LEARNING TO LISTEN
How some vertebrates evolved biological sonar
BY SID PERKINS

The aggressor swoops low over the treetops, piercing the night with a barrage of sonar pulses and searching for telltale data bouncing back. Some prospective targets perceive the ultrasound, take evasive action, and escape. Others, the unwary ones, are fair game. When the prowling aerialist senses the faint echoes bouncing off one of these prey, he turns toward the target, quickens his chirp rate, and homes in for the kill.

This isn’t a duel between modern fighter pilots, but an aerial battle that’s been raging nightly for millions of years. It’s bat versus insect. Bats are members of one of the most diverse groups of mammals, and the echolocation capability that enables some bat species to detect, track, and catch insects on the wing—even ones as small as mosquitoes—is a crucial part of bats’ success.

Sonar use has evolved independently among widely disparate groups of creatures. For aquatic mammals, such as porpoises and whales, the sequence of adaptations that led to echolocation is well preserved in the fossil record of their ancestors. But no such trail exists for bats, a group whose oldest known remains indicate that echolocation was already in use.

In the handful of bird species that use sonar, the origin of that ability is even murkier. Some echolocating species have close relatives that apparently possess the anatomical means to echolocate but don’t use it, implying that avian echolocation is a behavior that some species simply haven’t learned. For insights into how echolocation evolved in birds and bats, scientists are turning to DNA, a modern source of information about ancient biological relationships.

Although tiny bats and toothed whales may seem to be as different as night and day, they do have something in common. A few species of their respective prey can detect high-frequency sonar and have developed a variety of techniques that increase their odds of escape and survival in the ever-escalating arms race of evolution (see sidebar, page 315).

LISTEN UP Sonar systems on modern submarines were inspired by the principle behind biological sonar: Send out a short burst of sound and then listen for the echo. The direction from which the echo arrives and the time it takes to come back reveal a target’s location and distance. In general, the higher the frequency of the emitted sound, the better echolocation works: High frequencies correspond to short wavelengths, and the rules of physics require short wavelengths to detect small objects.

For whales, the evolution of efficient biological sonar took about 30 million years. Around 50 million years ago, mammals known as pakicetids—the land-dwelling ancestors of modern whales—foraged in the rivers and streams of what is now Pakistan (SN: 9/22/01, p. 180). Those creatures, like most land mammals, could hear well in air but poorly underwater, says Zhe-Xi Luo, a vertebrate paleontologist at the Carnegie Museum of Natural History in Pittsburgh.

Fossils of pakicetid descendants that lived during the next 10 million years show a gradual improvement in their hearing underwater. During that period, the role of the outer ear in funneling sound to the middle ear was minimized, and the lower jawbone became the animal’s main sound receptor.

Members of these aquatic-adapted species weren’t echolocators, however, because they didn’t have structures in their breathing passages that would enable them to make high-frequency sounds, says Luo. Those sound-generating organs, which in modern whales are chambers in the nasal passages, evolved later, during a period when nostril position changed from far forward on the nose in older species to high on the head in more-recent ones, he notes.

Then, a little more than 30 million years ago, the whale family tree split into two major lineages. One branch, the toothed whales, today includes porpoises, killer whales, and sperm whales. This branch evolved organs to produce high-frequency chirps and inner ear structures to detect them. By 18 million years ago, the ancestors of today’s dolphins had an ear structure that suggests that they could echolocate as well as their modern relatives can.

If only the fossil record for bats’ progenitors were as rich or as revealing as is that of the whales. The oldest bat fossils, belonging to an extinct lineage, were unearthed from rocks about 54 million years old, but the creatures that they represent aren’t dramatically different from living bats, says Mark S. Springer, an evolutionary biologist at the University of California, Riverside.

Hallmark features of these creatures include the elongated fingers that support the wing membranes and the extensive coiling of bony structures in the inner ears, a sign that they were capable of detecting the high-frequency chirps used in echolocation. The few bat fossils unearthed to date don’t include the soft tissues, such as sound-producing organs, that could show whether the creatures had
that differ between the sexes, bats in the wild may use such vari-

ica, can recognize the sex of another adult of its species by listen-

gest that females of

ies alone, says Springer, don't indicate whether the use of sonar

arose separately within various lineages. On the other hand, the

includes several microbat species that can echolocate. These stud-

mammal species. Scientists typically split bats into two large

bats, a tally that accounts for more than 20 percent of living

mammal species. Scientists typically split bats into two large
groups. The 800-or-so species that use sonar are called micro-
bats. In general, members of these species are much smaller than
those in the second group, called megabats, which don't echolo-
cate prey. The megabats include the large tropical species known
as flying foxes. These fruit-eating animals weigh up to 1.5 kilo-
grams and have a wingspan that rivals an eagle's.

Recent DNA analyses by Springer and his colleagues show that
the single evolutionary lineage containing all the megabats also
includes several microbat species that can echolocate. These stud-
ies alone, says Springer, don't indicate whether the use of sonar
evolved only once, and was then lost in megabats, or whether it
arose separately within various lineages. On the other hand, the
limited anatomical information from the fossils of extinct bats
suggests that the capability to echolocate arose just once in an
ancestral bat, he notes.

However high-frequency sonar arose, modern bats use it for more
than just detecting and tracking prey. The winged mammals use
echolocation to navigate as they enter and leave their roosts. Some
bats use the same squeaks for communication, says Karry A.
Kazial of the State University of New York at Fredonia. Randomly using dif-
ferent techniques adds a further measure of unpredictability to
a moth's behavior, she notes.

