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. We de�ne and study a measurement of complexity for the ends of
4-manifolds. Bounds on this complexity are computed for an important family of
exotic �s, and we show how a particular exotic of high complexity can be used
to corrupt the ends of 4-manifolds, resulting in a proof that many open 4-manifolds
have in�nitely many smooth structures.
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4-manifolds, smooth structures, exotic , embedded 3-manifolds.

1.

Exotic �s, i.e., manifolds homeomorphic but not diffeomorphic to , fall into
two categories, small and large, depending on whether or not they embed into
The large exotic �s discussed in sections 2 and 3 of this paper arise as conse-
quenses of two theorems on the nonexistence of certain smooth 4-manifolds: For
smooth, closed and oriented, Donaldson�s theorem [4] states if the intersection

form is negative de�nite, then Furuta�s theorem [8] states that
if and then Here, represents the usual
symmetric bilinear form on (see e.g., [15]), and refers to the hyperbolic form
. Furuta�s theorem is often called the -theorem since it has an equivalent

formulation as , where is the signature of and is its second Betti

number. The -conjecture, , remains open.

Small exotic �s such as those discussed in section 4 arise as a consequence of the
fact that the -cobordism theorem of high dimensional topology holds in dimension
4 topologically, but fails smoothly. Explicit counterexamples in the smooth case
lead to relatively simple descriptions of some exotic �s.
In this paper we examine these exotic structures and quantify their complexity.

Bounds for large examples are computed in section 3, and for small examples in
section 4. We also show that by endsumming with an exotic of high complexity,
in�nitely many distinct smooth structures can be contructed on any 4-manifold that
has at least one end homeomorphic to , where is any closed 3-manifold.

2.

Two well-known exotic �s appear throughout this paper, and we review their
constructions here. For more complete details, see [13], [10], [11], or [14]. Let

and consider the intersection form with
basis representing the The element is
characteristic and One checks that in the subspace ,
Thus in But by Donaldson�s theorem, cannot
represent any closed smooth 4-manifold, so cannot be
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represented by a smoothly embedded 2-sphere. (Otherwise a tubular neighborhood
of that 2-sphere would be a 2�disc bundle over with Euler class

and so diffeomorphic to with the 4-handle removed. The boundary of
would be and so capping off with a 4-ball would violate the theorem.) We can,
however, [3] represent by a Casson handle, , attached to along an unknot
with framing 1. Let . By [6], is homeomorphic to with
the 4-handle removed. The (topological) core 2-sphere of in carries the
homology class , and since any Casson handle can be embedded into the standard
2-handle, we have .

is contractible and simply connected at in�nity, so by [6] is homeo-
morphic to But is an open supset of and so inherits a smooth structure
that we show to be exotic. Suppose is diffeomorphic to Then if is any
smooth, compact submanifold of satisfying there is a smoothly em-
bedded 3-sphere in that separates the compact set from
This 3-sphere also embeds smoothly in with (represented by on one side

and on the other. We now cut along this 3-sphere and glue in a 4-
ball. The result is a smooth, simply connected, closed 4-manifold with intersection
form contradicting Donaldson�s theorem.
Another (presumably different) exotic can be constructed similarly as a sub-

set of Let be the -surface (see e.g., [13]), taken with reversed
orientation so that In this case, the six elements of
that span the can be represented by six Casson handles, Set

and we �nd is homeomorphic to with the
4-handle removed. So if is taken to be the union of cores of the Casson handles,
then is readily seen to be homeomorphic to Suppose as
before that is standard. Then we could �nd a smoothly embedded 3-sphere in

that separates the compact set from
( is again any smooth, compact submanifold of satisfying Find this
3-sphere in and cut it out. Glue in a 4-ball to produce a smooth (spin), simply
connected 4-manifold with intersection form contradicting Furuta�s theorem.
In fact,

[13]

(cf. [13] 9.4.3) Let be the compact subset of described
above. Fix a homeomorphism and let be the image of a
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Since the only information about used in the
proof was its intersection form, cannot be embedded into any smooth 4-manifold
whose intersection form is .

