
A FINITE HYPERPLANE TRAVERSAL ALGORITHM FOR 1-DIMENSIONAL L1 pTV
MINIMIZATION, FOR 0 < p ≤ 1

HEATHER A. MOON AND THOMAS J. ASAKI

Abstract. In this paper, we consider a discrete formulation of the one-dimensional L1 pTV functional and
introduce a finite algorithm that finds exact minimizers of this functional for 0 < p ≤ 1. Our algorithm for
the special case for L1TV returns globally optimal solutions for all λ ≥ 0 at the same computational cost of
determining a single optimal solution associated with a particular value of lambda. This finite set of minimizers
contains the scale signature of the known initial data. A variation on this algorithm returns locally optimal
solutions for all λ ≥ 0 for the case when 0 < p < 1. The algorithm utilizes the geometric structure of the set of
hyperplanes defined by the nonsmooth points of the L1 pTV functional. We discuss efficient implementations
of the algorithm for both general and binary data.

1. Introduction

In this paper, we introduce an efficient finite hyperplane traversal (ht) algorithm for solving the 1D discrete
L1 pTV problem, for all parameters λ > 0

min
u∈Rm+1

Gp(u) ≡
m−1∑
i=0

|ui+1 − ui|
p + λ

m∑
i=0

| fi − ui|

 , (1)

where 0 < p ≤ 1, f ∈ Rm+1 is some given data, with either fixed (u0 = f0 and um = fm) or free boundary
conditions. The ht algorithm requires only finitely many iterations to obtain a complete set of exact min-
imizers for (1) for all λ > 0. For p = 1, these minimizers are global minimizers, while for p < 1, the
minimizers are local. Computationally effcient implementations of the ht algorithm are presented for both
general and binary data.

The ht algorithm uses the geometric structure of the discrete L1 pTV function, Gp, in (1). Notice that Gp
is nonsmooth on hyperplanes of the form {u|ui = u j, where |i− j| = 1, 0 ≤ i, j ≤ m} and {u|ui = fi, 0 ≤ i ≤ m}
and smooth everywhere else in Rm+1. We show that minimizers of Gp are located at intersections of these
hyperplanes. While the ht algorithm is an iterative improved-point algorithm, this geometric structure allows
us to avoid computing descent directions and step sizes in the typical optimization sense. The algorithm
iteratively reduces the parameter λ (in the spirit of parametric programming) determining at each step an
optimal descent direction and performing a “line search” on a finite subset of points. Furthermore, it is never
necessary to leave hyperplanes of the form {u|ui = u j, where |i − j| = 1, 0 ≤ i, j ≤ m} and {u|ui = fi, 0 ≤ i ≤
m}, so that the dimension of the problem is reduced after each iteration.

A complete set of minimizers for (1) can also be obtained by reformulation to a linear program and
solved using a parametric simplex method (for example, see [8]). However, the ht algorithm is distinctly
advantageous for several reasons. Significantly, a reformulation is only possible for the p = 1 case, whereas
the p < 1 solutions are of importance as described later. A reformulation changes an unconstrained problem
in m variables to a linear program with 5m variables and 2(m − 1) constraints and 5(m − 1) additional
sign restrictions. Thus, it cannot take advantage of any dimension reduction strategies and requires a large
amount of data storage and computation due to the large number of constraints. For the p = 1 case, the
ht algorithm produces a sequence of minimizers that correspond to basic feasible solutions (or minimizing

Date: September 5, 2014.
1

2 H. A. MOON AND T. J. ASAKI

linear combinations) of the reformulated problem. However, the ht algorithm does not rely on the high-
dimensional geometry of the feasible set of the reformulated problem, working in a continually reduced
dimensional space.

Graph-cut methods have also been successful in efficiently solving (1) for both one and two dimensional
data [10, 9]. They can only address the p = 1 case. However, the λ-parametric problem can be solved by
this method. The advantage of the hyperplane traversal algorithm is in simplicity of implementation and
minimal data footprint.

Problem (1) is a discretization of

min
u∈Bn(Ω)

∫
Ω

|∇u|p dx + λ

∫
Ω

| f − u| dx, for 0 < p ≤ 1, (2)

where f : Rn → R is a given function, Ω is a bounded domain, and the minimization is taken over all
functions of bounded variation, u : Rn → R. Problems such as (2) are motivated by applications in signal
and image analysis tasks such as denoising and finding scales in data. Variational and PDE based methods
of denoising have been used for more than two decades ([14],[12],[2],and [3]). The most notable variational
techniques solve the problem

u∗ ∈ arg min
u∈L2(Ω)

Fp,q(u,∇u) ≡
∫

Ω

|∇u|p + λ| f − u|qdx. (3)

Now, if λ is large, the term containing λ| f − u|q must be small, therefore making our minimizer u∗ close to f
in the Lq sense. But, if λ is small, ||∇u||p will be small, that is, u will have smaller variation in the Lp sense.
In the applications of denoising and finding scales, we note that u∗ is less noisy than f (or has less of the
smaller scales of f) and more flat when λ is small and u∗ is more like f (more of the noise remains) when λ
is large. We now briefly discuss a few of the results for particular values of p and q.
F2,2(u,∇u) was first introduced by Tikhonov [14]. This functional is strictly convex. Using results from

the calculus of variations (see [5, 6, 7]), we can say that there exists a unique minimizer. In image denoising,
we find the minimizer of F2,2(u,∇u), has smoothed edges around objects (F2,2(u,∇u) is larger for functions
with jump discontinuities than for those that will increase steadily and thus losing edge location). Pixel
intensity is also lost. This problem then is not sufficient for images with regions of high contrast or well
defined object edges.

Rudin, Osher, and Fatemi proposed [12] minimizing F1,2(u,∇u), also called the ROF functional, to allow
jump discontinuities in u∗ which makes sense in many real images. F1,2(u,∇u) is also strictly convex. In
image denoising, we see that minimizers preserve the location of object edges, but still lose contrast (even
when f is a noiseless image) and features with high curvature are lost [13]. That is, corners get rounded.

In [2], Chan and Esedoḡlu show that minimizing the L1TV functional, F1,1, for imaging tasks will pre-
serve pixel intensity. However, features of high curvatures are still lost. This functional is again convex, but
this time it is not strictly convex. Therefore it should be noted that we cannot guarantee a unique minimizer
for L1TV . For a discussion about the discretized L1TV see also [1] and [11].

In 2007, Chartrand [3] proposed to minimize Fp,2 for 0 < p < 1. It is worth noting that the functionals,
Fp,2, are not convex and therefore standard methods do not guarantee that we find a global minimizer.
Despite this lack of guarantee, Chartrand found success in obtaining what appear to be local minimizers.
For a cartoon image or an image with piecewise constant intensities, these solutions preserve object edges,
pixel intensity, and areas of high curvature where sharp corners occur.

In Section 2 we present a variety of properties of (1) when p = 1 and provide helpful definitions and no-
tation used throughout the paper. In Section 3 we provide a formal description of a preliminary ht algorithm
including motivating concepts. In Section 4 we show that this algorithm provides a global minimizer (at
fixed λ) for the case p = 1. In Section 5 we show that the iterative solution of the λ = 0 (p = 1) problem
provides a complete set of global minimizers for all λ ≥ 0, and formally describe an efficient ht algorithm.
In Section 6 we show results of time trials. In Section 7 we consider an example of using ht for extracting

HT ALGORITHMS 3

scale information from daily sunspot number data. In Section 8 we discuss the generalization of ht to the
p < 1 case. Finally, in Section 9 we provide concluding remarks.

2. Properties of the discrete L1TV function

In this section we present a variety of properties of (1) for p = 1:

min
u∈Rm+1

G1(u) ≡
m−1∑
i=0

|ui+1 − ui| + λ

m∑
i=0

| fi − ui|

 . (4)

We also provide helpful definitions and notation used throughout the paper. In particular, we consider the
geometric properties of G1 and consequences for finding solutions to (4).

First, we define the sets on which G is nonsmooth.

Su := {u = (u1, . . . , um)|ui = ui+1, for some i = 0, ...,m − 1} (5)

and
S f := {u = (u1, u2, . . . , um)|ui = fi, for some i = 0, ...,m}. (6)

Now we collect some properties that describe the minimizers of G1.

Lemma 2.1. G1 has a minimizer.

Proof. G1 is bounded below, convex, and coercive in that as |u| → ∞ G1 → ∞. Thus, by the Weierstrass
optimality condition, G1 has a minimizer. �

Definition 2.1. We define the set of global minimizers,Mλ for G1, noting that this set depends on the value
λ > 0,

Mλ ≡ arg min
u

G1.

Lemma 2.2. Mλ is bounded and convex.

Proof. The boundedness and convexity ofMλ follow directly from the boundedness and convexity of G1.
�

Lemma 2.3. If u is a local minimizer of G1, then u ∈ Mλ. That is, if u is a local minimizer, then it is also a
global minimizer.

Proof. This lemma follows directly from the convexity of G1. �

Definition 2.2. Let G1 be defined as in (4). Let Y be the set of points of intersections of at least m + 1
hyperplanes of the form {ui = fi} and/or {ui = ui+1}.

Lemma 2.4. |Y | ≤ (2m+1)!
(m+1)!m! < ∞.

