〈 〉

+A−1
〈 〉

.
〈

K ′
〉

= Ap1d+Ap2 +A−1p1 +A−1p2d

= p1(Ad+A−1) + p2(A+A−1d)

= p1(−A3) + p2(−A−3).

Thus fK ′(A) = (−A3)−w±2
[

p1(−A3) + p2(−A−3)
]

= (−A3)−w(A±6)
[

p1(−A3) + p2(−A−3)
]

.

So either

fK(A)− fK ′(A) = (−A3)−wp2(−A3 +A−9)

= (−A3)−w+3p2(A
12 − 1),

or

fK(A)− fK ′(A) = (−A3)−wp1(−A−3 +A9)

= (−A3)−w−1p1(A
12 − 1). �

One might hope to use this technique to refute Nakanishi’s Conjecture
that the 4-move (figure 3) is an unknotting move. Indeed, we can show that

Figure 3. The 4-move.

for knots that differ by 4-moves, the difference of their Jones polynomials
must be divisible by a polynomial p(A). So we could test a potential coun-
terexample K by computing fK(A)− 1 and determining whether p(A) was



4 SANDY GANZELL

a factor. But the polynomial p(A) turns out to be A12 − 1, the same as for
a crossing change. So every knot will pass this test.

We now return to the ∆-move (figure 1), and determine its effect on the
Jones polynomial.

Theorem 2. Let K and K ′ be two knots. Then fK(A)− fK ′(A) is divisible
by A16 −A12 −A4 + 1.

Proof. We consider knots K and K ′ that differ by a ∆-move, as in figure 4.
We will show that fK(A)− fK ′(A) is divisible by A16 −A12 −A4 +1. Since
∆ is an unknotting move, the theorem follows.

Figure 4

We calculate
〈 〉

= A−1
〈 〉

+(2A−A5)
〈 〉

+A−3
〈 〉

+A−1
〈 〉

+A−1
〈 〉

.

Now suppose

〈 〉

= p1

〈 〉

+ p2

〈 〉

+ p3

〈 〉

+ p4

〈 〉

+ p5

〈 〉

,

where p1, p2, p3, p4, p5 are polynomials in A. Then

〈K〉 = p1
[

A−1d2 + (2A−A5)d+A−3d+A−1 +A−1
]

+ p2
[

A−1d+ (2A −A5)d2 +A−3 +A−1d+A−1d
]

+ p3
[

A−1d+ (2A −A5) +A−3d2 +A−1d+A−1d
]

+ p4
[

A−1 + (2A−A5)d+A−3d+A−1 +A−1d2
]

+ p5
[

A−1 + (2A−A5)d+A−3d+A−1d2 +A−1
]

= p1(A
7 +A−1) + p2(−A9) + p3(−A5 −A−3 +A−7)

+ p4(A
7 +A−1) + p5(A

7 +A−1).

Similarly,

〈 〉

= A−1
〈 〉

+A−3
〈 〉

+(2A−A5)
〈 〉

+A−1
〈 〉

+A−1
〈 〉

.
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Thus
〈

K ′
〉

= p1
[

A−1d2 + (2A−A5)d+A−3d+A−1 +A−1
]

+ p2
[

A−1d+ (2A−A5) +A−3d2 +A−1d+A−1d
]

+ p3
[

A−1d+ (2A−A5)d2 +A−3 +A−1d+A−1d
]

+ p4
[

A−1 + (2A −A5)d+A−3d+A−1 +A−1d2
]

+ p4
[

A−1 + (2A −A5)d+A−3d+A−1d2 +A−1
]

= p1(A
7 +A−1) + p2(−A5 −A−3 +A−7) + p3(−A9)

+ p4(A
7 +A−1) + p5(A

7 +A−1).

Since the writhe of K equals the writhe of K ′, we have

fK(A)− fK ′(A) = (−A3)−w
[

p2(−A9 +A5 +A−3 −A−7)

− p3(−A9 +A5 +A−3 −A−7)
]

= (−A)−3w−7(p2 − p3)(A
16 −A12 −A4 + 1). �

Corollary 3. The Jones polynomial of a knot cannot have the form rAn

unless n = 0 and r = 1.

Proof. Suppose fK(A) is the Jones polynomial of the knot K. Since the
Jones polynomial of the unknot equals 1, theorem 2 tells us fK(A) − 1 is
divisible by A16−A12−A4+1. But (A−1)2 is a factor of A16−A12−A4+1,
hence fK(A) − 1 has a double root at A = 1. But rAn − 1 has no double
roots unless rAn − 1 ≡ 0. �

Note that J(A) = A16 − A12 − A4 + 1 is precisely the difference of the
Jones polynomials of the unknot and the left-handed trefoil. Thus J(A)
is maximal in the sense that any polynomial that divides the difference of
every pair of Jones polynomials will divide J(A).