Let be an open topological 4-manifold with at least one topologi-
cally collarable end, i.e. an end homeomorphic to for some closed 3-manifold
. Then has in�nitely many distinct smooth structures.

ball of sufficiently large radius so that . is then homeomorphic to
. Perturb the projection map to obtain a smooth, proper map ,

and de�ne for any regular value . Let be a neighborhood
of the end of , and suppose were embedded into .
From the image of this embedding remove the complement of in and denote
the resulting open manifold by . The end of has a neighborhood diffeomorphic
to . But also contains an embedding of . So we delete from the
portion of that contains the Casson handles, and attach by identifying the
(diffeomorphic) ends. The result is a manifold whose intersection form is
which is impossible by Furuta�s theorem.

By end summing (see [11]) copies of together, we can create a sequence of
exotic �s. Let i.e., the end sum of copies of Each copy of
inside contains a copy of and by connecting these �s with neighborhoods
of arcs we can form a boundary connected sum De�ne
Bižaca and Etnyre prove [1] that for and are not
diffeomorphic.
We now remove a technical hypothesis from a theorem in [1].

See Figure 2(a). Every open 4-manifold is smoothable [7], so we may
assume has a smooth structure. Let us �rst suppose has exactly one end.
In this case we follow [1]. End summing with (exotic or not) does not change
the homeomorphism type of an open 4-manifold, so is homeomorphic to
Let be a neighborhood of the end of and let be a

homeomorphism that embeds the th copy of into
De�ne and observe that for any is

homeomorphic to We show that for any positive integers is
not diffeomorphic to Thus the collection provides in�nitely many
distinct smooth structures for Suppose to the contrary that is a
diffeomorphism for some integers Let be a neighborhood of the end
of that does not intersect the copy of contained in Then

is diffeomorphic to . Let and construct a
periodic end by gluing copies of to the end of using to perform the gluing.
See Figure 2(b).
Choose smoothly embedded, separating 3-manifolds and

and let be the manifold bounded by and in Since
all 3-manifolds spin bound, we may cap off with smooth, simply connected,
spin 4-manifolds to form a closed, smooth spin 4-manifold Rohlin�s theorem
guarantees that the signature of is so by taking a connected sum with
surfaces of the correct orientation, we may assume has signature 0. Since is

spin, its intersection form is even, and hence (since ) a sum of hyperbolics
(see [14]).
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Corrupted end and periodic end

Say Then cannot embed smoothly into when (or into
any 4-manifold with the same intersection form as , cf. Remark 2.1) So choose

and observe that does embed smoothly into the periodic end constructed
above. Find a copy of past the embedded and let be the manifold
bounded by and this Cap off with the same smooth, simply connected,
spin 4-manifolds as above to produce a manifold homotopy equivalent to
(hence with the same intersection form), but into which embeds smoothly.
This contradiction establishes that is not diffeomorphic to
If has more than one, but still �nitely many ends, we use the above con-

struction to obtain a collection of (not necessarily distinct) smooth
structures for In this case, and can be diffeomorphic if the diffeo-
morphism permutes the homeomorphic ends. But there are only �nitely many such
permutations, and so our in�nite collection still provides in�nitely many distinct
smooth structures.
In the case where has in�nitely many ends, we proceed as follows: is open

and hence smoothable. Group together any ends not homeomorphic to as
one. (Note that there must be at least one additional end and this �last� one is
horribly non-collarable.) Now we may choose our smooth structure to respect the
topological product structure on the collarable ends, so that each of our topological
product ends becomes a smooth product end. To each end (of perhaps in�nitely
many) diffeomorphic to end sum a copy of and call the resulting man-
ifold Let be the collection of ends of diffeomorphic to
let be a neighborhood of and de�ne (resp. ) to be the disjoint union
of the �s (resp. �s). Fix a homeomorphism so that the th copy
of in each embeds into the corresponding component of
Since these ends are all diffeomorphic, it is of no concern that may permute them,
even if there are in�nitely many. De�ne We now
claim as in the one end case, that for integers is not diffeomorphic
to
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Let be homeomorphic to De�ne to be the supremum,
taken over all compact codimension zero submanifolds of of the minimal �rst
Betti number of any smooth 3-manifold that separates from in�nity, i.e.,

