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Abstract. The Jones polynomial is an invariant of oriented links with
n ≥ 1 components. When n = 1, the choice of orientation does not
affect the polynomial, but for n > 1, changing orientations of some
(but not all) components can change the polynomial. Here we define a
version of the Jones polynomial that is an invariant of unoriented links,
i.e., changing orientation of any sublink does not affect the polynomial.
This invariant shares some, but not all of the properties of the Jones
polynomial.

The construction of this invariant also reveals new information about
the original Jones polynomial. Specifically, we show that the Jones
polynomial of a knot is never the product of a nontrivial monomial with
another Jones polynomial.

1. Introduction

Jones’ original construction [4] of the polynomial VL = VL(t) ∈ Z[t1/2, t−1/2]
was through the skein relation

t−1VL− − tVL+ = (t1/2 − t−1/2)VL0 ,

where L+, L− and L0 are three oriented links that are identical except inside
a ball that contains respectively, a positive crossing, a negative crossing,
and two uncrossed strands. It is easy to see that when L is a knot (i.e.,
a link of one component), the polynomial VL(t) is unchanged by reversing
the orientation on L, since crossing signs are preserved by such a change in
orientation.

For links of more than one component, however, the Jones polynomial
may change depending on the choice of orientation for each component.
The Hopf link is the simplest example. The oriented Hopf link with linking
number +1 has Jones polynomial −t1/2− t5/2, but reversing the orientation
of one component gives us −t−5/2 − t−1/2. A complete list of oriented links
up to nine crossings, together with their polynomials can be found in [1].

Based on the skein-relation definition, it is a surprising result that a
change in orientation of some components of L simply multiplies VL by a
power of t. Let L = M∪N be an oriented link with components M1, . . . ,Mr,
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N1, . . . , Ns, and write LN = M ∪ −N for the link formed by reversing the
orientations on N1, . . . Ns. Morton [6] proved that

VL(t) = t3λVLN
(t),

where λ is the linking number of M with N , defined as

λ = lk(M,N) =
∑
i,j

lk(Mi, Nj).

A much simpler proof using Kauffman’s bracket polynomial construction of
the Jones polynomial appears below.

Recall [5] the bracket polynomial 〈L〉 ∈ Z[A,A−1] is defined recursively:

〈 〉 = A 〈 〉+A−1 〈 〉
〈©L〉 = (−A2 −A−2) 〈L〉
〈©〉 = 1.

The bracket polynomial is invariant under Reidemeister moves R2 and R3,
but not under move R1. Define XL(A) = (−A3)−w 〈L〉, where w = w(L) is
the writhe (sum of all crossing signs) of L, to obtain a link invariant. Under

the change of variables A = t−1/4, we have XL(A) = VL(t). We will often
write d = −A2 −A−2, thus 〈©L〉 = d 〈L〉.

Now it is clear that changing the orientations of some components of L
multiplies the Jones polynomial by a power of t, since only the writhe (but
not the bracket polynomial) is affected by such a change. Using the notation
above, if L = M ∪N , then the crossing signs that change to produce LN are
the ones that involve some crossing of component Mi with component Nj .
Since the linking number of M with N involves precisely the same crossings,
we have

w(LN ) = w(L)− 2
∑

(crossing signs of Mi with Nj)

= w(L)− 4 · lk(M,N).

Thus

VL(t) = XL(A) = (−A3)−w(L) 〈L〉

= (−A3)−4·lk(M,N)−w(LN ) 〈L〉

= (−A)−12·lk(M,N)(−A3)−w(LN ) 〈L〉

= (A4)−3λXLN
(A)

= t3λVLN
(t),

confirming Morton’s result.
Given an unoriented link of n components, there may be up to 2n−1 asso-

ciated Jones polynomials for the links obtained by choosing an orientation
for each component. (Note: Not 2n, since changing all orientations does not
affect the Jones polynomial.) None of these is a natural choice to be the
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Jones polynomial of the unoriented link since there is no preferred orienta-
tion. In the next section we define a version of the Jones polynomial that is
an invariant of unoriented links.

