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Abstract. We study the effects of certain local moves on Homflypt
and Kauffman polynomials. We show that all Homflypt (or Kauffman)
polynomials are equal in a certain nontrivial quotient of the Laurent
polynomial ring. As a consequence, we discover some new properties of
these invariants.

1. Introduction

The Jones polynomial has been widely studied since its introduction in
[5]. Divisibility criteria for the Jones polynomial were first observed by Jones
in [6], who proved that 1 − VK is a multiple of (1 − t)(1 − t3) for any knot
K. The first author observed in [3] that when two links L1 and L2 differ
by specific local moves (e.g., crossing changes, ∆-moves, 4-moves, forbidden
moves), we can find a fixed polynomial P such that VL1 − VL2 is always a
multiple of P . Additional results of this kind were studied in [11] (Cn-moves)
and [1] (double-∆-moves).

The present paper follows the ideas of [3] to establish divisibility criteria
for the Homflypt and Kauffman polynomials. Specifically, we examine the
effect of certain local moves on these invariants to show that the difference
of Homflypt polynomials for n-component links is always a multiple of a4−
2a2 + 1 − a2z2, and the difference of Kauffman polynomials for knots is
always a multiple of (a2 + 1)(a2 + az + 1).

In Section 2 we define our main terms and recall constructions of the Hom-
flypt and Kauffman polynomials that are used throughout the paper. The
primary theorem of Section 3 establishes the divisibility criterion described
above for Homflypt polynomials. We then study consequences of that re-
sult, which reveal properties of the Homflypt polynomial and its derivatives,
including a proof that a Homflypt polynomial can never be a nontrivial
monomial. In Section 4 we prove the analogous theorems for the Kauffman
polynomial.
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2. Preliminaries

A local move on a link diagram is a substitution, inside a prescribed ball, of
one subdiagram for another, resulting in another link diagram. Local moves
are considered “bidirectional” in the sense that if we permit the substitution
of subdiagram X for subdiagram Y , then we also permit the substitution of
Y for X. Reidemeister moves are local moves that preserve the link type,
whereas a crossing change is a local move that may change the link type.

We say that the local move M is an unknotting move if repeated uses of M
(together with Reidemeister moves) can transform every knot diagram into a
diagram of the unknot. We say that M is an unlinking move if repeated uses
of M (together with Reidemeister moves) can transform every n-component
link diagram into a diagram of the n-component unlink. For example, the
standard crossing change is an unlinking move, but the ∆-move (Figure 1) is

Figure 1. The ∆-move.

not, since it does not affect the pairwise linking numbers of its components.
The ∆-move is, however, an unknotting move, as shown in [10]. Thus we
say that every knot is ∆-equivalent to the unknot.

We assume the reader is familiar with Kauffman’s bracket construction
of the Jones Polynomial [8]. For a diagram L, we denote the bracket of L
by 〈L〉 ∈ Z[A,A−1]. Recall that the bracket is a regular isotopy invariant
(i.e., invariant under Reidemeister moves II and III). The Jones polynomial
is then given by VL = VL(A) = (−A3)−w 〈L〉, where w is the writhe of L.

We use A = t−1/4 for the indeterminate, and let d = −A2 − A−2, so that
〈©L〉 = d 〈L〉.

The Homflypt polynomial GL = GL(a, z) is most commonly defined [2]
by a skein relation in two variables: aGL+ − a−1GL− = zGL0 , where GL is
an invariant normalized to equal 1 for the unknot. The links L+, L− and
L0 as usual are identical except at a single crossing site. However, we may
equivalently define GL(a, z) by a bracket 〈L〉h according to the rules:

〈L+〉h − 〈L−〉h = z 〈L0〉h
〈 〉h = a 〈 〉h
〈 〉h = a−1 〈 〉h
〈 〉h = 1

where 〈L〉h is a regular isotopy invariant. The Homflypt polynomial is then
defined by GL = a−w 〈L〉h, where w is the writhe of L. See [7] for details of

this construction. It is convenient to let δ = a−a−1

z so that 〈©L〉h = δ 〈L〉h.
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The bracket construction of the Homflypt polynomial is analogous to the
standard construction of the Kauffman polynomial FL = FL(a, z), which is
defined by a bracket 〈L〉k according to the rules:

〈 〉k + 〈 〉k = z
(
〈 〉k + 〈 〉k

)
〈 〉k = a 〈 〉k
〈 〉k = a−1 〈 〉k
〈 〉k = 1

where 〈L〉k is also a regular isotopy invariant. The Kauffman polynomial is
then defined by FL = a−w 〈L〉k, where w is again the writhe of L. We let

λ = a+a−1

z − 1 so that 〈©L〉k = λ 〈L〉k.
As usual, the entire knot is not always drawn in a bracket calculation;

two diagrams in a calculation should be presumed identical outside of the
portion drawn.

3. Local Moves and Homflypt Polynomials

In this section we establish the main divisibility criterion for the Homflypt
polynomial, namely that the Homflypt polynomials of any two n-component
links (n ≥ 1) are equal in a certain quotient of the ring Z[a, a−1, z, z−1].
Recall [9] that for a knot K, we have GK ∈ Z[a2, a−2, z2], and more gen-
erally, the Homflypt polynomial of an n-component link is an element of
Z[a, a−1, z, z−1], with powers of a and z being odd or even when n is even
or odd respectively. The lowest power of z is 1− n.

Theorem 1. Let L1 and L2 be n-component links. Then GL1 − GL2 is a
multiple of a4 − 2a2 + 1− a2z2.

Proof. We will show that when two diagrams differ by a crossing change,
then the difference of their Homflypt polynomials is a multiple of a4−2a2 +
1− a2z2. Since one can convert any link into any other link with the same
number of components using a sequence of crossing changes, the result fol-
lows.

Any oriented link diagram with a crossing can be drawn as one of the
diagrams in Figure 2. Label these L1 and L2 respectively, where L1 has the

Figure 2. Two links that differ by a crossing change.

positive crossing. Let w be the writhe of L1, so w − 2 is the writhe of L2.
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By repeated use of the definition of GL(a, z), we may write〈 〉
h

= p0

〈 〉
h

+ p1

〈 〉
h
,

where p0 and p1 are polynomials in a and z. Thus we have

GL1 −GL2 = a−w

(〈 〉
h

− a2

〈 〉
h

)

= a−w

(
z

〈 〉
h

+ (1− a2)

〈 〉
h

)

= a−w
(
zp0

〈 〉
h

+ zp1

〈 〉
h

+ (1− a2)p0

〈 〉
h

+ (1− a2)p1

〈 〉
h

)
= a−w

(
zp0δ + zp1a

−1

+ (1− a2)p0a
−1 + (1− a2)p1

(
(a− a−1)z−1 − a−1z

))
= a−w

(
p0(a− a−1 + a−1 − a)

+ p1(za−1 + 2az−1 − a−1z−1 − a3z−1 − a−1z + az)
)

= −a−w−1z−1p1

(
a4 − 2a2 + 1− a2z2

)
,

as desired. �

The polynomial a4 − 2a2 + 1 − a2z2 appears throughout this paper. We
denote it by Ph(a, z):

(1) Ph(a, z) = a4 − 2a2 + 1− a2z2 = (a2 − 1− az)(a2 − 1 + az).

Note that Ph(a, z) is precisely the difference between the Homflypt poly-
nomial of the unknot and that of the right-handed trefoil. Thus Ph(a, z)
is maximal in the sense that any polynomial that divides the difference of
every pair of Homflypt polynomials will divide Ph(a, z).

Corollary 2. The Homflypt polynomial of a knot has the general form
Ph(a, z)g(a, z) + 1. More generally, the Homflypt polynomial of a link with
n components has the general form Ph(a, z)g(a, z) + δn−1.

Proof. This follows immediately from Theorem 1 since the Homflypt poly-
nomial of the n-component unlink is δn−1. �

Corollary 3. For any link L, if z = a2−1
a , then GL(a, z) = 1.

Proof. From (1), we see that Ph(a, z) = 0 under the given substitution.