Proof. First note that the number of hyperplanes of the form {ui = ui+1} is m. The number of hyperplanes of
the form {ui = fi} is m + 1. Using the definition of Y , we see that the number of all the possible intersections

of m + 1 such hyperplanes is
(

2m + 1
m + 1

)
. That is |Y | ≤

(
2m + 1
m + 1

)
=

(2m+1)!
(m+1)!(m)! . (Here, the first is an

inequality because we may have hyperplanes that are everywhere the same.) �

Lemma 2.5. There is a minimizer, u∗, of G1 in Y.

Proof. Let û be a minimizer of G1 and û < Y . Suppose first that ∇G1(û) exists. Then ∇G1(û) = 0. But
then because G1 is affine at points where it is differentiable, G1 is constant in the whole region containing
û up to and including the bounding hyperplanes where G1 is nonsmooth. By the coercivity condition, this
region must be bounded. Therefore, there is a point, u∗, on the boundary of this region that is in Y such that
G1(u∗) = G1(û) where G1 is given in (4).

Second, suppose that û ∈ H where H is the intersection of ` < m hyperplanes where G1 is nonsmooth,
then we consider the function G̃1 which is G1 restricted toH . Then ∇G̃1(û) exists and is zero. We can then
use the same argument above to get that the set of minimizers includes a point in Y . �

4 H. A. MOON AND T. J. ASAKI

3. Preliminary ht Algorithm for discrete L1TV

We now propose a preliminary ht algorithm for solving (4) for a single fixed value of λ. The convergence
properties of this algorithm are examined in Section 4. In Section 5 we show that a finite λ-parametric
iterative implementation can be used to discover globally optimal solutions for all λ ≥ 0.

Consider a pedagogical example. Let λ = 1, f = (0, 0.9, 0.4, 1) with fixed boundary conditions, u0 =

f0, u3 = f3. The geometry of G1 is illustrated in Figure 1. The level lines of G1 appear as simple polygons
with blue indicating lower value. There are seven hyperplanes (lines) where G1 is nonsmooth and |Y | = 11.
The preliminary algorithm is an improved iterate algorithm in which all iterates lie in Su

⋃
S f , and an

optimal point lies in Y .

Figure 1. Level lines for the function G1(u1, u2) = |u2 − u1| + |u1| + |1 − u2|, showing the
affine nature of the discrete formulation for L1TV . Here blue represents low values and red
represents high values.

The preliminary algorithm works as follows. Start at the point u = f . Check positive and negative
coordinate directions for descent in G1. Sum all coordinate descent directions to get an α-descent direction
(formal definition below). Perform a finite line search on the set of points where the search line intersects
the hyperplane set Su

⋃
S f . If the algorithm steps to a point in S f , compute a new α-descent direction and

repeat. Otherwise, (if the algorithm steps to a point in Su), project the current point onto R`k , the space that
is isomorphic to the intersections of the hyperplanes of the form {u(k)

i = u(k)
j }. Repeat until no coordinate

descent exists.
The formal algorithm is given in Tables 1 and 2 and makes use of the following definitions. Let the

coordinate directions, ei be defined as usual, that is

ei = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is located in the ith position.

Definition 3.1. We define an α-direction to be a vector v so that

v =
∑

i

αiei,

where αi ∈ {−1, 0, 1}. We say that v is an α-descent direction for G1 at the point u if v is an α-direction and
G1(u + γ̃v) < G1(u) for all 0 < γ̃ < γ, for some γ > 0.

4. GlobalMinimizers for a fixed λ

Using Lemmas 2.1, 2.4, and 2.5, we know that G1 has a minimizer in the finite set Y . Below we show that
Algorithm 3.1 finds a minimizer after finitely many iterations. We begin with the statement of this theorem.

Theorem 4.1. Algorithm 3.1 converges to a minimum and is finite.

HT ALGORITHMS 5

Algorithm 3.1. (L1TV)
Given f = (f1, . . . , fm);
Set u(0) = (u(0)

1 , . . . , u(0)
m) = (f1, . . . fm);

Set k ← 0;
do

Compute d(k) using Algorithm 3.2
αk ← arg minα

{
G1(u(k) + αd(k))

∣∣∣ u(k) + αd(k) ∈ Su ∪ S f
}
;

u(k+1) ← u(k) + αkd(k);
k ← k + 1;

until d(k) = 0
Table 1. Preliminary L1TV algorithm

Algorithm 3.2. (Descent at iteration k)
Given u1, . . . , um;
i = 1;
Evaluate G0 = G1(u1, . . . , um);
Set d ← 0;
while i ≤ m

lmax = arg max {l |uh = ui, ∀i ≤ h ≤ i + l };
v =

∑i+lmax
l=i el;

G1 = G1 (u + (ui−1 − ui)v);
G2 = G1

(
u + (ui+lmax+1 − ui+lmax)v

)
;

if G1 < G0
d ← d + sign(ui−1 − ui)v;

elseif G2 < G0
d ← d + sign(ui+lmax+1 − ui+lmax)v;

end
i← i + lmax + 1;

end

Table 2. α-descent algorithm

The proof of Theorem 4.1 is a consequence of the next four lemmas which we will prove in subsequent
subsections.

Lemma 4.1. Wherever descent exits, α-descent also exists.

Lemma 4.2. Whenever α-descent exists, the α-direction of Algorithm 3.1 also exists.

Lemma 4.3. α-directions found in Algorithm 3.1 give strict descent.

Lemma 4.4. Only finitely many steps of the algorithm are needed to get from one point in Y to another.

4.1. Proof of Lemma 4.1. In this section we will show that if at u, G1 has a descent direction, then G1 also
has an α-descent direction at u. We begin by borrowing from [4], the definition of the generalized gradient
and generalized derivative which we use to discuss descent directions for G1.

Definition 4.1. We define the generalized gradient of a locally Lipschitz function g at a point u to be

∂g(x) = co
{

lim
i→∞
∇g(xi)

∣∣∣∣∣ xi → x,∇g(xi) exists
}
. (7)

6 H. A. MOON AND T. J. ASAKI

We define the generalized derivative, g◦(u; v), of a function g at a point u in the direction v to be

g◦(u; v) ≡ lim sup
y→u,t↘0

g(y + tv) − g(y)
t

, (8)

where y ∈ Rm and t > 0.

We also take from [4] the following proposition:

Proposition 4.1. Let g : X → R be Lipschitz near u. Then for every v ∈ X, we have

g◦(x; v) = max{〈ζ, v〉|ζ ∈ ∂g(x)}. (9)

Because in a neighborhood of each point u ∈ Rm there are only finitely many ∇g(y), Equation 9 reduces
to

∂g(u) = co {∇g(u1), . . . ,∇g(u`)} =

α1∇g(u1) + . . . + α`∇g(u`)

∣∣∣∣∣∣∣αi ≥ 0, i = 1...`,
∑̀

i

αi = 1

 . (10)

and

g◦(u; v) = max
(α1,...,α`)

α1∇g(u1) · v + . . . + α`∇g(u`) · v

∣∣∣∣∣∣∣αi ≥ 0, i = 1...`,
∑̀

i

αi = 1

 .
Let K(u) be the cone of descent directions for G1 at u. We now prove a more general statement about

functions that are continuous and piecewise affine.

Lemma 4.5. Let g : Rn → R be a continuous, piecewise affine (with finitely many pieces) function that is
smooth on convex domains. If g◦(u; v) < 0 then v is a descent direction.

Proof. Let u be a point so that ∇g(u) does not exist. This means that u is on a section of the boundary of
` domains where g is smooth. Because the domains where g is smooth are convex, we can choose points,
u1, . . . , u`, one in each of these domains, so that g is linear along the line segments connecting u and ui and
then using Definition 4.1 we have that if g◦(u; v) < 0 then ∇g(ui) · v < 0 for i = 1, ..., `. Otherwise if for
some j, ∇g(u j) · v ≥ 0 then we could choose αi = 0 for i , j and α j = 1 and g◦(u; v) ≥ 0. Let t0 > 0 be
sufficiently small so that g is linear along the line u + tv for 0 < t ≤ t0. Then, we know that

g(ui) − g(u) = g(ui + tv) − g(u + tv).

Thus,
g(u + tv) − g(u) = g(ui + tv) − g(ui) = t∇g(ui) · v < 0.

Thus, v is a descent direction. �

We recall that G1 divides Rm into domains where G1 is linear in the interior of these domains and G1 is
nonsmooth on the boundary of these domains. Notice if R is one such domain, then ∂R is contained in the
union of hyperplanes of the form {ui = u j} and/or {ui = fi} for some i, j.

Using Lemma 4.5, we prove in the next few lemmas that if at a point u on the boundary of one of these
regions there is a descent direction for G1, then there is also an α-descent direction in the lower dimensional
space to which we have stepped.

Lemma 4.6. As above, let K(u) be the cone of descent directions for G1 at u.

a. v ∈ K(u) if and only if G◦1(u; v) ≤ 0.
b. If v ∈ ∂K(u) then G1(u + tv) = G1(u) for all t > 0 sufficiently small.

Proof.

HT ALGORITHMS 7

a. First note that using Lemma 4.5, and since G1 is piecewise affine with finitely many pieces, we get

G◦1(u; v) < 0⇒ v ∈ K(u).