Suppose as before that is a diffeomorphism for positive integers
Let be an open neighborhood of the end of that does not contain

the copy of contained in , and such that all the �s are
diffeomorphic. De�ne . Then is diffeomorphic to . (The ends
may be permuted but they are all diffeomorphic so again this is of no consequence.)
We let and construct a manifold homeomorphic to but with
periodic ends formed by attaching copies of to the end of , using as the
attaching map. Now we can �nd, in each of the periodic ends, smoothly embedded
separating 3-manifolds and . For
any , let be the manifold in bounded by and (all are diffeomorphic so
the choice of is immaterial). Now the proof follows exactly as in the one end case.
We cap off with smooth, simply connected, spin 4-manifolds to obtain a closed,
smooth, spin 4-manifold with signaure 0, into which some cannot embed.
The construction of homotopy equivalent to with establishes the
contradiction as before.

3.

In each of the above constructions, the key property of the exotic is a compact
set that no smoothly embedded 3-sphere separates from in�nity. It is natural to
ask what other smoothly embedded 3-manifolds cannot separate from in�nity.
The question is relevant, for example to the study of topological quantum �eld
theories, in which one is concerned about the smooth splittings of 4-manifolds
along 3-manifolds.

For example, if then since for any compact there is a
smoothly embedded 3-sphere that separates from in�nity. We may think of

as a measurement of complexity of the exotic , and there is a natural
extension to the complexity of any open 4-manifold, i.e. consider the supremum of
complexities of the ends. We note that is subadditive under end sum, i.e., for
homeomorphic to De�nition 3.1 is equivalent to

the engul�ng index de�ned by Bižaca and Gompf. (See Section 4 of this paper and
also [2].)
We begin our analysis by showing is nontrivial. Let be the exotic

created in Section 2 as a subset of We have already seen that the compact
set cannot be separated from in�nity by We now show that cannot be
separated from in�nity by any rational homology sphere. Let be
a smoothly embedded 3-manifold that separates from in�nity, and suppose
has the same rational homology as By construction, can be taken to contain
a topological 3-sphere that is also a subset of (recall, is the
topological core of the Casson handle that carries the generator for homology in
). Find this 3-sphere in as per the original construction of is

then found smoothly embedded into and we de�ne
to be the 4-manifold bounded by that does not contain
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Let be the 4-manifold contained in that is bounded by and de�ne
so that is closed and smooth. We examine the Mayer-Vietoris

sequence of and (coefficients to be taken in ).

so is an isomorphism. The image of in is
zero, so the intersection form Now since , and

has the homology type of the 4-ball. So has the intersection
form which is impossible by Donaldson�s theorem. Thus
Similarly we may show that where is the exotic created in

Section 2 as a subset of but since in this case the manifolds carry spin
structures, we will be able to improve our bound for Suppose

is a smoothly embedded rational homology 3-sphere that separates
from in�nity. contains a topological 3-sphere shich is also a subset of

(here, is the union of cores of the Casson handles). Find this 3-sphere
in the surface so that can be found smoothly embedded into and de�ne

to be the manifold bounded by that does not contain Let be the
manifold contained in that is bounded by
De�ne so that is closed, smooth and spin. We again examine

the Mayer-Vietoris sequence of and

so is an isomorphism. The image of is again zero, so
the intersection form Thus if contains fewer than three hyperbolics,
would violate Furuta�s theorem. In fact, since and
N has the homotopy type of the 4-ball. So has intersection form The

contradiction establishes that
With a little more care, we can establish a better lower bound for In-

stead of assuming is a homology sphere, we only suppose By duality,
The idea is that can only contribute at most a rank two

subspace to each of and So can inherit at largest a rank four
subspace from : roughly speaking, half from (via ) and half from

This subspace has signature zero, and since is spin, must be a sum of
hyperbolics. Then would correspond to the intersection form (at
best), which would contradict Furuta�s theorem and establish . Recalling
the de�nitions of and from Section 2, we apply this method.