2. The Jones Polynomial for Unoriented Links

We begin by defining the self-writhe of a link diagram.

Definition 1. For a link diagram L with components K1, . . . ,Kn, we define
the self-writhe of L, ψ(L) to be the sum of the writhes of each component
of L, ignoring the other components when computing each writhe. That is,

ψ(L) =
n∑
j=1

w(Kj).

Equivalently, the self-writhe can be defined as the sum of the signs of those
crossings of L for which both the under and over strands are from the same
component.

Reidemeister moves affect the self-writhe exactly as they do the writhe.
Both are invariant under moves R2 and R3. This is because the two crossings

Figure 1. Crossing signs and Reidemeister moves.

involved in move R2 are of opposite sign regardless of orientation, and the
crossing signs εi are unchanged by R3 moves regardless of orientations and
components. See Figure 1. Under move R1, both the writhe and self-writhe
change by ±1, since move R1 always involves a single component of the link.
See Figure 2.

Figure 2. Crossing signs and move R1.

Unlike the writhe, however, the self-writhe of a link L is independent of
the choice of orientations of the components of L. This is because changing
the orientation of a component K of L does not affect the writhe of K, and
hence does not affect ψ(L).

Thus we can define UL(A) = (−A3)−ψ 〈L〉. This modified Jones poly-
nomial is an invariant for the same reason that XL(A) is: both 〈L〉 and
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ψ(L) are invariant under moves R2 and R3, and 〈L〉 changes by a factor of
(−A3)±1 with each R1 move.

But since ψ(L) is unaffected by changing orientations of any components
of L, the polynomial UL(A) is also unaffected by such changes. We can

thus make the same change of variables A = t−1/4 to obtain WL(t) ∈
Z[t1/2, t−1/2], noting that WL(t) = UL(A).

Definition 2. Let L be an unoriented link with self-writhe ψ. The Laurent
polynomial UL(A) = (−A3)−ψ 〈L〉 (or equivalently WL(t)) for any choice of
orientation of components of L is the unoriented Jones polynomial of L. We
will refer to UL(A) as the U -polynomial of L.

3. Properties of the Unoriented Jones Polynomial

For knots we have WK(t) = VK(t) since w(K) = ψ(K). Thus we will
examine the properties of the unoriented Jones polynomial for links of at
least two components. Jones established [4] that if the link L has an odd
number of components, then VL(t) is a Laurent polynomial over the integers;
if the number of components of L is even then VL(t) is

√
t times a Laurent

polynomial. WL(t) does not share these properties. For example, if L is
the Hopf link, then WL(t) = −t−1 − t, since

〈 〉
= −A4 − A−4, and

ψ( ) = 0.

On the other hand, if L is link 521 (Figure 3), then ψ(L) = w(L) = −1,

Figure 3. Links 521 and 731.

regardless of orientation. Therefore,

WL(t) = VL(t) = t−7/2 − 2t−5/2 + t−3/2 − 2t−1/2 + t1/2 − t3/2.
There are two different oriented links corresponding to 731 (Figure 3), both
of which have integral exponents for the original Jones polynomials, but the
unoriented Jones polynomial is

t−5/2 − t−3/2 + 4t−1/2 − 3t1/2 + 4t3/2 − 3t5/2 + 3t7/2 − t9/2.
For the remainder of this paper we use A as the indeterminate. This is

simply to avoid fractional exponents.
Some properties of the Jones polynomial do carry over to UL(A). Let L∗

denote the mirror image of L.
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Proposition 3. UL∗(A) = UL(A−1).

Proof. This follows immediately from definition 2, since ψ(L) = −ψ(L∗). �

Theorem 4. If L and M are links, then UL#M = ULUM .

Figure 4. L#M .