We need only show that
v ∈ K(u)⇒ G◦1(u; v) < 0.

Let v ∈ K(u). Then G1(u+ tv)−G1(u) < 0 for all t > 0 sufficiently small. We also know that since G1
is convex we have that G1(u) −G1(u − tv) < 0 for any t > 0. Suppose that at u, ui , u j for some i, j
and uk , fk for some k, then we choose ε > 0 sufficiently small so that for all ũ ∈ Bε(u), ũi , ũ j and
ũk , fk. Let y ∈ Bε(u). Let R be a region as described above. We now break this argument into cases:

Case 1: Suppose thats u, u + tv, y, y + tv ∈ ∂R . We know then that G1 is continuous and affine in
Bε(u) ∩ ∂R. Thus, G1(y + tv) −G1(y) < 0.

u

u + tv

y
y + tv

R

ε

Bε (u)

Case 1: u, u + tv, y, y + tv ∈ ∂R.

u

u + tv

R

Bε (u)

ε

y

y + tv

Case 2: u, u + tv ∈ ∂R but y < ∂R.

u

R

Bε (u)

u + tv

y

y + tv

ε

Case 3: u, y ∈ ∂R but u + tv, y + tv < ∂R.

u

R

Bε (u)

ε

y
u + tv

y + tv

u − tv

Case 4: u ∈ ∂R but y, u + tv, y + tv < ∂R.

R

u

u + tv

Case 5: u ∈ R \ ∂R.

Figure 2. 1D examples for the cases of Lemma 4.6.

Case 2: Suppose that u, u + tv ∈ ∂R, but that y < ∂R. Since G1 is affine in Bε(u) ∩ R, G1(y + tv) −
G1(y) < 0.

Case 3: Suppose that u, y ∈ ∂R, but u + tv, y + tv < ∂R, then using that G1 is affine in R, we see
that G1(y + tv) −G1(y) < 0.
In each of the above cases, we see then that G◦1(u; v) < 0.

Case 4: Suppose that u ∈ ∂R, but u + tv, y < ∂R. Then by convexity of G1 and that G1 is affine on
Bε(u) ∩ R, using case 3, we know that

G1(y + tv) −G1(y) = G1(u) −G1(u − tv) < 0. (11)

Case 5: Finally, suppose that u ∈ R \ ∂R, then G1 is smooth at u. Thus G◦1(u; v) = ∇G1(u) · v < 0.
b. Let v ∈ ∂K(u) then we can construct a sequence {vk} ⊆ K(u) so that vk → v. Then there is a k0

sufficiently large so that for all k ≥ k0, ||v − vk|| < ε for some ε > 0. But G1(u + tvk) − G1(u) < 0
for all k since vk ∈ K(u). G1 continuous gives us that G1(u + tv) − G1(u) < ε for all ε > 0. Thus
G1(u + tv) − G1(u) ≤ 0. But if G1(u + tv) − G1(u) < 0 then, by continuity, v ∈ K(u). Thus,
G1(u + tv) −G1(u) = 0.

�

Definition 4.2. Let P ⊂ Rm. We define

π : P → Rm̃ by π(u) = ũ,

8 H. A. MOON AND T. J. ASAKI

to be the projection map that removes redundancy in u, where m̃ ≤ m. That is, if {ui = u j} is active at u, then
the ith or jth (whichever is larger) component is removed from u to get ũ and if {ui = fi} is active at u, then
the ith component of u is removed to get ũ.

Note, this projection is invertible.

Example 4.1. For example, let P ⊂ R4 be the 2-dimensional subset given by

P = {(u1, u2, u3, u4)|u2 = u1 and u4 = f4}. (12)

We define π : P → R2 by
π(u1, u1, u3, f4) = (u1, u3). (13)

If we pick any point in R2, we can find its inverse projection in P by

π−1(u1, u2) = (u1, u1, u2, f4). (14)

Lemma 4.7. Let u ∈ ∂R where R is one of the regions described above. Let K(u) , ∅. ThenN(u)∩K(u)∩∂R
has an α-descent direction, where N(u) is some neighborhood of u.

Proof. We know that ∂R is contained in the union and intersection of some hyperplanes of the form {ui = u j}

and/or {ui = fi} for some i, j. By looking in N(u) ∩ K(u) ∩ ∂R we can restrict G1 to points in the lower
dimensional space, P, defined by the active hyperplanes at u. Let

G̃1 : Rm̃ → R

be defined by G̃1(ũ) = G1(u), where π−1(ũ) = u.
Then we see that ∇G̃1(ũ) exists. Since G1 is affine in R we have that K(ũ) = {v|〈v,∇G1(u)〉 < 0} which is

a half space and therefore contains an α-direction, ṽ. We then have that v = π−1(ṽ) is an α-descent direction
in P. �

Using the proof of Lemma 4.7, the following result holds immediately.

Remark 4.1. v is an α-descent direction at u ⇔ π(v) is an α-descent direction at π(u).

Remark 4.2. Lemma 4.7 gives us that if at u(k) there is a descent direction for G1 then there is also an
α-descent direction for G1 at u(k).

4.2. Proof of Lemma 4.2.

Lemma 4.8. If at ũ ∈ R` an α-descent direction, ṽ, exists then there exists an α-descent direction of the form

ˆ̃v =
∑

αiẽi, (15)

where αi ∈ {−1, 0, 1}, ẽi are coordinate directions, and αiẽi are descent directions whenever αi , 0.

Proof. We can let ṽ =
∑`

i=1 αiẽi where αi ∈ {−1, 0, 1} and ẽi are coordinate directions. Since G̃1 is linear on
R`

G1(ũ + tṽ) = G1

ũ + t
∑̀
i=1

αiẽi

 = G1

∑̀
i=1

(ηiũ + tαiẽi)

= G1

∑̀
i=1

ηi

(
ũ +

t
ηi
αiẽi

) =
∑̀
i=1

ηiG1

(
ũ +

t
ηi
αiẽi

)
, (16)

where
∑`

i=1 ηi = 1. Now, since ṽ is a descent direction, some of the terms, G1
(
ũ + t

ηi
αiẽi

)
< G1(ũ). Other-

wise, if G1
(
ũ + t

ηi
αiẽi

)
≥ G1(ũ), we would have

G1(ũ + tṽ) =
∑̀
i=1

ηiG1

(
ũ +

t
ηi
αiẽi

)
≥

∑̀
i=1

ηiG1(ũ) = G1(ũ). (17)

HT ALGORITHMS 9

Let I = {i|G1
(
ũ + t

ηi
αiẽi

)
< G1(ũ)}. Now, we know that G1(ũ + tṽ) < G1(ũ) for all t > 0 sufficiently small.

Thus, G1(ũ + t̃αiẽi) < G1(ũ) for t̃ > 0 sufficiently small and i ∈ I. Thus, αiẽi is a descent direction whenever
i ∈ I. And we can create ˆ̃v, by choosing α̂ in the following way

α̂i =

{
αi whenever i ∈ I
0 otherwise . (18)

Then

ˆ̃v =
∑̀
j=1

α̂iẽi. (19)

Then

G1(ũ) > G1(ũ + t ˆ̃v) = G1(ũ) + t
s∑

j=1

G1(αi j ẽi). (20)

�

4.3. Proof of Lemma 4.3. Recall that in Algorithm 3.1, we step to hyperplanes where G1 is nonsmooth.
Then we work within the lower dimensional space defined by the hyperplanes to which we have stepped.
We define clusters below and use these clusters to algorithmically define the lower dimensional space.

Definition 4.3. Let C(k) =

{
c1 = 1 < c2 < . . . < cqk ≤ m

∣∣∣∣u(k)
ci−1 , u(k)

ci

}
be the set of indices so that u(k)

j = u(k)
ci

for all ci ≤ j ≤ ci+1 − 1. Then we define a cluster, C(k)
i , to be the set of indices j so that u(k)

j has the same

value as u(k)
ci , that is,

C(k)
i ≡ { j| for all ci ≤ j ≤ ci+1 − 1} .

Notice, that a cluster will have size |C(k)
i | = ci+1 − ci (the last cluster will have size m − cqk + 1) and∑q

i=1 |C
(k)
i | = m. We will say that u(k)

j is in a cluster Ci and mean j ∈ Ci.

Definition 4.4. If u(k) =
(
u(k)

1 , . . . u(k)
m

)
∈ Rm is obtained by k iterations of Algorithm 3.1, we let

α(k)
i =

−1 if −

∑c j+1−1
j=ci

e j is a descent direction for G1 at u(k)

1 if
∑c j+1−1

j=ci
e j is a descent direction for G1 at u(k)

0 otherwise

for 1 ≤ i ≤ m. For fixed boundary conditions, we set α(k)
1 , α(k)

m = 0.

The next two lemmas show that our clusters only get larger in Algorithm 3.1 and that we find descent
when no point, u(k)

j in cluster Ci will move independently of the cluster. This means that we never go back to
the higher dimensional space, that is, the algorithm continues to step to lower and lower dimensional spaces.
Actually, these two lemmas are for a more general algorithm, that is, for an algorithm that finds minimizers
of L1 pTV for 0 < p ≤ 1. The first of these two lemmas gives us this result for iteration 1 of Algorithm 3.1
and the second lemma gives the result for all other iterations. Both lemmas are proved by looking at the
various neighborhood cases that are possible at each point ui to show that if ui is in a cluster, Ci, it won’t
break away from the cluster in next steps. And then we determine which λ values give us descent when
moving a cluster Ci.