Moreover, since δ = a−a−1

z , we have that δ = 1. Thus the general form of
Corollary 2 gives us the result. �
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Theorem 1 gives us general information regarding Homflypt polynomials
and their derivatives. If we consider Homflypt polynomials to be elements
of
(
Z[a, a−1]

)
[z, z−1], then the leading coefficient (in this z-expansion) is a

(Laurent) polynomial in the indeterminate a. Note that for knots these are
the terms with z-exponent equal to 0. For a given link L, we will denote the
coefficient of zj in the expansion of GL(a, z) by qj(a).

Proposition 4. Let K be a knot. Then q′0(1) = 0, and for n ≥ 2 the nth

derivative of q0(a) evaluated at 1 is a multiple of C, where

C =

{
4n(n− 1) if n ≡ 2, 3

2n(n− 1) if n ≡ 0, 1
(mod 4).

Proof. Write GK(a, z) = (a4 − 2a2 + 1 − a2z2)g(a, z) + 1. Recall that for
knots, the lowest power of z in GK(a, z) is 0. Thus, letting g0(a) be the
coefficient of z0 in the z-expansion of g(a, z), we may write

q0(a) = (a4 − 2a2 + 1)g0(a) + 1.

Thus q0(1) = 1, q′0(1) = 0, q′′0(1) = 8g0(1), and q′′′0 (1) = 24
(
g0(1) + g′0(1)

)
.

For n ≥ 4, we have

q
(n)
0 (1) = 8

(
n

2

)
g

(n−2)
0 (1) + 24

(
n

3

)
g

(n−3)
0 (1) + 24

(
n

4

)
g

(n−4)
0 (1).

Thus q
(n)
0 (1) is a multiple of

C = gcd
(
4n(n− 1), 4n(n− 1)(n− 2), n(n− 1)(n− 2)(n− 3)

)
.

If n− 2 or n− 3 is a multiple of 4, then C = 4n(n− 1). Otherwise, either n
or n − 1 is a multiple of 4, so either n − 2 or n − 3 is congruent to 2 (mod
4), giving us C = 2n(n− 1). �

Recall that the Jones polynomial can be recovered from the Homflypt
polynomial by the substitutions a = A4 and z = A2 −A−2. That is,

VL(A) = GL(A4, A2 −A−2).

The first author shows in [3] that for knots K1 and K2, the difference of their
Jones polynomials is always a multiple of A16 − A12 − A4 + 1. To obtain
that result it was insufficient to consider diagrams that differed by crossing
changes; it was necessary to consider ∆-moves. We will revisit ∆-moves in
Section 4, but we note here that the substitution for a and z above provides
us with a new proof of the result for Jones polynomials.

Proposition 5. Let K1 and K2 be knots. Then VK1(A) − VK2(A) is a
multiple of A16 −A12 −A4 + 1.

Proof. Substituting a = A4 and z = A2−A−2 into (1), we obtain Ph(a, z) =
A16 − A12 − A4 + 1. Since Homflypt polynomials of knots have no terms
with negative z exponents, the result follows. �
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Note that for links with two or more components, Proposition 5 in general
fails. This is because with the same substitution for a and z,

Ph(a, z)

z
=
A16 −A12 −A4 + 1

A2 −A−2
= A2(A12 − 1).

Proposition 5 was used in [4] to show that the Jones polynomial of a knot
is never a product of another Jones polynomial with a nontrivial monomial.
Here we show the analogous fact for Homflypt polynomials. It follows as
an immediate corollary that a Homflypt polynomial cannot be a nontrivial
monomial.

Theorem 6. Let L1 and L2 be k-component links (k ≥ 1). If GL2 =
ranzmGL1, then r = 1 and n = m = 0.

Proof. Suppose GL2 = ranzmGL1 . By Theorem 1 we may write

GL2 −GL1 = (a4 − 2a2 + 1− a2z2)g(a, z),

and so

GL1(ranzm − 1) = (a4 − 2a2 + 1− a2z2)g(a, z)(2)

for all a and z. In particular, if z = 1 and a = 1+
√

5
2 , then a4−2a2+1−a2z2 =

0, and by Corollary 3, we have GL1 = 1. Thus r
(

1+
√

5
2

)n
= 1. It follows

(e.g., from the binomial theorem) that n = 0, and so r = 1. Substituting
into (2), we obtain

GL1(zm − 1) = (a4 − a2z2 − 2a2 + 1)g(a, z).