Proof. Observe that for diagrams L and M , the self-writhe of L#M is just
ψ(L) + ψ(M). Now take diagrams for L, M and L#M as in Figure 4. Let〈 〉

= p1

〈 〉
+ p2

〈 〉
, and

〈 〉
= q1

〈 〉
+ q2

〈 〉
,

where p1, p2, q1 and q2 are polynomials in A. Then we have 〈L〉 = p1 + p2d,
and 〈M〉 = q1 + q2d. Moreover,

〈L#M〉 =
〈 〉

= p1

〈 〉
+ p2

〈 〉
= p1q1

〈 〉
+ p1q2

〈 〉
+ p2q1

〈 〉
+ p2q2

〈 〉
= p1q1 + p1q2d+ p2q1d+ p2q2d

2.

Thus,

UL#M (A) = (−A3)−ψ(L#M)
(
p1q1 + p1q2d+ p2q1d+ p2q2d

2
)

= (−A3)−ψ(L)(−A3)−ψ(M)(p1 + p2d)(q1 + q2d)

= UL(A)UM (A). �

When two links have the same number of components, their U -polynomials
are related algebraically. Specifically, if L and L′ are both n-component
links, then U(L) − U(L′) is divisible by a certain fixed polynomial C(A),
independent of L, L′ and n. Equivalently, we may say U(L) and U(L′) are
equal in the quotient ring Z[A,A−1]/〈C(A)〉. For convenience, we will write
U(L) ≡ U(L′) (mod C(A)).

Theorem 5. Let L and L′ be two links with the same number of components.
Then UL(A) ≡ UL′(A) (mod A6 − 1).

Proof. Suppose L and L′ are two links that differ by a crossing change. We
will show that UL(A)−UL′(A) is divisible by A6 − 1. Since any link can be
transformed by crossing changes to any other link with the same number of
components, the theorem follows.

Draw L and L′ as the numerator closures of tangles that differ by a
crossing as in Figure 5. Take the self-writhes of L and L′ to be ψ and ψ′



6 GANZELL, HUFFMAN, MAVRAKIS, TADEMY, AND WALKER

Figure 5. Two links that differ by a crossing change.

respectively. Therefore ψ′ will equal ψ, ψ + 2, or ψ − 2, depending on the
orientation of the strands in the crossing change, and whether they are from
the same component. We compute UL(A)− UL′(A). Write〈 〉

= p1

〈 〉
+ p2

〈 〉
,

where p1 and p2 are polynomials in A. Then〈 〉
= A

〈 〉
+A−1

〈 〉
= Ap1

〈 〉
+Ap2d

〈 〉
+A−1p1

〈 〉
+A−1p2

〈 〉
.

〈L〉 = Ap1 +Ap2d+A−1p1d+A−1p2

= p1(A+A−1d) + p2(Ad+A−1)

= p1(−A−3) + p2(−A3).

UL(A) = (−A3)−ψ
[
p1(−A−3) + p2(−A3)

]
.

Similarly, 〈
L′
〉

= p1(−A3) + p2(−A−3),

UL′(A) = (−A3)−ψ
′ [
p1(−A3) + p2(−A−3)

]
.

Since ψ′ ∈ {ψ,ψ + 2, ψ − 2}, either

UL(A)− UL′(A) = (−A3)−ψ
[
p1(−A−3 +A3)− p2(A3 −A−3)

]
= (−1)−ψ(A3)−ψ−1(p1 − p2)(A6 − 1),

or

UL(A)− UL′(A) = (−A3)−ψp2(−A3 +A−9)

= (−A3)−ψ−3p2(A
6 + 1)(A6 − 1),

or

UL(A)− UL′(A) = (−A3)−ψp1(−A−3 +A9)

= (−A3)−ψ−1p1(A
6 + 1)(A6 − 1). �

Corollary 6. Let L be a link with n components. Then UL(1) = (−2)n−1.
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Proof. Let ©n be the unlink of n components. Then

U©n(A) = dn−1 = (−A2 −A−2)n−1.
Therefore by theorem 5, we can write UL(A) = (A6 − 1)q(A) + (−A2 −
A−2)n−1, where q is some polynomial in A. Thus UL(1) = (−2)n−1. �

Theorem 5 establishes that A6 − 1 divides the difference of any two U -
polynomials of links with the same number of components. However, A6−1
does not appear to be the highest-degree such polynomial. In all examples
known to the authors, the difference is a multiple of A8−A6−A2 +1, which
equals (A6 − 1)(A2 − 1). We conjecture this is always the case.