4.3.1. Clusters need not break up for descent (iteration 1).

Lemma 4.9. Let 0 < p ≤ 1. Let η` ≡ |uci−1 − uci | and ηr ≡ |uci+1 − uci+1−1|. Then the following statements
hold.

10 H. A. MOON AND T. J. ASAKI

(1) If there exists a cluster Ci with {uci−1 > uci and uci+1−1 > uci+1} and

0 < λ <
η

p
`
− (η` − αη)p + η

p
r − (ηr + αη)p

η|Ci|
(21)

then a descent direction for Gp, at the point u = f , is
ci+1−1∑

j=ci

e j when ηr < η` and −

ci+1−1∑
j=ci

e j when ηr > η`. (22)

(2) If there exists a cluster Ci with {uci−1 < uci and uci+1−1 < uci+1} and

0 < λ <
η

p
`
− (η` + αη)p + η

p
r − (ηr − αη)p

η|Ci|
(23)

then a descent direction for Gp, at the point u = f , is
ci+1−1∑

j=ci

e j when ηr > η` and −

ci+1−1∑
j=ci

e j when ηr < η`. (24)

(3) If there exists a cluster Ci with {uci−1 < uci and uci+1−1 < uci+1} and

0 < λ <
η

p
`
− (η` − αη)p + η

p
r − (ηr − αη)p

η|Ci|
(25)

then a descent direction for Gp, at the point u = f , is
ci+1−1∑

j=ci

e j. (26)

(4) If there exists a cluster Ci with {uci−1 < uci and uci+1−1 < uci+1} and

0 < λ <
η

p
`
− (η` + αη)p + η

p
r − (ηr + αη)p

η|Ci|
(27)

then a descent direction for Gp, at the point u = f , is

−

ci+1−1∑
j=ci

e j. (28)

Notice, for p = 1, in cases 1 and 2, the condition for λ is 0 < λ < 0. Since there is no such λ, we see that
our L1TV algorithm will not find descent in these cases. The condition for λ for p = 1 in cases 3 and 4 is

0 < λ <
2
|Ci|

. (29)

Proof. We begin this proof by showing that if we start with u = f , then to get descent we need not break up
clusters. We break this into 2 cases. We assume for these cases that uci is not a point on the boundary of Ω

(1 < ci < m). We prove this by considering whether or not

Gp(u + ηαei) −Gp(u) = |ui + ηα − ui−1|
p + |ui + ηα − ui+1|

p + λ|ui + ηα − fi|
−|ui − ui−1|

p + |ui − ui+1|
p + λ|ui − fi| < 0. (30)

Case 1: Suppose uci−1 = uci = uci+1. We assume that η > 0 is small and compute

Gp(u + ηαei) −Gp(u) = 2ηp + λη > 0, ∀η > 0. (31)

Thus, in this case, no descent exists. That is, a data point in the middle of a cluster will not move in the first
iteration. We can also see that for each point we move from the inside of a cluster causes an increase in the

HT ALGORITHMS 11

u(0)
ci−1 = fci−1 u(0)

ci = fci u(0)
ci+1 = fci+1

Figure 3. Case1: u(0)
ci is a point in the middle of a cluster.

fidelity term and we also see that the variation term will not decrease. Thus, we see that no descent is found
by moving any points from inside the cluster in a direction different than the rest of cluster.
Case 2: Suppose uci−1 = uci < uci+1 (see Figure 4)

We assume that 0 < η is at most ηr ≡ |uci+1 − uci | and compute

Gp(u + ηαei) −Gp(u) = ηp + (ηr − αη)p − η
p
r + λη

= ηp(1 − ap + (a − α)p) + λη where a =
ηr

η
≥ 1 (32)

Notice that if α = −1, we have Gp(u + ηαei) −Gp(u) = 1 − ap + (a + 1)p + λη > 0. Now if α = 1, we have
Gp(u + ηαei) − Gp(u) = 1 − ap + (a − 1)p + λη. This is also positive since ap − 1 = (a − 1)p when a = 1
and the left-hand side is increasing faster than the right-hand side for a > 1. Thus, in this case, no descent

u(0)
ci+1 = fci+1

u(0)
ci−1 = fci−1 u(0)

ci = fci

u(0)
ci−1 = fci−1

u(0)
ci+1 = fci+1u(0)

ci = fci

u(0)
ci−1 = fci−1

u(0)
ci = fci u(0)

ci+1 = fci+1

u(0)
ci+1 = fci+1

u(0)
ci−1 = fci−1 u(0)

ci = fci

Figure 4. Case2: u(0)
ci is a point on the end of a cluster (four cases).

exists. That is, a data point on the end of a cluster will not move in the first iteration. Notice the other cases
for uci−1 = uci , uci+1 or uci+1 = uci , uci−1 have the same result and are proved similarly.

Notice that if we moved several points at the end together away from the rest of the cluster, we will see
the same result in the variation term, but we will multiply the fidelity term by the number of points we
move. Therefore, clusters will not break apart in the first iteration of our algorithm. Next we show that
when clusters move together in the first iteration we find descent when λ satisfies the conditions stated in
the lemma. We show this by considering whether or not

Gp

u + ηα

ci+1−1∑
j=ci

e j

 −Gp(u) = |uci + ηα − uci−1|
p + |uci+1−1 + ηα − uci+1 |

p + λ

ci+1−1∑
j=ci

|u j + ηα − f j|

− |uci − uci−1|
p + |uci+1−1 − uci+1 |

p + λ

ci+1−1∑
j=ci

|u j − f j| < 0. (33)

We break this step into four cases. Let ηr ≡ |uci+1 − uci+1−1| and η` ≡ |uci − uci−1|. We also assume η ≤
min{ηr, η`}.

12 H. A. MOON AND T. J. ASAKI

Case 1: Suppose uci−1 > uci = . . . = uci+1−1 > uci+1 . We compute

u(0)
ci−1 = fci−1

. . .

u(0)
ci+1−1 = fci+1−1

. . .

u(0)
ci = fci u(0)

j = f j

u(0)
ci+1 = fci+1

Figure 5. Case 1: Ci(u
(0)
i) has left neighbor above and right neighbor below.

Gp

u + αη

ci+1−1∑
j=ci

e j

 −Gp(u) = (η` − αη)p − η
p
`

+ (ηr + αη)p − η
p
r + λ|Ci|η. (34)

We see that for this case, we find descent when

0 < λ <
η

p
`
− (η` − αη)p + η

p
r − (ηr + αη)p

η|Ci|
. (35)

That is, descent is found with this λ by moving the cluster up when ηr < η` and down when ηr > η`. (For
p = 1, this condition is 0 < λ < 0, thus descent does not exist.)
Case 2: Suppose uci−1 < uci = . . . = uci+1−1 < uci+1 . If we use a similar argument to that of Case 1, we see
that for this case, we find descent when

λ <
η

p
`
− (η` + αη)p + η

p
r − (ηr − αη)p

η|Ci|
. (36)

That is, descent is found, with this λ, by moving the cluster up when ηr > η` and down when ηr < η`. (For
p = 1, this condition is 0 < λ < 0, thus descent does not exist.)
Case 3: Suppose uci = . . . = uci+1−1 < uci−1, uci+1 . We compute

u(0)
ci+1 = fci+1

.
u(0)

ci = fci u(0)
j = f j u(0)

ci+1−1 = fci+1−1

u(0)
ci−1 = fci−1

Figure 6. Case 3: Ci(u
(0)
i) has both neighbors above.

Gp

u + αη

ci+1−1∑
j=ci

e j

 −Gp(u) = (η` − αη)p − η
p
`

+ (ηr − αη)p − η
p
r + λ|Ci|η. (37)

We see that for this case, we find descent by moving the cluster up when

λ <
η

p
`
− (η` − η)p + η

p
r − (ηr − η)p

η|Ci|
. (38)

(For p = 1, this condition is 0 < λ < 2/|Ci|.)