Switching to the traditional notation for the Jones polynomial, we can
use theorem 2 to reproduce some previously known [12], [14] restrictions on
V(t). Define

vn =
1

n!

dn

dtn
V(t)

∣

∣

∣

t=1
.

Then as seen in [2], vn is a Z-valued Vassiliev invariant of degree at most n.

Corollary 4. If V(t) is the Jones polynomial of a knot, then

(1) V(1) = 1.
(2) v1 = 0.
(3) 3 | v2.
(4) 3 | v3.

Proof. Theorem 2 implies V(t)−1 is a multiple of s(t) = t4− t3− t+1, so we
can write V(t) = q(t)s(t) + 1. Since s(1) = 0, part (1) follows immediately.
Now, V ′(t) = q′(t)s(t) + q(t)s′(t). Since s(1) = s′(1) = 0, part (2) follows.
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Similarly, we calculate v2 = 3q(1) and v3 = 3q(1)+ 3q′(1), proving parts (3)
and (4). �

3. Virtual Knots and Forbidden Moves

Equivalence of virtual knots may be defined by means of a set of local
moves (the extended Reidemeister moves) on their diagrams. Figure 5 illus-
trates the extended Reidemeister moves: the classical Reidemeister moves
R1, R2, R3, the virtual moves V 1, V 2, V 3 and the semivirtual move SV .
We may then define a virtual knot to be an equivalence class of virtual

Figure 5. The extended Reidemeister moves.

diagrams modulo these moves.
In [4] it is proved that two classical knots K1 and K2 are equivalent

under extended Reidemeister moves if and only if they are equivalent under
classical Reidemeister moves. Thus virtual knot theory may be considered
a generalization of the classical theory. The Jones polynomial is computed
for virtual knots through the bracket polynomial exactly as it is for classical
knots by simply ignoring the virtual crossings [8].

Theorems 1 and 2 fail for virtual knots for two reasons: first, crossing
changes and ∆-moves are not unknotting moves for virtual knots; and sec-
ond, the bracket polynomial for virtual tangles cannot be written as in
equation 1 (from the introduction). We must write

〈 〉

= p1

〈 〉

+ p2

〈 〉

+ p3

〈 〉

.

To prove the analogous theorems for virtual knots, we consider an unknot-
ting set of moves, namely the forbidden moves (figure 6). The forbidden over

Figure 6. Forbidden moves.

move FO moves a strand of the diagram “over” a virtual crossing, while the
forbidden under move FU moves a strand “under” a virtual crossing. Nei-
ther of these moves can be obtained as a sequence of extended Reidemeister
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moves: If we allow one forbidden move but not the other, we obtain what
are known as welded knots, developed by Satoh in [13] and Kamada in [5].
If we allow both forbidden moves, then any virtual knot can be transformed
into any other virtual knot [6], [11], [3].

The method is the same as for theorem 2. Here we observe that for a
virtual knot K containing a virtual 3-tangle T , we can write

〈 〉

=
15
∑

i=1

pi〈Fi〉 ,

where the Fi are the 15 basic virtual 3-tangles (i.e., those without classical
crossings and disjoint unknots), namely,

(All crossings in these 15 tangles should be taken as virtual crossings.) We
then consider two virtual knots, K and K ′, that differ by a FU -move, and
compute

〈K〉 −
〈

K ′
〉

= (A−4p6 −A−6p9 −A−4p10 +A−6p11)(A
10 −A6 −A4 + 1).

Since the two knots have the same writhe, the difference of Jones polynomials
is a multiple of A10 −A6 −A4 + 1. The calculation is similar for two knots
that differ by a FO-move. The difference of Jones polynomials is again a
multiple of A10 − A6 − A4 + 1. Hence we have the theorem analogous to
theorem 2 for virtual knots.

Theorem 5. Let K and K ′ be two virtual knots. Then fK(A) − fK ′(A) is

divisible by A10 −A6 −A4 + 1. �

Since A10 − A6 − A4 + 1 is a multiple of (A − 1)2, corollary 3 holds for
virtual knots as well.

Corollary 6. The Jones polynomial of a virtual knot cannot have the form

rAn unless n = 0 and r = 1. �

Note that JV (A) = A10 − A6 − A4 + 1 is the difference of the Jones
polynomials of the unknot and the left-handed virtual trefoil (figure 7).
Thus JV (A) is maximal in the sense that any polynomial that divides the
difference of every pair of Jones polynomials will divide JV (A).

Figure 7. Virtual trefoil.
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