Let be a 3-manifold that separates from in�nity. De�ne
to be the 4-manifold bounded by that does not contain the cores of the

Casson handles that carry the in homology. De�ne to
be the 4-manifold bounded by that is contained in and let .
See Figure 3. Note that all 4-manifolds in our construction are spin, so have even
intersection form and signature 0 mod 16.
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Calculation of

Now suppose has rank We use the above Mayer-Vietoris sequence,
and the exact sequences of the pairs and (again, coefficients in ).

Duality implies The end of (similarly for ) contains
a topological 3-sphere that, along with bounds a 4-manifold that is a sub-
set (topologically) of See Figure 4. So any in can be pushed into
Thus the form corresponding to is and So
corresponds to the form and to the form
Now, so By exactness,
and since the form corresponding to must be a subform of

for some of (even) rank has signature 0, and since is spin,
is a sum of (at most ) hyperbolics, i.e., is a subform of
But the form for necessarily contains summands, which contradicts
Furuta�s theorem. Note that we have actually proved any exotic that contains
satis�es even if it is not diffeomorphic to

Any in can be pushed into .

Suppose Then for any compact set can be
separated from in�nity by a 3-manifold with In particular,
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is compact, but as seen above, cannot be separated from in�nity by a 3-manifold
with implying The contradiction establishes

4.

Many small exotic �s arise as a consequence of the topological success and
smooth failure of the -cobordism theorem. A topological -cobordism between

and a surgered version of the same manifold results in the exotic in
Figure 5(b), which we denote (For details see [9] or [13].)

A small exotic

To see directly that is homeomorphic to , replace the Casson handle in Fig-
ure 5(b) with a standard 2-handle. We then have Figure 5(a), where the unmarked
2-handle has framing 0. That 2-handle now cancels the 1-handle it goes over, and
the remaining 1-2 handle pair cancels to leave . Freedman�s work then implies
that is homeomorphic to
We now compute a bound on the complexity of In this setting, Bižaca and

Gompf refer to the complexity as the of Similar examples can
be found in [2]. De�ne to be the compact submanifold of obtained by cutting
off the Casson handle after the th stage, so that is pictured in Figure 6(a).

Begin with the handle slide indicated by the arrow, and isotope the picture to
obtain 6(b). Another handle slide and isotopy produces 6(c). Sliding 1-handles
twice then yields 6(d), which is the same as 6(a) with one fewer 1-2 handle pair,
and the rightmost 1-handle replaced by its untwisted Whitehead double. Iterating
this sequence of moves, but doubling the number of 1-handle slides in 6(c) for each
iteration allows us to cancel 1-2 handle pairs of , obtaining the -fold untwisted
Whitehead double of the unknot for the rightmost dotted circle. Sliding that dotted
circle times over the middle dotted circle as indicated in 6(d) and cancelling the
remaining handle pair gives us Figure 7(a), which is isotopic to 7(b), where the
-fold double is drawn for convenience as a thickened strand.
We now wish to determine the boundary of . Surger the 1-handles by replacing

the dotted circles with 0-framed circles, and slide each strand of the -fold double
over the left circle twice as indicated in 7(b). The right circle is now a 0-framed
meridian of the left, and so the two can be cancelled to leave 7(c), which is isotopic
to the -fold untwisted Whitehead double of the pretzel knot pictured
in 7(d).
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Calculation of the boundary of

The upshot of this calculation is that is the 3-manifold obtained by 0-surgery
on a knot in , so Since every compact subset of is contained
in some we have

Smooth structures on collarable ends of 4-manifolds

Elliptic surfaces and some simple exotic �s.

Three lectures on new in�nite constructions in 4-dimensional manifolds.
À la Recherche de la Topologie Perdue

An application of gauge theory to the topology of 4-manifolds.

The orientation of Yang-Mills moduli spaces and 4-manifold topology.

The topology of four-dimensional manifolds.
Topology of 4-Manifolds.

Monopole equation and the -conjecture
Complexity of exotic �s.
Three Exotic �s and other anomalies
An in�nite set of exotic �s
An exotic menagerie
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