HT ALGORITHMS 13

Case 4: Suppose uci = . . . = uci+1−1 > uci−1, uci+1 . Again, this case is similar to Case 3. A similar argument
gives us that moving the cluster down gives descent when

λ <
η

p
`
− (η` − η)p + η

p
r − (ηr − η)p

η|Ci|
. (39)

(For p = 1, this condition is 0 < λ < 2/|Ci|.)
Finally, in the case that we choose the free boundary option (letting boundaries move), we show that if

uci is on the boundary, then we find descent when λ satisfies the conditions stated in the lemma. We prove
this for the left endpoint of the data since the argument for the right endpoint is similar. We break this into
two cases.
Case 1: u1 = u2. In this case, we assume η > 0 is small and we compute

Gp(u + ηαei) −Gp(u) = ηp + λη > 0. (40)

Thus we will not find descent by moving this endpoint without its neighbors.
Case 2: u1 = . . . = uc2−1 < uc2 . In this case, we assume 0 < η ≤ ηr = (uc2 − uc2−1) and we compute

Gp(u + ηαei) −Gp(u) = |C1|λη + (ηr − αη)p − η
p
r . (41)

Thus, we find descent by moving the endpoint up whenever λ < η
p
r −(ηr−η)p

η|C1 |
=

η
p
r

η|C1 |
. (For p = 1, this condition

is 0 < λ < 1/|C1|.) �

4.3.2. Clusters need not break up for descent (iteration k). For this lemma, we need to define some notation.

Definition 4.5. We define qg, ql, qe to be the number of elements, u(k)
j , in the cluster that are greater than,

less than, and equal to (respectively) the corresponding f j:

qg =

∣∣∣∣∣{u(k)
j ∈ C

(
u(k)

i

)∣∣∣∣ u(k)
j > f j

}∣∣∣∣∣ ,
ql =

∣∣∣∣∣{u(k)
j ∈ C

(
u(k)

i

)∣∣∣∣ u(k)
j < f j

}∣∣∣∣∣ ,
and

qe =

∣∣∣∣∣{u(k)
j ∈ C

(
u(k)

i

)∣∣∣∣ u(k)
j = f j

}∣∣∣∣∣ .
Lemma 4.10. Let 0 < p ≤ 1. Let qg, qe, and q` be defined as above. Let η` ≡ |uci−1 − uci | and ηr ≡

|uci+1 − uci+1−1| and let u(k) be a point obtained using a ht algorithm. Then the following statements hold.
(1) If there exists a cluster Ci with {uci−1 > uci = uci+1−1 > uci+1} and

0 < λ <
η

p
`
− (η` − αη)p + η

p
r − (ηr + αη)p

η((qg − q`)α + qe)
(42)

then a descent direction for Gp at the point u(k) is
ci+1−1∑

j=ci

e j when ηr < η` and −

ci+1−1∑
j=ci

e j when ηr > η`. (43)

(2) If there exists a cluster Ci with {uci−1 < uci = uci+1−1 < uci+1} and

0 < λ <
η

p
`
− (η` + αη)p + η

p
r − (ηr − αη)p

η((qg − q`)α + qe)
(44)

then a descent direction for Gp at the point u(k) is
ci+1−1∑

j=ci

e j when ηr > η` and −

ci+1−1∑
j=ci

e j when ηr < η`. (45)

14 H. A. MOON AND T. J. ASAKI

(3) If there exists a cluster Ci with {uci−1 > uci and uci = uci+1−1 < uci+1} and

0 < λ <
η

p
`
− (η` − η)p + η

p
r − (ηr − η)p

η(qg − q` + qe)
(46)

then a descent direction for Gp at the point u(k) is
ci+1−1∑

j=ci

e j. (47)

(4) If there exists a cluster Ci with {uci−1 < uci and uci = uci+1−1 > uci+1} and

0 < λ <
η

p
`
− (η` − η)p + η

p
r − (ηr − η)p

η(−qg + q` + qe)
(48)

then a descent direction for Gp at the point u(k) is

−

ci+1−1∑
j=ci

e j. (49)

Again, for p = 1, in Cases 1 and 2, the condition for λ is 0 < λ < 0. Thus our L1TV algorithm will not find
descent in these cases. The condition for λ for p = 1 in case 3 is

0 < λ <
2

qg − q` + qe
. (50)

And for Case 4, with p = 1, the condition for λ is

0 < λ <
2

−qg + q` + qe
. (51)

Proof. We begin again by showing that to get descent we need not break up clusters. Again for ease of
notation, we write u instead of u(k). We break this into two cases.
Case 1: uci−1 = uci = uci+1. We assume η > 0 is small. We compute

fci

u(k)
ci+1u(k)

ciu(k)
ci−1

u(k)
ci+1u(k)

ci = fciu(k)
ci−1

fci

u(k)
ci+1u(k)

ciu(k)
ci−1

Figure 7. Case 1: u(k)
ci is a point in the middle of a cluster (3 possible cases).

Gp(u + ηαei) −Gp(u) = 2ηp + λη((qg − q`)α + qe). (52)

Here we treat uci as a cluster of size 1 by moving it alone. This means that only one of qg, qe, q` is 1, while
the others are 0. Notice that if qe = 1, there is no descent. Notice also that λ > 2ηp−1 gives descent by
moving uci toward fci , but this would be undoing what we did in a previous step. That is, in the previous

HT ALGORITHMS 15

step, we could have moved uci to this cluster by itself in which case moving it back by itself is undoing a
step that gave us descent and thus it would give us ascent. The other possible case would have been if we
moved uci with a cluster to this position. In this case, we know from Lemma 4.9 that to move it by itself
away would be a step that gives ascent. Consequently, we will not find descent breaking up this cluster.
Case 2: uci−1 = uci , uci+1 or uci+1 = uci , uci−1. We will prove one of these cases, namely uci−1 = uci <
uci+1, because the four cases are similar in argument. We assume that η ≤ min{ηr, | fci −uci |} and we compute

u(k)
ci = f (k)

ci u(k)
ci = f (k)

ciu(k)
ci−1u(k)

ci+1

u(k)
ci−1 u(k)

ci+1

fci

u(k)
ci

fci

u(k)
ci+1

u(k)
ci−1u(k)

ci+1

u(k)
ciu(k)

ci−1

u(k)
ci−1

u(k)
ci u(k)

ci+1 u(k)
ci

fci

u(k)
ci−1

fci

u(k)
ci+1

u(k)
ci = f (k)

ci u(k)
ci+1 u(k)

ci−1 u(k)
ci = f (k)

ci

u(k)
ci−1 u(k)

ci+1

Figure 8. Case 2: u(k)
ci is a point on the end of a cluster (8 possible cases).

Gp(u + ηαei) −Gp(u) = (ηr − ηα)p − η
p
r + ηp + λη((qg − q`)α + qe). (53)

Notice, we get descent if

λ <
η

p
r − η

p − (ηr − ηα)p

η((qg − q`)α + qe)
= ηp−1 ap − 1 − (a − α)p

(qg − q`)α + qe
< 0 (54)

or

λ >
−η

p
r + ηp + (ηr − ηα)p

η((qg − q`)α + qe)
= ηp−1 ap − 1 − (a − α)p

(qg − q`)α + qe
(55)

However, notice that this second inequality is taking us back toward fi which is again, undoing a previous
step. The first inequality says λ < 0. Thus, we do not find descent in this case either. Thus he algorithm will
not break up clusters.

16 H. A. MOON AND T. J. ASAKI

Now we consider moving the full cluster together. We will show that we find descent when λ satisfies
the conditions stated in the lemma. We break this step into four cases. Let ηr ≡ |uci+1 − uci+1−1| and η` ≡
|uci − uci−1|. We also assume η ≤ min{ηr, η`}.
Case 1: Suppose uci−1 > uci = . . . = uci+1−1 > uci+1 . We compute

u(k)
ci+1

.

u(k)
ci u(k)

j

u(k)
ci+1−1

u(k)
ci−1

Figure 9. Case 1: Ci(u
(k)
i) has left neighbor above and right neighbor below.

Gp

u + αη

ci+1−1∑
j=ci

e j

 −Gp(u) = (η` − αη)p − η
p
`

+ (ηr + αη)p − η
p
r + λ((qg − q`)α + qe)η. (56)

We see that for this case, we find descent when

λ <
η

p
`
− (η` − αη)p + η

p
r − (ηr + αη)p

η((qg − q`)α + qe)
. (57)

As in the last lemma, we find descent, with this λ, by moving the cluster up when ηr > η` and down when
ηr < η`. (As we saw in the last lemma, for p = 1, this condition is 0 < λ < 0. Thus descent does not exist.)
Case 2: Suppose uci−1 < uci = . . . = uci+1−1 < uci+1 . If we use a similar argument to that of Case 1, we see
that for this case, we find descent when

λ <
η

p
`
− (η` + αη)p + η

p
r − (ηr − αη)p

η((qg − q`)α + qe)
. (58)

That is, descent is found, with this λ, by moving the cluster up when ηr < η` and down when ηr > η`. (For
p = 1 descent does not exist.)
Case 3: Suppose uci = . . . = uci+1−1 < uci−1, uci+1 . We compute

u(k)
ci+1

.
u(k)

ci u(k)
j u(k)

ci+1−1

u(k)
ci−1

Figure 10. Case 3: Ci(u
(k)
i) has both neighbors above.

Gp

u + αη

ci+1−1∑
j=ci

e j

 −Gp(u) = (η` − αη)p − η
p
`

+ (ηr − αη)p − η
p
r + λ((qg − q`)α + qe)η. (59)

HT ALGORITHMS 17

We see that for this case, we find descent by moving the cluster up when

λ <
η

p
`
− (η` − η)p + η

p
r − (ηr − η)p

η(qg − q` + qe)
. (60)

(For p = 1, this condition is 0 < λ < 2/(qg − q` + qe).)
Case 4: Suppose uci = . . . = uci+1−1 > uci−1, uci+1 . Again, this case is similar to Case 3. A similar argument
gives us that moving the cluster down gives descent when

λ <
η

p
`
− (η` − η)p + η

p
r − (ηr − η)p

η(−qg + q` + qe)
. (61)

(For p = 1, this condition is 0 < λ < 2/(−qg + q` + qe).) �

Using the proof of Lemmas 4.9 and 4.10, we see that for every cluster C(k)
i , we get C(k)

i ⊆ C(k+1)
i . That

is, no point will leave a cluster and at each iteration the algorithm will reduce the problem to minimizing a
lower dimensional problem.

