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Abstract. Recognizing and performing Reidemeister moves in Gauss
diagrams is a useful technique for manipulating virtual knots. For R1
and R2 moves, this process is well understood. We review these cases
and then provide a new, elementary algorithm for R3 moves.

1. Introduction

In [5], Kauffman introduced the theory of virtual knots. Like the classical
theory, virtual knot theory has a useful diagrammatic approach. Virtual
knot diagrams can be thought of as closed curves in the plane with regular
crossings, having extra structure at the crossings. In the classical theory,
this extra structure is indicated by overcrossings and undercrossings. In the
virtual theory, a third kind of crossing is allowed, namely virtual crossings,
which are indicated in the diagrams with a small circle around the vertex.

Equivalence of virtual knots may be defined by means of a set of local
moves (the extended Reidemeister moves) on their diagrams. Figure 1 illus-
trates the extended Reidemeister moves: the classical Reidemeister moves
R1, R2, R3, the virtual moves V1, V2, V3 and the semivirtual move SV. We
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Figure 1. The extended Reidemeister moves.

may then define a virtual knot to be an equivalence class of virtual diagrams
modulo these moves (and planar isotopy).
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In [3] it is proved that two classical knots are equivalent under extended
Reidemeister moves if and only if they are equivalent under classical Reide-
meister moves. Thus virtual knot theory may be considered a generalization
of the classical theory.

Nevertheless, some of our intuition can lead us astray with diagrams that
contain virtual crossings. It is important to restrict ourselves to the moves,
and not consider physical movements in space. For example, the virtual

Figure 2. Distinct virtual knots.

knots in Figure 2 are distinct, though they appear to differ only by a physical
twist. These knots can be distinguished by the arrow polynomial [2].

There are two additional Reidemeister-like moves, known as the forbidden
moves, illustrated in Figure 3. Neither of these moves can be obtained
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Figure 3. Forbidden moves.

as a sequence of extended Reidemeister moves. If we allow both of these
moves, then any virtual knot can be transformed into any other virtual knot
[6, 1], hence the designation of these moves as forbidden. If we allow one
forbidden move but not the other, we obtain what are known as welded
knots, developed by Satoh [8] and Kamada [4].

2. Gauss Diagrams and Reidemeister Moves

One motivation for the development of virtual knots was to provide a
correspondence between knots and Gauss diagrams. Given an oriented (vir-
tual) knot, we define its Gauss diagram as follows: First label all the classical
crossings of the knot. Then traverse the knot, noting the sequence of crossing
labels (so each label appears twice). Write this sequence counterclockwise1

around a circle. Add a directed chord (indicated by an arrow) to the circle
for each crossing, pointing from the label corresponding to the overcrossing
to the label corresponding to the undercrossing. Finally, each arrow is la-
beled with the sign of the crossing. For example, Figure 4 shows the virtual

1Either direction is acceptable, but we will always draw our diagrams counterclockwise
for consistency.
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Figure 4. Gauss diagram of a virtual trefoil.

trefoil knot and its corresponding Gauss diagram. The Gauss code is simply
the sequence of under and overcrossings together with the crossing signs. A
Gauss code for the virtual trefoil is O1−O2−U1−U2−.

Not every Gauss diagram can be realized as the diagram of a classical
knot (the diagram in Figure 4 is an example), but every Gauss diagram can
be realized as the diagram of a virtual knot [5]. It is often useful to think of
virtual knots in terms of Gauss diagrams, since it avoids the pitfalls created
by misinterpreting virtual knots as physical objects.

Note that the virtual moves V1, V2, V3 and SV have no effect on the
Gauss diagram, since the sequence of classical crossings is unaffected by
these moves. The classical Reidemeister moves R1, R2, R3 do change this
sequence and can be reinterpreted as moves on Gauss diagrams.

Move R1 corresponds to adding or deleting a chord from the Gauss di-
agram whose head and tail are adjacent on the circle (i.e., no chord ends
are between its head and tail). See Figure 5. The sign and direction of the
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Figure 5. Reidemeister move R1 on a Gauss diagram.

chord will depend on the direction of the twist (right-handed or left-handed)
and the orientation of the knot. Specifically, changing the direction of the
twist changes the sign and direction of the chord. A knot with opposite
orientation would give the chord the same sign but opposite direction.

Move R2 corresponds to adding or deleting a pair of chords from the Gauss
diagram that that satisfy three conditions: (1) the heads are adjacent, (2)
the tails are adjacent and (3) the chords have opposite sign. See Figure 6.
The chords may or may not cross depending on the relative orientations of
the two arcs of the knot.
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Figure 6. Reidemeister move R2 on a Gauss diagram.