Letting z = 0 and a = 1 produces 0m = 1, since GL1 = 1 again by Corollary
3. Thus, m = 0. �

Corollary 7. The Homflypt polynomial of a knot cannot be a nontrivial
monomial.

Proof. Since the Homflypt polynomial of the unknot is 1, this follows from
Theorem 6, by letting L1 be the unknot. �

4. Local Moves and Kauffman Polynomials

In this section we prove statements about the Kauffman polynomial anal-
ogous to those in Section 3. We begin by considering links whose diagrams
differ by crossing changes as before. However, for knots, or links with an
additional property, we can prove a much stronger theorem.

Theorem 8. Let L1 and L2 be n-component links. Then FL1 − FL2 is a
multiple of a2 + 1.

Proof. The proof is analogous to that of Theorem 1. Observe that for any
tangle T , we may write〈 〉

k
= p1

〈 〉
k

+ p2

〈 〉
k

+ p3

〈 〉
k
,
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where p1, p2 and p3 are polynomials in a and z. Now consider two n-
component links L1 and L2 that differ by a crossing change. Let w and
w − 2 be their respective writhes. (The result is unchanged if L2 has the
greater writhe.) We compute

FL1 − FL2 = a−w

(〈 〉
k

− a2

〈 〉
k

)

= a−w
(
p1

〈 〉
k

+ p2

〈 〉
k

+ p3

〈 〉
k

− a2p1

〈 〉
k
− a2p2

〈 〉
k
− a2p3

〈 〉
k

)
= a−w

(
λp1 + ap2 + a−1p3

− a2p1(az + a−1z − az−1 − a−1z−1 + 1)− ap2 − a3p3

)
= a−w

(
p1(az−1 + a−1z−1 − 1− a3z − az + a3z−1 + az−1 − a2)

+ p3(a−1 − a3)
)

= −a−w−1(a2 + 1)
(
p1(a2z + a− a2z−1 − z−1) + p3(a2 − 1)

)
as desired. �

When links have the additional property of having the same pairwise
linking numbers, we obtain a stronger result. The following definition is
taken from [10]:

Definition 9. Two oriented and ordered links L = K1 ∪K2 ∪ · · · ∪Kn and
L′ = K ′1∪K ′2∪ · · ·∪K ′m are said to be link-homologous if and only if n = m
and lk(Ki,Kj) = lk(K ′i,K

′
j) for each pair i and j, (1 ≤ i < j ≤ n).

Note that all knots are trivially link-homologous.

Theorem 10 (Analog of Theorem 1). Let L1 and L2 be link-homologous.
Then FL1 − FL2 is a multiple of (a2 + 1)(a2 + az + 1).

Proof. It is shown in [10] that two links are link-homologous if and only
if they are ∆-equivalent. We will show that if two links differ by a ∆-
move then the difference of their Kauffman polynomials is a multiple of
(a2 + 1)(a2 + az + 1). The result follows.

Consider links L1 and L2 that differ by a ∆-move, as in Figure 3. Using

Figure 3. Two links that differ by a ∆-move.
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the linear relation in the definition of the Kauffman polynomial, we may
write 〈L〉k in terms of brackets of simpler links. Specifically, for any 3-tangle

T we may write
〈 〉

k
as a sum

p1

〈 〉
k

+ p2

〈 〉
k

+ p3

〈 〉
k

+ p4

〈 〉
k

+ p5

〈 〉
k

+ p6

〈 〉
k

+ p7

〈 〉
k

+ p8

〈 〉
k

+ p9

〈 〉
k

+ p10

〈 〉
k

+ p11

〈 〉
k

+ p12

〈 〉
k

+ p13

〈 〉
k

+ p14

〈 〉
k

+ p15

〈 〉
k

+ p16

〈 〉
k

+ p17

〈 〉
k

+ p18

〈 〉
k

+ p19

〈 〉
k

where each pi is a polynomial in a and z.
We show that FL1 − FL2 has the required factor. Since the writhes of L1

and L2 are equal, it suffices to compute 〈L1〉k − 〈L2〉k. We have

〈L1〉k − 〈L2〉k = p2

(
a3 −

〈 〉
k

)
+ p3

( 〈 〉
k
− a3

)
+ p6

(
1−

〈 〉
k

)
+ p7

(
a−2 − a

〈 〉
k

)
+ p8

( 〈 〉
k
− 1
)

