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Introduction

Let C be a genus-2 curve over a number field k, and let J be its Jacobian.

General goal: Compute the (finite) set C(k).
General idea: Understand J(k) instead; use the embedding C — J.

Various methods use this general idea (Chabauty-Coleman, Mordell-Weil
sieve, covering techniques). We will focus here on the computation of

J(K).

In particular, J(k) is a finitely generated abelian group of some rank r.
What can we say about r?
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Fundamental exact sequence

0 — J(k)/2J(k) — Sel®(J/k) — III(k, J)[2] — O
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Fundamental exact sequence

0 — J(k)/2J(k) — Sel®(J/k) — III(k, J)[2] — O

Here Sel®)(J/k) has the following properties:

o It is the subgroup of H(k, J[2]) consisting of classes which restrict to
zero in H1(ky, J[2]), for all places v of k

@ lts elements can be represented as 2-coverings of J with points
everywhere locally

e It is finite, and effectively computable (Stoll-implementation in
MAGMA).

The Tate-Shafarevich group III(k, J) has the following properties:

o It is the subgroup of H!(k, J) consisting of classes which restrict to
zero in Hl(k,,J), for all places v of k

@ An element of III(k, J) represented by a principal homogeneous space
X of J is trivial if and only if X has a k-rational point
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The Kummer surface

Our goal is to exhibit examples of C and J such that III(Q, J)[2] is
nonzero.
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The Kummer surface

Our goal is to exhibit examples of C and J such that III(Q, J)[2] is
nonzero.

Idea: Find an explicit 2-covering X of J with points everywhere locally
but no k-rational points. (“The Hasse principle fails." )

Problem: The best-known explicit description of X is as the intersection
of 72 quadric hypersurfaces in P1°!

Better idea: (Logan, van Luijk) Look instead at the desingularization V
of the quotient X /¢, where ¢ corresponds to [—1] on J.

This is a Kummer K3 surface, which can be written down explicitly as the
smooth intersection of three quadrics in P°.

If there are no points on V, then there are no points on X.
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Brauer-Manin obstruction
But how do we find counterexamples to the Hasse principle?

Patrick Corn (St. Mary's College of MarylancBrauer-Manin obstructions on K3 surfaces an!



Brauer-Manin obstruction

But how do we find counterexamples to the Hasse principle?

Idea: (Manin, 1971) Use the Brauer group Br V, together with the
following exact sequence from local class field theory:

0—Brk—@,Brk, —Q/Z—0 (1)
(The right map comes from maps inv, : Brk, — Q/Z.) Elements of Br V

are equivalence classes of Azumaya algebras (generalizations of central
simple algebras).
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(The right map comes from maps inv, : Brk, — Q/Z.) Elements of Br V
are equivalence classes of Azumaya algebras (generalizations of central
simple algebras).
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Brauer-Manin obstruction

But how do we find counterexamples to the Hasse principle?
Idea: (Manin, 1971) Use the Brauer group Br V, together with the
following exact sequence from local class field theory:

0—Brk—@,Brk, —Q/Z—0 (1)

(The right map comes from maps inv, : Brk, — Q/Z.) Elements of Br V
are equivalence classes of Azumaya algebras (generalizations of central
simple algebras).

By functoriality, every point x, € V/(k,) gives an evaluation map

Br V — Brk, sending an algebra A to some algebra A(x,).

Let V(Ax) =], V(kv). Consider the set

V(AP = {(x,) € V(A D _inv,A(x,) = 0for all A€ BrV}.

Then the exactness of (1) implies that
V(k) C V(AP C V(A).
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Constructing Azumaya algebras

Since V has points everywhere locally, the natural map Brk — BrV is

injective. The following key isomorphism is fundamental in the
construction of explicit Azumaya algebras:

BrVv

. 1 Y
o: Bk H*(k,Pic V)
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Constructing Azumaya algebras

Since V has points everywhere locally, the natural map Brk — BrV is
injective. The following key isomorphism is fundamental in the
construction of explicit Azumaya algebras:

BrVv
¢: Brk

— H(k,Pic V)

In principle, we can construct elements on the left side if we can
understand the right side. But there is the added difficulty that ¢ is not

particularly explicit and can be difficult to invert (it is only surjective
because H3(k, k) = 0).
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Constructing Azumaya algebras

Since V has points everywhere locally, the natural map Brk — BrV is
injective. The following key isomorphism is fundamental in the
construction of explicit Azumaya algebras:

BrVv
¢: Brk

— H(k,Pic V)

In principle, we can construct elements on the left side if we can
understand the right side. But there is the added difficulty that ¢ is not
particularly explicit and can be difficult to invert (it is only surjective
because H3(k, k) = 0).
As an abelian group, PicV = Z* for some p. Inflation-restriction shows
that

H(k,Pic V) = HY(G, Z"),

where G is the Galois group of the field of definition of the divisor classes
generating Pic V.
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The geometry of V

Proposition

(Logan, van Luijk) Generically p = 17, and G is the semi-direct product of
(2/2)%/((1,1,1,1,1,1)) with Se (with the natural action of Sg on (Z/2)°).
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(Logan, van Luijk) Generically p = 17, and G is the semi-direct product of
(2/2)%/((1,1,1,1,1,1)) with Se (with the natural action of Sg on (Z/2)°).

(The curve C has the equation y? = f(x), where f(x) is a sextic; the
subgroup of Sg in G corresponds to the Galois group of f.)

We can analyze subgroups H of G using MAGMA to try to discover
(non-generic) examples of nontrivial elements in H(H,Z"). Then we
construct examples of V such that the Galois group of the generating set
of PicV is H.
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construct examples of V such that the Galois group of the generating set
of PicV is H.

Logan and van Luijk find a certain subgroup H of order 32 in G such that
the corresponding V has an elliptic fibration, and use that fibration to
construct explicit Azumaya algebras corresponding to nontrivial elements
of HY(H, Pic V).
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Our method; the main result

We search G and find a subgroup H of order 96 such that, given a

corresponding V/, we can construct a quaternion algebra giving rise to
nonconstant elements of Br V.
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Our method; the main result

We search G and find a subgroup H of order 96 such that, given a

corresponding V/, we can construct a quaternion algebra giving rise to
nonconstant elements of Br V.

After a lengthy computer search and involved invariant computations, we
obtain our main result:

Theorem

Let C be the genus-2 curve y? = (x® — 5x + 1)(x3 — 7x + 10)(x + 1).
Then 111(Q, Jac(C))[2] # 0.

In fact, we find infinitely many quadratic twists of C with the same

property. The three quadrics in P? cutting out the associated K3 surface
V are available upon request
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Our method; the main result

We search G and find a subgroup H of order 96 such that, given a
corresponding V/, we can construct a quaternion algebra giving rise to
nonconstant elements of Br V.

After a lengthy computer search and involved invariant computations, we
obtain our main result:

Theorem

Let C be the genus-2 curve y? = (x® — 5x + 1)(x3 — 7x + 10)(x + 1).
Then 111(Q, Jac(C))[2] # 0.

In fact, we find infinitely many quadratic twists of C with the same
property. The three quadrics in P? cutting out the associated K3 surface
V' are available upon request (but the equations are too large to fit in the
margin of this slide).
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