Conjecture 7. Let L and L′ be two links with the same number of com-
ponents. Then UL(A) ≡ UL′(A) (mod A8 −A6 −A2 + 1).

We prove conjecture 7 for links of 3 or fewer components.

Theorem 8. Let L and L′ be two n-component links, where n ≤ 3. Then
UL(A) ≡ UL′(A) (mod A8 −A6 −A2 + 1).

Proof. It is shown in [3] that when L is a knot (i.e., n = 1), then XL(A)−
XL′(A) (and hence UL(A)−UL′(A)) is always divisible by A16−A12−A4+1,
which equals (A8 −A6 −A2 + 1)(A8 +A6 +A2 + 1).

For n = 2, we proceed as follows. It is proved in [7] that the link L can
be transformed into the link L′ by ∆-moves (Figure 6) if and only if L and

Figure 6. ∆-move.

L′ have the same number of components and the pairwise linking numbers
of the components of L equal those of L′. That is, if L = K1 ∪ · · · ∪ Kn

and L′ = K ′1 ∪ · · · ∪K ′n′ , then L can be transformed into L′ by ∆-moves if
and only if n = n′ and lk(Ki,Kj) = lk(K ′i,K

′
j) for 1 ≤ i < j ≤ n. In this

case we say L and L′ are ∆-move equivalent. Thus every 2-component link
is ∆-move equivalent to a link of the form in Figure 7, where k ∈ Z is the

Figure 7. L2k, a 2-component link with linking number k.
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linking number.
It is shown in [3] that two links that differ by a sequence of ∆-moves

have bracket polynomials that are congruent mod A8−A6−A2 + 1 (in fact
mod A16 − A12 − A4 + 1). Since ∆-moves do not affect the self-writhe, the
U -polynomials are also congruent mod A8 − A6 − A2 + 1. Now, let L2k be
the link in Figure 7. We will show that 〈L2k〉 − 〈©©〉 is also a multiple
of A8 − A6 −A2 + 1. Thus every 2-component link has bracket polynomial
congruent to 〈©©〉 (mod A8−A6−A2+1). Since L2k has self-writhe equal
to 0, this will complete the proof.

We first compute 〈L2k〉. We have〈 〉
= p1

〈 〉
+ p2

〈 〉
,

where p1 = A2k and p2 =
∑2k

m=1

(
2k
m

)
A2k−2mdm−1. Now observe that

2k∑
m=0

(
2k

m

)
A2k−2mdm =

2k∑
m=0

(
2k

m

)
A2k−2m(−A2 −A−2)m

=
2k∑
m=0

(
2k

m

)
A2k−m(−A−A−3)m

=
[
(−A−A−3) +A

]2k
by the binomial theorem. The last expression simplifies to A−6k. Therefore

p2 = A−6k−A2k

d , and

〈L2k〉 = A2kd+
A−6k −A2k

d

=
A2k(A4 + 2 +A−4) +A−6k −A2k

−A2 −A−2

=
−A2k+6 −A2k+2 −A2k−2 −A−6k+2

A4 + 1
.

Thus,

〈L2k〉 − 〈©©〉 =
−A2k+6 −A2k+2 −A2k−2 −A−6k+2

A4 + 1
+A2 +A−2

=
A8k+4 +A8k +A8k−4 −A6k+4 − 2A6k −A6k−4 + 1

−A6k−2(A4 + 1)
.(1)

Let N(A) be the numerator of Equation (1). Since

A8 −A6 −A2 + 1 = (A+ 1)2(A− 1)2(A2 +A+ 1)(A2 −A+ 1),

we must show that N(A) has these factors. (Actually, we only need to prove
that 1 and −1 are double roots, since we have already established theorem
5. But it is not hard to show directly.) Rewrite N(A) in the form