Some insects have evolved to emit high-pitched squeaks of
their own, signals that may disrupt the bat's sonar. Kazial says
that she considers that possibility unlikely, however, because
tests suggest that such a jamming technique would work only if
the defensive chirp were emitted just as the bat's sonar
pulses were bouncing off a moth, for instance. Instead, the
defensive squeaks may serve as a warning that the moth is
distasteful—an audible version of the protective coloration of
some bitter-tasting butterflies and poison frogs.

Some fish, in an attempt to foil the dolphins that prey on
them, have developed similar techniques, says Arthur N.
Popper of the University of Maryland in College Park. Lab tests
show that Alosa sapidissima, the American shad—a small fish
related to herring—can hear frequencies as high as 180 kilo-
hertz. Most fish can't detect frequencies above 3 kHz or so.
Shad in a lab tank will turn and swim away from a device
emitting low-volume frequencies between 70 kHz and 110 kHz,
which are characteristic of foraging dolphins, says Popper. As
the sound intensifies, the shad form a tight school at the far
side of the tank. At sound levels typical of a dolphin at close
range, the fish scatter in a panic and even leap from the water.

Although scientists haven't isolated characteristics of the calls
that differ between the sexes, bats in the wild may use such vari-
ations to identify possible mates at a distance, Kazial and her col-
leagues speculate in the March 2004 Animal Behavior.

Mammals can hear higher frequencies than other creatures can because of the characteristic arrangement of tiny bones in their ears (SN: 5/26/01, p. 324) as well as the structure of their cochlea, or inner ear. Even among mammals, how-
ever, hearing ability varies widely. Among people, most young
adults can detect sounds with frequencies between 20 hertz, or
cycles per second, and 20 kilohertz (kHz). But even that highest
tone is low by echolocation standards: The typical bat's sonar chirps
exploit frequencies as high as 120 kHz, and bottlenose dolphins' calls include frequencies that range up to 150 kHz or so.

Birds, however, can't produce or hear the high-pitched, short-
wavelength sounds needed to track insect-size targets. The few
birds that can echolocate use lower frequencies, and they do so
only to navigate in the dark, says J. Jordan Price, a biologist at
St. Mary's College of Maryland in St. Mary's City. Even that lim-
ited capability provides a benefit, however, because it enables
members of those species to nest in caves and other places that aren’t readily accessible to predators.

With one exception, all birds known to echolocate are swiftlets. Birds in this group catch insects on the fly just as a bat does, but they do so in the daytime and track their prey by sight, says Price.

Scientists have typically relied on characteristics beyond size, shape, and color to distinguish the members of one swiftlet species from those of another, simply because the birds have so few distinguishing features, he notes. Until recently, all swiftlets known to echolocate fell within the genus *Aerodramus*. Then, Price and his colleagues found a swiftlet in another genus—the pygmy swiftlet, *Collocalia troglodytes*—sitting on its nest, in complete darkness, about 30 m inside a cave on an island in the Philippines.

Members of this species had not been known to use sonar, but the researchers removed the bird from the cave, recorded the sharp, clicking noises that it uses to navigate, and then conducted the definitive test: They turned it loose in a completely dark room. The bird passed with flying colors: Unlike birds from the two other species in its genus, the pygmy swiftlet can fly around in a darkened room without slamming into the walls.

DNA studies conducted by Price and his colleagues supported the original placement of the pygmy swiftlet in the *Collocalia* genus. Their analyses further suggest that birds in the two swiftlet genera last shared an ancestor 2 million to 3 million years ago, says Price. The researchers reported their findings in the March 2004 *Journal of Avian Biology*.

The team’s results complicate the debate about how and when the use of sonar evolved in swiftlets. Now, there are two options. The first is that echolocation appeared only once, in a common ancestor of *Aerodramus* and *Collocalia* swiftlets and then disappeared in some modern swiftlets. The second is that echolocation evolved at least twice, once in each of the genera. Current data don’t permit researchers to know which option is correct, says Price.

There aren’t any significant anatomical differences in ear structure or other features that distinguish the swiftlets that echolocate from those that don’t, says David W. Steadman of the Florida Natural History Museum in Gainesville. Therefore, analysis of swiftlet fossils probably won’t reveal how and when sonar use evolved in that group. However, because the oilbird, a nocturnal bird of South America that is unrelated to swiftlets, also developed echolocation, that capability has evolved in birds more than once.

Echolocation’s evolution several times in groups of vertebrates as disparate as birds, bats, and whales is a testament to its biological usefulness. Another powerful endorsement is science’s continuing quest to develop electronic equipment for submarines and aircraft that imitates animals’ sophisticated sonar.

To that end, the National Institute of Dental and Craniofacial Research plans to establish a center within the next 2 years, where a team of biologists, engineers, materials scientists, and clinicians will bring their expertise to bear on the problem. The replacement teeth that they envision would last longer than the dental implants available today.

The institute’s strategy most likely will combine materials science–based approaches for making synthetic enamel and cell-based methods for growing other dental tissues. With a biomaterial that mimics the properties of natural enamel, researchers could bypass the need for enamel-producing cells. For instance, scientists might create a crown out of synthetic enamel and use it as a mold, says Robey. Inside the mold, researchers would then place all the necessary cells for regrowing the rest of the tooth, she says.

That’s the vision. It may take more than a decade before researchers realize such a goal. However, if successful, it would represent a major feat in bioengineering—not to mention a major boon for patients, who won’t have to run back to the dentist so often for repairs on false teeth.

Dental science has certainly come a long way since the days of George Washington, whose sets of false teeth were fashioned not from wood, as legend has it, but from gold, hippo ivory, and horse teeth.