+ p9

(
a
〈 〉

k
− a−2

)
+ p10

(
a
〈 〉

k
− a−2

)
+ p11

( 〈 〉
k
− 1
)

= a−2(a2 + 1)(a2 + az + 1)
(
p2(a− z) + p3(−a+ z)

+ p6(−z2 + 1) + p7(−az + 1) + p8(z2 − 1)

+ p9(az − 1) + p10(az − 1) + p11(z2 − 1)
)

which has the required factors. �

The polynomial (a2 + 1)(a2 + az + 1) will be denoted by Pk(a, z):

Pk(a, z) = a4 + a3z + 2a2 + az + 1 = (a2 + 1)(a2 + az + 1).

Note that Pk(a, z) is maximal in the same sense as Ph(a, z). We can see this
since

Ftrefoil − Funknot = a−5(z − a)Pk(a, z)

and

Ffigure-8 − Funknot = a−2(z2 − 1)Pk(a, z).

Corollary 11 (Analog of Corollary 2). The Kauffman polynomial of a knot
has the general form Pk(a, z)g(a, z) + 1.

Proof. This follows immediately from Theorem 10 since the Kauffman poly-
nomial of the unknot is 1. �

Corollary 12 (Analog of Corollary 3). For any knot K, if a = ±i or

z = −a2+1
a , then FK(a, z) = 1.

Proof. These are the zeros of Pk(a, z). The result follows from the general
form in Corollary 11. �
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Analogous to Proposition 4, we may write any Kauffman polynomial as
a z-expansion, where the coefficient of zj is denoted pj(a). For knots, the
derivatives of pj evaluated at 1 may be calculated using Corollary 11.

Proposition 13 (Analog of Proposition 4). Let K be a knot, and let p0(a)

be the terms of FK with z-exponent equal to 0. Then p
(n)
0 (1) ≡ 0 (mod 4),

for n ≥ 1.

Proof. Write FK(a, z) =
(
(a4 + 2a2 + 1) + z(a3 + 1)

)
g(a, z) + 1. Then letting

g0(a) be the terms of g(a, z) with z-exponent equal to 0, we have

p0(a) = (a4 + 2a2 + 1)g0(a) + 1.

Thus p′0(a) = (a4 + 2a2 + 1)g′0(a) + (4a3 + 4a)g0(a). Subsequent derivatives
may be computed directly. In general we have

p
(n)
0 (1) =

(
n

0

)
4g

(n)
0 (1) +

(
n

1

)
8g

(n−1)
0 (1) +

(
n

2

)
16g

(n−2)
0 (1)

+

(
n

3

)
24g

(n−3)
0 (1) +

(
n

4

)
24g

(n−4)
0 (1),

with all subsequent terms in the expansion equal 0. �

Theorem 14 (Analog of Theorem 6). Let K1 and K2 be knots. Suppose
FK1(a, z) = FK2(a, z)(ranzm). Then r = 1 and n = m = 0.

Proof. Suppose FK2 = ranzmFK1 . By Theorem 10 we may write

FK2 − FK1 = (a2 + 1)(a2 + az + 1)g(a, z),

and so

FK1(ranzm − 1) = (a2 + 1)(a2 + az + 1)g(a, z)(3)

for all a and z. Setting a = 1 and z = −2 satisfies the conditions of Corollary
12, so FK1 = 1, and we have r(−2)m = 1. Thus r = 1 and m = 0 (since
m ≥ 0 for knots). Substituting into (3), we obtain

FK1(an − 1) = (a2 + 1)(a2 + az + 1)g(a, z).

Letting a = 2 and z = −5
2 gives us FK1 = 1 by Corollary 12, thus 2n = 1,

and n = 0. �

Corollary 15 (Analog of Corollary 7). A Kauffman polynomial cannot be
a nontrivial monomial.

Proof. Let K2 be the unknot in Theorem 14. Since the Kauffman polynomial
of the unknot is 1, it follows that if FK1(a, z) = ranzm then r = 1 and
n = m = 0. �
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