4.4. Proof of Lemma 4.4. Up to this point, we have shown that Algorithm 3.1 converges to a minimizer.
Now we need to show that the algorithm is indeed finite.

Proof. Suppose u(k) < Y , then k > 0 since u(0) = f ∈ Y . Therefore ∇G1(u(k)) does not exist because the
algorithm always steps to a point where G1 is nonsmooth. Therefore u(k) ∈ H , where H is an ` < m
dimensional hyperplane formed from intersections of some of the ` − 1 hyperplanes of the form {ui =

u j|(i, j) ∈ E} and or {ui = fi}. Note that ` > 1 since the algorithm stops when ` = 1. If u(k) is not a minimizer
there exists a descent direction for G1 at u(k). Then there exists an α-descent direction inH . The algorithm
takes the step in this direction to get u(k+1) which lies on a hyperplane whose dimension is smaller than `.
We can continue this process at most ` times to land at a point u(k′) ∈ Y . �

To summarize this section, we have just shown that Algorithm 3.1 converges to a minimum of G1 by
showing that if there is a descent direction at a point u, then the particular α-direction of Algorithm 3.1
exists and gives strict descent. We also showed that Algorithm 3.1 is finite by showing that the algorithm
takes only finitely many steps to get from one point in Y to the next. Thus, Theorem 4.1 holds.

5. GlobalMinimizers for all λ

In this section we will introduce a more efficient algorithm for the case when p = 1. In the proof of
Lemmas 4.9 and 4.10, we found conditions on λ for which descent occurs. Here we use those conditions to
formulate a new algorithm that does not need to compute G1 values. Recall, we found that descent occurs, in
the p = 1 case, only when clusters are lower than both neighbors or higher than both neighbors. We restate
the conditions here. In the case when Ci is lower than its neighbors, we find descent in moving the cluster
up when

0 < λ <
2

qg − q` + qe
. (62)

For such clusters, we call Q = qg − q` + qe the effective cluster size. In the case when Ci is higher than its
neighbors, we find descent in moving the cluster down when

0 < λ <
2

−qg + q` + qe
. (63)

For these clusters, we call Q = −qg + q` + qe the effective cluster size.

Remark 5.1. In the case of free boundary conditions, if a cluster Ci is on the boundary of the data, we use
the results from Lemmas 4.9 and 4.10 to say the effective cluster size is twice the effective cluster size of
an interior cluster. We see that this makes sense since moving the cluster only affects the variation based on
one neighbor instead of two and therefore it takes a smaller λ to move it.

18 H. A. MOON AND T. J. ASAKI

We also recognize that the value of G1 is constant if a cluster moves to a height somewhere between its
highest neighbor and its lowest neighbor. Instead of moving clusters up and down in parallel, we move up
(down) all clusters with the appropriate effective cluster size for the given λ first. These clusters will move
up (down) to meet another cluster, stopping at Su or to meet an f value, stopping at S f . Since some clusters
will join with others, we recompute effective cluster sizes for all clusters that changed and then move down
(up) all clusters with the appropriate effective cluster size for the given λ.

For this version of the algorithm, we are still stepping in an α-descent direction to points in Su and/or
S f . We are not breaking up clusters as before, but we are now stepping through effective cluster sizes to
make the algorithm more efficient. As long as the effective cluster size does not decrease, we know that the
convergence given in Section 4 still holds. In fact, we can easily show that effective cluster size does not
decrease.

Lemma 5.1. The effective cluster size (ECS) for any cluster at any iteration given by

Qup = qg − q` + qe or Qdwn = −qg + q` + qe, (64)

will never decrease, here Qup is the ECS for a cluster intended to move up and Qdwn is the ECS for a cluster
intended to move down.

Proof. We will prove this lemma is true for an up cluster Ci. The argument for a down cluster is similar. We
recall Definition 4.5.

For this proof, we will say that u j in Ci contributes to qg if u j > f j, to q` if u j < f j, and to qe if u j = f j.
Notice the following:

• If u j in Ci contributes to qg and Ci moves up to form the new cluster C′i , then u′j in C′i contributes to
q′g since u′j > u j > f j.
• If u j in Ci contributes to qe and Ci moves up to form the new cluster C′i then u′j in C′i contributes to

q′g since u′j > u j = f j.
• If u j in Ci contributes to q` and Ci moves up to form the new cluster C′i , then u′j in C′i contributes

to either q′e or q′` since a cluster will stop at the closest of its neighbors or corresponding f values.
Thus f j ≥ u′j > u j.

This all tells us that when Ci moves up, q` can only change by decreasing, qg can only change by increasing,
and qe can change by either increasing or decreasing.

Now, we consider the effective cluster size for three cases for the newly formed cluster C′i .
A |C′i | = |Ci|, the actual cluster size does not change. This happens when Ci moves up to meet an f

value,
B C′i is lower than both of its neighbors, and
C C′i is a cluster that is higher than both of its neighbors.

We don’t consider the case when one of the neighbors of C′i is below and the other above the cluster, since
moving this cluster will not give descent in G1.

In case A, since both neighboring clusters, Ci−1 and Ci+1 are still above Ci, the effective cluster size is
given by Qup in (64). Using the argument above we see that the new effective cluster size increases since at
least one u j in Ci that contributes to q` will move up to u′j that contributes to qe thus Qup will increase.

In case B, Ci will move up to join with at least one of its neighboring clusters Ci−1 and Ci+1. Now, let
Qi−1,Qi+1 denote the effective cluster sizes of Ci−1,Ci+1, respectively and Q′i be the contribution from Ci
after its move. From the above argument, we know that Q′i = q′g − q′` + q′e ≥ qg − q` + qe = Qi.

If Ci moves up to join with Ci−1, the new effective cluster size is just the sum of the contributions from
both clusters, that is, Q = Qi−1 + Q′i . If Ci moves up to join with Ci+1, the new effective cluster size is
Q = Q′i + Qi+1. And if Ci moves up to join with both Ci−1 and Ci+1, the new effective cluster size is
Q = Qi−1 + Q′i + Qi+1. In these three cases, if Qi−1,Qi+1 > 0 then the effective cluster size does not decrease.

Notice that case C can only happen if Ci moves up to meet both of its neighbors (for otherwise, at least
one will still be above C′i). Thus, the new effective cluster size is Q = Qi−1 + Q′i + Qi+1. Also, for this case,

HT ALGORITHMS 19

the new cluster that is formed is a down cluster, that is, Q is computed using Qdwn in (64). Since Ci was
below clusters Ci−1 and Ci+1 before the move, we know that Ci−1 and Ci+1 were down clusters before Ci
moved up. Since we are incrementing on the ECS, we know that Qi−1,Qi+1 ≥ Qi. Since the newly formed
cluster, C′i is a down cluster, the amount that Ci contributes to Q is Q′i = −qg + q` + qe. Notice that Q′i is
not an effective cluster size, rather it only contributes to the new effective cluster size therefore it may be
negative. If Q′i is negative, then we will get the smallest value for Q. But the smallest this can be happens
when u j = f j for all u j in Ci so that after the move they contributed to qg, but then Qi = |C j| and we get
Q = Qi−1 + Q′i + Qi+1 = Qi−1 − |Ci| + Qi+1 ≥ Qi. And, we know that, in this case also, the effective cluster
size never decreases.

Notice that since the algorithm starts with u = f , Qi = |Ci| > 0 for every cluster Ci thus using the above
arguments, the minimum effective cluster sizes never decrease. �

Now we give the formal algorithm. Let C(k)
1 , . . . ,C(k)

qk be the unique clusters at iteration k. Let g(k)
i , e(k)

i , `(k)
i

be qg, qe, and q` for cluster i at iteration k.

Algorithm 5.1. (L1TV)
Given f = (f1, . . . , fm);
Set u(0) = (u(0)

1 , . . . , u(0)
m) = (f1, . . . fm);

Find C(0)
1 ,C(0)

2 , . . . ,C(0)
q0 ;

Set k ← 1;
do

Compute g(k)
i , e(k)

i , `(k)
i for each i = 1...q0;

U ← { j : all neighbors of C j are above C j}

D← { j : all neighbors of C j are below C j}

mincsk ← min1≤i≤qk {mini∈U{g
(k)
i − `

(k)
i + e(k)

i },mini∈D{−g(k)
i + `(k)

i + e(k)
i }};

mvcl← {i ∈ U : g(k)
i − `

(k)
i + e(k)

i = mincs};
if mvcl , ∅

for idx = 1 : |mvcl|
Move up, Cmvcl(idx) to closest of f , CI(idx)−1, and CI(idx)+1

end
else

mvcl← {i ∈ D : −g(k)
i + `(k)

i + e(k)
i = mincs};

for idx = 1 : |mvcl|
Move down, Cmvcl(idx) to closest of f , CI(idx)−1, and CI(idx)+1

end
end
k ← k + 1
Update list of clusters, [C(k)

1 , . . . ,C(k)
qk];

if mincsk ,mincsk−1
Append list of solutions with [C1, . . . ,Cqk];
Append list of λ with 2

mincs+1 ;
end

until no descent exists.
Table 3. Efficient L1TV algorithm (written with an up preference)

In this algorithm we start at u(0) = f and find the clusters. We then determine which clusters might move
up (call them up clusters) and which might move down (call them down clusters) ignoring those that have
both a neighbor below and a neighbor above the cluster. In the case of Algorithm 5.1, we see it is written

20 H. A. MOON AND T. J. ASAKI

with a preference to move clusters up first and then down. We find the minimum effective cluster size (ECS)
and move up any up cluster, having this ECS, to its nearest neighboring cluster or f value. If no up cluster
has this ECS, we move down any down cluster that has the same ECS to its nearest neighboring cluster or
f value. We repeat this until the stopping condition is reached. If at any iteration the minimum effective
cluster size changed from the previous iteration, we update the list of solutions and the λ value.