N(A) = (A8k+4 +A8k +A8k−4)− (A6k+4 +A6k +A6k−4)− (A6k − 1).
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Observe that

A8k+4 +A8k +A8k−4 = A8k−4(A4 −A2 + 1)(A2 +A+ 1)(A2 −A+ 1),

A6k+4 +A6k +A6k−4 = A6k−4(A4 −A2 + 1)(A2 +A+ 1)(A2 −A+ 1),

and

A6k − 1 = (A2 +A+ 1)(A2 −A+ 1)

6k−6∑
m=0

(Am+2 −Am).

It remains to show that (A+ 1)2 and (A− 1)2 are factors of N(A). It is
straightforward to verify that 1 and −1 are both roots of N(A) and of the
derivative N ′(A), completing the proof for 2-component links.1

The proof for n = 3 is similar. Observe that every 3-component link is

Figure 8. A 3-component link with linking numbers k1, k2, k3.

∆-move equivalent to a link of the form in Figure 8. Define

q(k) =

k∑
m=1

(
k

m

)
Ak−2mdm−1,

so that 〈 〉
= Ak

〈 〉
+ q(k)

〈 〉
.

Then if L is the link in Figure 8, we have

〈L〉 = A2k1+2k2+2k3d2

+A2k1+2k2q(2k3)d+A2k1+2k3q(2k2)d+A2k2+2k3q(2k1)d

+A2k1q(2k2)q(2k3) +A2k2q(2k1)q(2k3) +A2k3q(2k1)q(2k2)

+ q(2k1)q(2k2)q(2k3)d,

1Note that N(A) must also be divisible by A4+1, since bracket polynomials are Laurent
polynomials. We can see this directly by writing

N(A) = (A8k + A8k−4) − (A6k+4 + A6k) − (A6k + A6k−4) + (A8k+4 + 1).

The first three binomials are multiples of A4 + 1, and

A8k+4 + 1 = (A4 + 1)(A8k −A8k−4 + A8k−8 − · · · + 1).
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and we must verify that 〈L〉 − 〈©©©〉 is divisible by A8 − A6 − A2 + 1.
The proof is tedious but elementary, and follows the same outline as for
2-component links. �

Corollary 9. For n-component links L, L′ with n ≤ 3, the U -polynomial of
L can never be a nontrivial monomial times the U -polynomial of L′. I.e., if
UL′(A) = rAkUL(A), then r = 1 and k = 0.

Proof. Let p(A) = A8 − A6 − A2 + 1, so that UL(A) − UL′(A) = p(A)g(A)
for some Laurent polynomial g. Now suppose UL′(A) = rAkUL(A). Then

UL(A)− rAkUL(A) = p(A)g(A).(2)

Setting A = 1, we obtain

(−2)n−1 − r(−2)n−1 = 0

from Corollary 6. Thus r = 1.
Differentiating Equation (2) with respect to A and setting r = 1, we

obtain

(1−Ak)U ′L(A)− kAk−1UL(A) = p′(A)g(A) + p(A)g′(A).

Again, setting A = 1 produces

kUL(A) = 0.

Thus k = 0. �

Corollary 9 does not hold for the original Jones polynomial. Example 10
below, shows a pair of 2-component links whose Jones polynomials do not
satisfy the conclusion of the corollary. However, since the U -polynomial for
a knot is identical to the original Jones polynomial, Corollary 9 does apply.
Hence, the Jones polynomial of a knot cannot be the product of a nontrivial
monomial with another Jones polynomial.

Example 10. In [2], examples are given of n-component links (for n ≥ 2)
that have the same Jones polynomial as ©n. The link in Figure 9(a) is the
first of an infinite family of such links. Those examples all have w = ψ = 0,
therefore satisfy UL = U©n . Other examples are given in that paper of links

whose Jones polynomial has the form tkdn−1, as in Figure 9(b). These links
have ψ = 0, and as a result, U(A) = dn−1.
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