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Introduction

Let C be a genus-2 curve over a number field k , and let J be its Jacobian.

General goal: Compute the (finite) set C (k).
General idea: Understand J(k) instead; use the embedding C ↪→ J.

Various methods use this general idea (Chabauty-Coleman, Mordell-Weil
sieve, covering techniques). We will focus here on the computation of
J(k).

In particular, J(k) is a finitely generated abelian group of some rank r .
What can we say about r?
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Fundamental exact sequence

0→ J(k)/2J(k)→ Sel(2)(J/k)→X(k, J)[2]→ 0

Here Sel(2)(J/k) has the following properties:

It is the subgroup of H1(k, J[2]) consisting of classes which restrict to
zero in H1(kv , J[2]), for all places v of k

Its elements can be represented as 2-coverings of J with points
everywhere locally

It is finite, and effectively computable (Stoll–implementation in
MAGMA).

The Tate-Shafarevich group X(k, J) has the following properties:

It is the subgroup of H1(k, J) consisting of classes which restrict to
zero in H1(kv , J), for all places v of k

An element of X(k , J) represented by a principal homogeneous space
X of J is trivial if and only if X has a k-rational point
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The Kummer surface

Our goal is to exhibit examples of C and J such that X(Q, J)[2] is
nonzero.

Idea: Find an explicit 2-covering X of J with points everywhere locally
but no k-rational points. (“The Hasse principle fails.”)
Problem: The best-known explicit description of X is as the intersection
of 72 quadric hypersurfaces in P15!

Better idea: (Logan, van Luijk) Look instead at the desingularization V
of the quotient X/ι, where ι corresponds to [−1] on J.
This is a Kummer K3 surface, which can be written down explicitly as the
smooth intersection of three quadrics in P5.
If there are no points on V , then there are no points on X .
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Brauer-Manin obstruction
But how do we find counterexamples to the Hasse principle?

Idea: (Manin, 1971) Use the Brauer group Br V , together with the
following exact sequence from local class field theory:

0→ Br k → ⊕vBr kv → Q/Z→ 0 (1)

(The right map comes from maps invv : Br kv → Q/Z.) Elements of Br V
are equivalence classes of Azumaya algebras (generalizations of central
simple algebras).
By functoriality, every point xv ∈ V (kv ) gives an evaluation map
Br V → Br kv sending an algebra A to some algebra A(xv ).
Let V (Ak) =

∏
v V (kv ). Consider the set

V (Ak)Br := {(xv ) ∈ V (Ak)|
∑
v

invvA(xv ) = 0 for all A ∈ Br V }.

Then the exactness of (1) implies that

V (k) ⊆ V (Ak)Br ⊆ V (Ak).
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Constructing Azumaya algebras

Since V has points everywhere locally, the natural map Br k → Br V is
injective. The following key isomorphism is fundamental in the
construction of explicit Azumaya algebras:

φ :
Br V

Br k
→ H1(k ,Pic V )

In principle, we can construct elements on the left side if we can
understand the right side. But there is the added difficulty that φ is not
particularly explicit and can be difficult to invert (it is only surjective
because H3(k , k

∗
) = 0).

As an abelian group, PicV ∼= Zρ for some ρ. Inflation-restriction shows
that

H1(k,Pic V ) ∼= H1(G ,Zρ),

where G is the Galois group of the field of definition of the divisor classes
generating Pic V .
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The geometry of V

Proposition

(Logan, van Luijk) Generically ρ = 17, and G is the semi-direct product of
(Z/2)6/〈(1, 1, 1, 1, 1, 1)〉 with S6 (with the natural action of S6 on (Z/2)6).

(The curve C has the equation y2 = f (x), where f (x) is a sextic; the
subgroup of S6 in G corresponds to the Galois group of f .)
We can analyze subgroups H of G using MAGMA to try to discover
(non-generic) examples of nontrivial elements in H1(H,Z17). Then we
construct examples of V such that the Galois group of the generating set
of Pic V is H.
Logan and van Luijk find a certain subgroup H of order 32 in G such that
the corresponding V has an elliptic fibration, and use that fibration to
construct explicit Azumaya algebras corresponding to nontrivial elements
of H1(H,Pic V ).
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Our method; the main result

We search G and find a subgroup H of order 96 such that, given a
corresponding V , we can construct a quaternion algebra giving rise to
nonconstant elements of Br V .

After a lengthy computer search and involved invariant computations, we
obtain our main result:

Theorem

Let C be the genus-2 curve y2 = (x2 − 5x + 1)(x3 − 7x + 10)(x + 1).
Then X(Q, Jac(C ))[2] 6= 0.

In fact, we find infinitely many quadratic twists of C with the same
property. The three quadrics in P5 cutting out the associated K3 surface
V are available upon request (but the equations are too large to fit in the
margin of this slide).
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obtain our main result:

Theorem

Let C be the genus-2 curve y2 = (x2 − 5x + 1)(x3 − 7x + 10)(x + 1).
Then X(Q, Jac(C ))[2] 6= 0.

In fact, we find infinitely many quadratic twists of C with the same
property. The three quadrics in P5 cutting out the associated K3 surface
V are available upon request (but the equations are too large to fit in the
margin of this slide).
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