The stopping condition for this algorithm depends on the type of data and the boundary conditions. In
the general case for data (that is, not necessarily binary data), we stop the algorithm when monotonicity is
reached for fixed boundary data or, for free boundary data, when there is only one cluster left (the solution
is flat).

For binary data, this algorithm is greatly simplified. There is never a need to check neighbors of a cluster.
If the data is binary, then the neighbors have the opposite value of that of the cluster. That is, if the cluster
is at a height of 1, then its neighbors are at a height of 0 and it is then a down cluster. For down clusters,
Ci, the effective cluster size is dependent on `i and ei whereas for an up cluster, the effective cluster size is
dependent on gi and ei. Another simplification for this algorithm when the data is binary is that we never
need to check the distance to f values corresponding to a cluster since these will also be either 0 or 1.
Thus, the algorithm will not have moves to heights other than the height of cluster neighbors. Finally, the
algorithm will stop when the minimum number of clusters, minq, is reached. The value of minq depends on
whether the boundaries are fixed (minq= 2) or free (minq= 1).

The greatest benefit to Algorithm 5.1, for both the general and the binary problems, is that we are able
to solve the λ = 0 problem and in the process get the solutions ∀λ > 0. That is, the computational task of
getting a solution for all λ > 0, is the same as solving only one problem. We state this result in the next
theorem.

Theorem 5.1. Algorithm 5.1 finds a solution to L1TV for every λ > 0.

Proof. Algorithm 5.1 iterates by increasing the effective clusters size, thus decreasing λ beginning with the
largest possible λ so that at least one cluster will move. Because the problem is discrete, the effective cluster
sizes are positive integers between 0 and m (the length of the signal). The effective cluster size (and thus,
λ) does not change until no cluster of this effective cluster size will move. By the results of Section 4 we
know that for each λ, Algorithm 5.1 finds descent whenever descent exists. Therefore at each iteration the
algorithm minimize L1TV for the current λ. And by Lemma 5.1, we know that iterating on the effective
cluster size does not skip a particular effective cluster size that might need to be revisited later since the
effective cluster size never decreases. Thus, for each λ > 0, we find a minimizer to the corresponding L1TV
problem. �

5.1. Extensions of the ht Algorithm. It is worth noting that the algorithm will not naturally extend to
higher dimensional data. The issue lies in the neighborhood structure that occurs at higher dimensions. In
higher dimensional problems, such as imaging problems, it becomes beneficial to break up clusters when
there is a data point that has more neighbors outside of the cluster than inside. We see this occurring in
images with L1TV when parts of object edges having high curvature are rounded. We conjecture that an
adjustment to the algorithm to allow cluster break up only when the number of neighbors outside the cluster
is not less than the number inside will give similar results for higher dimensional data.

The ht algorithm does not extend easily to an L1TV objective function where the data fidelity term in-
volves a linear operator such as in the discretization of ||K ∗u− f ||1. This transformation causes a rotation of
some of the bounding hyperplanes, changing the geometry of the problem. Because the ht algorithm relies
strongly on this geometry, we believe it is not obvious , yet worth future investigations, to extend the ht
algorithm to such cases.

6. Time Trials for L1TV ht Algorithm

Finally, we show timing results for both the general and binary cases as well as for fixed and free boundary
conditions.

HT ALGORITHMS 21

First, we start with fixed boundary conditions. We ran Algorithm 5.1 on 100 random signals of size N.
In Table 4 we have recorded the average number of initial clusters, the average number of λ solutions, and
the average time in seconds that it takes to perform the main loop of the ht algorithm. The algorithm has a
set up that is of order N, but then the main loop depends on the number of initial clusters.

N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 5 2.61 0.0008
10 10 3.65 0.0015
20 20 5.93 0.0031
40 40 9.21 0.0061
80 80 12.62 0.0114
160 160 23.58 0.0229
320 320 39.27 0.0455
640 640 63.76 0.0941

1280 1280 135.61 0.2153
2560 2560 283.39 0.5410
5120 5120 418.02 1.4511

Table 4. Time Trials for Algorithm 5.1 for general random signals, of size N, with fixed
boundary conditions.

We then ran 100 random binary signals of length N. We recorded the average time to complete the main
loop of the ht algorithm, the average number of initial clusters, and average number of λ solutions in Table
5.

N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 2.1 1.39 0.0001
10 3.9 2 0.0002
20 7.4 2.51 0.0004
40 13.8 2.93 0.0007
80 26.9 3.47 0.0012
160 52.2 3.93 0.0020
320 104.4 4.43 0.0035
640 209.1 4.91 0.0067

1280 419.1 5.34 0.0138
2560 836.2 5.91 0.0305
5120 1677.1 6.42 0.0762

Table 5. Time Trials for Algorithm 5.1 for random binary signals, of size N, with fixed
boundary conditions.

Next, we looked at some time trials, but this time with free boundary conditions. We ran 100 random
signals of length N. In Tables 6 (general random signals) and 7 (binary random signals), we recorded the
average time to complete the main loop, the average number of initial clusters, and the average number of λ
solutions.

We know that for a random binary signal, this algorithm is O(M). From our time trials, it appears that the
computational complexity of the main loop of our ht algorithm is O(M), where M is the number of initial
clusters in our signal. An initial computation of O(N) is performed on each signal to catalogue the clusters,
where N is the length of the signal. Putting these together, we believe that the computational complexity of
this algorithm is O(aN + M) signals of length N, where a is small compared to 1. We know that for a binary

22 H. A. MOON AND T. J. ASAKI

N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 5 3.26 0.0010
10 10 4.28 0.0020
20 20 5.93 0.0035
40 40 8.11 0.0063
80 80 11.15 0.0117
160 160 15.15 0.0217
320 320 20.58 0.0417
640 640 30.22 0.0857

1280 1280 41.72 0.1874
2560 2560 58.94 0.4587
5120 5120 84.78 1.2875

Table 6. Time Trials for Algorithm 5.1 for general random signals, of size N, with free
boundary conditions.

N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 2.3 1.85 0.0002
10 4 2.33 0.0003
20 6.7 2.71 0.0005
40 13.8 3.19 0.0008
80 26.8 3.51 0.0012
160 53.8 4.03 0.0020
320 106.7 4.54 0.0036
640 211.4 4.87 0.0068

1280 420.8 5.36 0.0138
2560 835.8 5.85 0.0305
5120 1678.3 6.40 0.07771

Table 7. Time Trials for Algorithm 5.1 for random binary signals, of size N, with free
boundary conditions.

signal, the cluster that moves will meet up with both its neighbors. Thus, after each iteration, the number of
clusters decreases by 2 for every cluster that moves. This means that there are exactly M

2 cluster moves for
any binary signal. The worst case scenario, is the binary signal given by

u(0) = (0, 1, 0, 1, 0, 1, . . .).

Here the number of initial clusters is N, the signal length. Thus, the number of cluster moves is equal to
M
2 = N

2 . In a random binary signal, we expect less than N initial clusters.

7. Example for L1TV ht Algorithm

As we mention above, L1TV minimization can be used to find scales in data. In this section we show
that our algorithm for L1TV does indeed give the expected results. In Figure 11(a), we show a plot of daily
sunspot numbers obtained from NASA (http://solarscience.msfc.nasa.gov). The sunspot number1 for any

1The sunspot number is commonly refered to as the Wolf Number in honor of Rudolf Wolf who is credited with the concept in
1848.

HT ALGORITHMS 23

given day is a standardized measure of the number of sunspots and sunspot groups present on the earth-
facing surface of the sun. Sunspots are dynamic and have typical lifetimes of a few days to a few months.
However, the dominant feature in the signature is an approximate 11-year period in overall sunspot activity.

Figure 11. Examples of minimizing signals for daily sunspot numbers at significant scales.
The raw daily data is represented at scale 2/λ = 1.

We applied the ht algorithm for L1TV to this sunspot data. The signature shown in Figure 12 is the value
of the variation term in (1) (

∑m
i=0 |u

∗
i+1 − u∗i |) for each distinct value of 2/λ found by the ht algorithm. The

presence of a scale 2/λ in a signature is revealed by significant changes in variation with respect to 2/λ.
Three scale signatures are present, at 2/λ ≈ 13, 1200, 11000, in units of days. The largest value indicates the
time scale over which sunspot activity rises and falls over decades. The medium scale represents the typical
duration of the decadal peak in sunspot activity, about 3-4 years. The 13-day scale correlates well with
the typical duration of a sunspot on the face of the sun, limited by half of the the sun’s generally accepted
synodic rotational period of 26 days. The short scale does appear to be composed of a broad range of scales
ranging from one to six weeks. Scales shorter than two weeks may be due to observations of the beginning
and end of sunspot life cycles. Scales of several weeks may be due to the duration of sun-wide bursts of
activity.