Move R3 is more complicated. Östlund [7] provides a sufficient set of
moves on Gauss diagrams to generate all R3 moves, and the effect of R3
moves on Gauss diagrams is well known. But no test to determine whether
an R3 move can be made for a given triple of chords appears in the literature.
We provide such a test here.

We will use the term 3-movable to refer to a triple of chords in a Gauss
diagram (or the corresponding crossings in a knot diagram) that can be
repositioned by an R3 move. For example, the triple in Figure 7(a) is 3-
movable, but the triples in Figures 7(b) and 7(c) are not. Notice that a
forbidden move would be required to move the “lower” strand in 7(b).

(a) (b) (c)
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Figure 7. Movable and nonmovable triples.

A 3-movable triple must consist of three chords and three arcs of the
Gauss diagram, one arc consisting of two arrowheads, one arc consisting of
two arrowtails, the third arc consisting of one head and one tail of distinct
chords. A triple of chords satisfying this condition is said to be matched.
The chords in Figure 7(a) and 7(b) are matched, but not those in 7(c).
A second condition is necessary to guarantee that a matched triple is 3-
movable. We define that condition here and then prove the correspondence
with 3-movable triples.

To each chord in a matched triple we associate three numbers indicating
sign, parity and direction. The sign (±1) corresponds to the sign of the
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crossing. The parity is assigned +1 if the chord crosses an even number of
chords in the triple, or −1 for an odd number. The direction is assigned +1 if
the chord points counterclockwise around the three arcs, or −1 for clockwise.
For example, the horizontal chord in Figure 7(a) is counterclockwise (+1)
since it points from the lower left to the lower right arc, even (+1) since it
crosses both of the other chords, and negative (−1). The leftmost chord in
7(a) is clockwise (−1), odd (−1) and negative (−1). Define the 3-sign of
each chord to be the product of these three numbers. Note that all three
chords in 7(a) have 3-sign equal to −1.

Theorem 1. A triple of chords is 3-movable if and only if it is matched and
its chords all have the same 3-sign.

Proof. The necessity of being matched follows directly from the definition of
an R3 move, so we will show that a matched triple is 3-movable if and only
if its chords have the same 3-sign. If a triple is 3-movable, we may rotate
the knot so that the strand that goes under the others is horizontal and
the third crossing is above, as in the bottom of Figure 7(a). There are two

possibilities for the third crossing, or . For each of those, there are 2
possibilities for orientation of each strand and two orderings of the strands
as we traverse the knot, resulting in 25 = 32 movable triples.

Conversely, if we have a matched triple with all 3-signs equal, we may
rotate the Gauss diagram so that the arc with both arrowheads is at the
top. There are then two possible locations for the arc with one head and one
tail (left or right). That arc can have the head in one of two positions (top or
bottom). The head and tail on that arc each have two possible connections
(two tails and two heads). Finally, the bottom (horizontal) chord can be
labeled + or −, which will determine the signs of the other two chords (since
all 3-signs must be the same). Thus there are 32 possible matched triples
with equal 3-signs. The correspondence with movable triples is tedious but
elementary. �

When a triple of chords is 3-movable, the effect of the R3 move on the
Gauss diagram is to switch the two chord ends on each of the three arcs as
in Figure 8. The resulting triple is, of course, 3-movable. It is easy to see
the triple is still matched, and each chord has the same direction, sign and
parity as the original.
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Figure 8. R3 moves on Gauss diagrams.
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3. Examples

We provide two examples to illustrate the usefulness of Gauss diagrams
in simplifying knots.

Example 1. Consider the virtual knot in Figure 9(a). It is difficult to

(a) (b)
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Figure 9. A hard-to-see unknot.

see a sequence of extended Reidemeister moves to simplify the diagram; we
encourage the reader to try. However, when viewed as a Gauss diagram
as in 9(b), it is easy to see the R2 move that can be made with the two
horizontal chords. Their heads and tails are both adjacent, and they have
opposite sign. Thus they can be removed from the diagram, leaving two
nonintersecting chords. These can be removed with R1 moves, leaving the
unknot.

Example 2. Consider the knot and corresponding Gauss diagram in Figure
10. The triple of chords (1, 3, 4) is matched (indicated by the shaded arcs)
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Figure 10. Setup for an R3 move.

and all have positive 3-sign. Hence we may perform an R3 move to obtain
the first Gauss diagram in Figure 11. Now chords 2 and 3 are positioned
for an R2 move, and can be eliminated from the diagram. Finally, chords
1 and 4 can be removed by an additional R2 move, resulting in an empty
diagram, i.e., the unknot.
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Figure 11. Reducing to the unknot.
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