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SANDY GANZELL AND AMY KAPP

Abstract. We exhibit an infinite family of knots that are detected chiral by
the Kauffman polynomial but not by the HOMFLY polynomial.

1. Introduction

In [2], Kauffman introduced the polynomial that has since come to bear his
name. In that paper it is noted that the Kauffman polynomial is very good at
detecting chirality, in particular, it is better in this respect than the HOMFLY
polynomial in many cases. In this paper we exhibit an infinite family of knots that
lend support to Kauffman’s statement. Namely, we show that each member of the
family {Pk} of (2, 1 − 2k, 1 + 2k) pretzel knots (k ≥ 2) is detected chiral by the
Kauffman polynomial but not by the HOMFLY polynomial. Whether there exists
any knot detected chiral by HOMFLY but not by Kauffman is still open.

2. Computation of the Polynomials

2.1. HOMFLY polynomial. We use the construction of the HOMFLY polyno-
mial defined by the axioms

〈©〉 = 1

〈K+〉 − 〈K−〉 = z 〈K0〉

〈 〉 = a 〈 〉

〈 〉 = a−1 〈 〉 ,

where 〈K〉 is a regular isotopy invariant. The HOMFLY polynomial is then defined
by G(K) = a−w(K) 〈K〉, where w(K) is the writhe of K. See [1] or [2] for details
of this construction. Notice that w(Pk) = 0 for all k ≥ 2, so G(Pk) = 〈Pk〉. For
a knot K, G(K) ∈ Z

[

a±2, z
]

, and if K∗ is the mirror image of K then G(K∗) is

obtained from G(K) by replacing a with −a−1. For convenience of notation we

define GK(a, z) = G(K) and let δ = a−a−1

z
so that 〈©K〉 = δ 〈K〉. (Notice δ is

unchanged by replacing a with −a−1.)
In all of the equations below, the box represents the number of positive (right-

handed) half twists of the strands.
We begin by calculating 〈Pk〉 recursively:
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〈

1–2k 1+2k

〉

=

〈

1–2k 1+2k

〉

− z

〈

1–2k 1+2k

〉

=

〈

1–2k 1+2k

〉

− a−1δz − z2.

Now, for m ≥ 2,

〈

n–m

〉

=

〈

n–(m–2)

〉

− z

〈

n–(m–1)

〉

,

When m = 0 we have

〈

n

〉

= δ

〈

n

〉

,

and when m = 1,

〈

n

〉

= a−1

〈

n

〉

.

To complete the recursion, we calculate

〈

n

〉

=

〈

n–2

〉

+ z

〈

n–1

〉

for n ≥ 2.

When n = 0 and n = 1 the bracket yields δ and a respectively. So by induction,
we have

〈

1+2k

〉

= a

k
∑

i=0

(

k+i

2i

)

z2i + δ

k−1
∑

i=0

(

k+i

2i+1

)

z2i+1, and

〈

1–2k 1+2k

〉

=

[

a−1
k−1
∑

i=0

(

k+i−1
2i

)

z2i − δ

k−2
∑

i=0

(

k+i−1
2i+1

)

z2i+1

]〈

1+2k

〉

.
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Thus

〈

1–2k 1+2k

〉

=

[

a−1
k−1
∑

i=0

(

k+i−1
2i

)

z2i − δ

k−2
∑

i=0

(

k+i−1
2i+1

)

z2i+1

][

a

k
∑

i=0

(

k+i

2i

)

z2i + δ

k−1
∑

i=0

(

k+i

2i+1

)

z2i+1

]

.

(It follows that GPk
(a, z) always has the form c2,ka

2 + c0,k + c−2,ka
−2, where each

ci,k is a function in z.) We now show that GPk
(a, z) = GPk

(−a−1, z).
Since δ is unchanged by the substitution of −a−1 for a, we write

〈

1–2k 1+2k

〉

= f(δ, z) + g(a, δ, z)

where

g(a, δ, z) = a−1δ

[

k−1
∑

i=0

(

k+i−1
2i

)

z2i

] [

k−1
∑

i=0

(

k+i

2i+1

)

z2i+1

]

−aδ

[

k
∑

i=0

(

k+i

2i

)

z2i

][

k−2
∑

i=0

(

k+i−1
2i+1

)

z2i+1

]

.

It follows that the coefficients of a−1δz2s+1 and −aδz2s+1 (in terms of k) are

(2.1)
s

∑

i=0

(

k+i−1
2i

)(

k−i+2
2s+1−2i

)

and

(2.2)

s
∑

i=0

(

k+i

2i

)(

k−i+1
2s+1−2i

)

respectively. When s = 1 these are easily seen to be equal, and by induction we
have that 2.1 and 2.2 are equal for s ≥ 1. Plugging in s = 0, however, we find that
k and k − 1 are the coefficients of a−1δz and −aδz respectively. Thus

GPk
(a, z) = f(δ, z) + g(a, δ, z)− a−1δz − z2

= f(δ, z) + g(−a−1, δ, z) + a−1δz + aδz − a−1δz − z2

= GPk
(−a−1, z).

Hence the HOMFLY polynomial does not detect that Pk is chiral.

2.2. Kauffman Polynomial. Recall now that the Kauffman polynomial ([2]) is
defined in terms of the regular isotopy invariant [K] satisfying the axioms

[ ]

+
[ ]

= z
([ ]

+
[ ])

[ ] = a [ ]

[ ] = a−1 [ ]

[©] = 1.
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The Kauffman polynomial is then defined by F (K) = FK(a, z) = a−w(K) [K]. For
a knot K, F (K) ∈ Z

[

a±1, z
]

, and FK(a, z) = FK∗(a−1, z). Again, each Pk has zero

writhe, so F (Pk) = [Pk]. It is convenient to let d = a+a−1

z
−1 so that [©K] = d [K].

Here we do not endeavour to find an explicit expression for FPk
(a, z). Instead,

we calculate the term of FPk
(a, z) with the highest power of z. This turns out to

have the form cz4k where c is a function for which c(a) 6= c(a−1), verifying that the
Kauffman polynomial does detect chirality for this family.

Again we proceed recursively. We have,









n–m









= −









n–m









+ z









n–m









+z









n–m









= −









n–m









+ z









n–m









−a−1zd+ a−2z2 + z2.

Now,









n–m









= −









n–(m–2)









+ z









n–(m–1)









+zam−1









n









,









n









= d









n









and









n









= a−1









n









.
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Similarly,








n–m









= −









n–(m–2)









+ z









n–(m–1)









+am−1z









n+1









,









n









= a









n









,









n









= a−n.

So to complete the recursion we compute








n









= −









n–2









+ z









n–1









+ a1−nz,

















= d,

















= a.

Observe that for n ≥ 2, the term of

[

n

]

with the highest power of z is

(a + a−1)zn−1. Thus for m,n ≥ 2, the term of

[

n–m

]

with the highest

power of z is (a2+2+a−2)zm+n−2, and the term of

[

n–m

]

with the highest

power of z is (a2 + 1)zn+m−1. Hence for all k, the term of [Pk] with the highest
power of z is (a2 + 1)z4k, which implies that FPk

(a, z) 6= FPk
(a−1, z).
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