Minimizing signals for these two scales are shown in Figures 11(b) and 11(c). The inset subfigures show
the signals over a short range of dates from 1955 through 1963. At these scales, features in the data of
width are significant and changing rapidly with respect to λ. Features of effective cluster size (see Section
5) smaller than the given scale are not present.

8. Hyperplane Traversal Algorithm for discrete L1 pTV for p < 1

In this section, we consider the discrete formulation for L1 pTV for 0 < p < 1

min

Gp ≡

m−1∑
i=0

|ui+1 − ui|
p + λ

m∑
i=0

| fi − ui|

∣∣∣∣∣∣∣ u ∈ Rm+1

 . (65)

24 H. A. MOON AND T. J. ASAKI

Figure 12. Scale Signature for sunspot data

Notice that if u is binary data, the problem is p-independent. Thus, for binary data, this problem reduces to
the L1TV problem.

For this problem, we seek a minimizer in the set Y (Definition 2.2). Because Gp is concave in the regions
separated by the hyperplanes of the form {ui = ui+1}, {ui = ui−1}, or {ui = fi} (see Figure 13), we know that
minimizers will be in Y . We use a variant of the ht algorithm which stays in Y to find local minimizers.
The difference in the algorithm is that the choices made depends on whether neighboring clusters are both
above, both below, or one above and one below the cluster being moved.

Figure 13. Level lines of a simple example of Gp for p = .5 and λ = 1.

8.1. ht Algorithm for L1 pTV . Again, we use the proof of Lemmas 4.9 and 4.10 to write an algorithm to
find minimizers of (1). We let C(k)

1 , . . . ,C(k)
qk be the unique clusters at iteration k. Using the lemmas, we write

the conditions on λ for a cluster to move at iteration k. We let qg, qe, and q` be as we defined them in Section
5. To move a cluster that has one neighbor above and one neighbor below, we let ηa be the distance from
the cluster to the neighbor above the cluster and ηb be the distance from the cluster to the neighbor below
the cluster. And we consider moving the cluster up a distance η = min {ηa, { fi − ui : when fi > ui, ui ∈ Ci}}.

HT ALGORITHMS 25

The algorithm will find descent in this case if

0 < λ <
η

p
a − (ηa − η)p + η

p
b − (ηb + η)p

η(qg − q` + qe)
. (66)

Notice that since qg − q` + qe > 0, we need

0 < ηp
a − (ηa − η)p + η

p
b − (ηb + η)p. (67)

This happens only when ηa < ηb. Now we consider moving the cluster up a distance η = min{ηb, {ui − fi :
when fi < ui, ui ∈ Ci}}. The algorithm will find descent in this case if

0 < λ <
η

p
a − (ηa + η)p + η

p
b − (ηb − η)p

η(−qg + q` + qe)
. (68)

Similar to the previous case, we need that ηb < ηa for this to make sense. To move a cluster that has both
neighbors above, we let η` be the distance from the cluster to its left neighbor and ηr be the distance from
the cluster to its right neighbor. And we consider moving the cluster up a distance η = min{η`, ηr, { fi − ui :
when fi > ui, ui ∈ Ci}}. The algorithm will find descent in this case if

0 < λ <
η

p
r − (ηr − η)p + η

p
`
− (η` − η)p

η(qg − q` + qe)
. (69)

Finally, To move a cluster that has both neighbors below, we let η` be the distance from the cluster to its left
neighbor and ηr be the distance from the cluster to its right neighbor. And we consider moving the cluster
up a distance η = min{η`, ηr, {ui − fi : when fi < ui, ui ∈ Ci}}. The algorithm will find descent in this case if

0 < λ <
η

p
r − (ηr + η)p + η

p
`
− (η` + η)p

η(−qg + q` + qe)
. (70)

Using the above information, we see that our algorithm should only check the conditions for moving a
cluster up when the closest neighbor is above the cluster. Similarly, we should only check the condition
for moving a cluster down when the closest neighbor is below the cluster. As in Algorithm 5.1, we let
gi, ei, `i be qg, qe, q` for cluster i. In the algorithm below, we let Qup = {gi − `i + ei : 1 ≤ i ≤ m} and
Qdwn = {−gi + `i + ei : 1 ≤ i ≤ m}.

In words, this algorithm starts at u(0) = f and finds all of the clusters. The cluster with the maximum
λcut (according to Equations (66), (68), (69), and (70)) is moved in the appropriate direction to the nearest
neighbor or nearest fi for i ∈ {i : ui ∈ Ci}. We continue this until stopping conditions are reached. As in the
L1TV algorithm, stopping conditions depend upon the type of boundary conditions, that is, whether they are
fixed or free boundary conditions.

Notice that since the iterations of Algorithm 8.1 stay in Y (see Definition 2.2), we know that it is also
a finite ht algorithm. From Lemmas 4.9 and 4.10 we know that at each iteration, the algorithm finds strict
decent. Gp ≥ 0 and is therefore bounded below. We can see that Gp is coercive. Indeed, we have that∑m

i=0 |ui+1 − ui|
p ≥ 0 and

λ

m∑
i=1

| fi − ui| ≤ λ

m∑
i=1

(|ui| + | fi|)→ ∞ as |u| → ∞. (71)

We do not have a convexity condition therefore we are only able to conclude that this algorithm finds local
minima.

Like Algorithm 3.1, Algorithm 8.1 steps to the hyperplanes where Gp is nonsmooth and stays in the
lower dimensional space. Therefore, this algorithm finds minimizers of lower and lower dimensional prob-
lems. The clusters also only get larger, therefore because we operate on clusters rather than the signal, the
algorithm increases in efficiency as we progress through the iterations.

Also for Algorithm 8.1, we don’t get a local minimizer at the end of each iteration. This happens because
the effective cluster size can increase or decrease. The iterations that end with minimizers are those for

26 H. A. MOON AND T. J. ASAKI

Algorithm 8.1. (L1 pTV)
Given f = (f1, . . . , fm);
Set u(0) = (u(0)

1 , . . . , u(0)
m) = (f1, . . . fm);

Find C(0)
1 ,C(0)

2 , . . . ,C(0)
q0 ;

Compute Set k ← 1;
for i = 1 : m

Compute λi according to Eqs. (66), (68), (69), and (70));
end
do

Find mvcl = arg maxi{λi};
Set λ∗k ← λmvcl;
if λ∗k < 0, stop do loop
Set ηr ← |ur − u|, η` ← |u` − u|;
η← min

{
ηr, η`,min f j,u j∈Cmvcl

{
| f j − u j|

∣∣∣α(f j − u j) > 0
}}

;
Compute αmvcl according to 8.2 using ur, u`,Qupi ,Qdwni , ηr, η`;
Move Cmvcl the distance ηαmvcl
k ← k + 1
Update list of clusters, [C(k)

1 , . . . ,C(k)
qk];

Compute λi for clusters that change;
if λ∗k < λ

∗
k−1

Append list of solutions with [C1, . . . ,Cqk];
Append list of λ∗ with λ∗k;

end
until no descent exists.

Table 8. L1 pTV algorithm

which λ decreases in the next iteration. Notice if λ increases in the next iteration, we are still finding descent
for the current λcut value. For example, if λ(k)

cut = 10 we know that at iteration k, we find descent whenever
λ < 10. If the maximum λ that will give descent at iteration k + 1 is larger than 10, then we know that we
will find descent for λ < 10 since λ(k+1)

cut > 10. Thus, we get a complete set of local minimizers.

9. Summary

In this paper we presented a novel way of understanding and solving the one-dimensional discrete L1 pTV
problem (1). This coercive function is piecewise concave with region boundaries defined by hyperplanes.
We show that optimal solutions for any λ ≥ 0 can be found on the finite set of discrete points in Rm+1

defined by intersections of m + 1 or more distinct hyperplanes. We then provided a hyperplane traversal
(ht) algorithm which systematically searches these points. The ht algorithm finds exact optimal solutions
for all λ ≥ 0 in finite iterations. For p = 1 the solutions are globally optimal, for 0 < p < 1 solutions are
only guaranteed to be locally optimal. Of particular interest is that ht never needs to compute the objective
function Gλ(u) in order to obtain the complete λ-parametric solution set.

The ht algorithm is a form of parametric programming, but is extremely efficient in terms of computa-
tional cost and memory usage. Time trials on randomly-generated test signals indicate that the computational
complexity on binary data is O(M), where M ≤ m + 1 is the initial number of clusters (distinct groupings of
either 0 or 1). General non-binary data complexity appears to be O(am + M), where a << 1.

One use of the L1 pTV function is the discovery of scale information in data. We illustrated this ability
by examining the record of daily sunspot numbers for approximately 152 years of data. Significant scale

HT ALGORITHMS 27

Algorithm 8.2. (α)
Given u, ur, u`,Qup,Qdwn, ηr, η`;
if ur, u` > u

α← 1;
elseif ur > u and ηr < η`

α← 1;
elseif u` > u and η` < ηr

α← 1;
elseif η` = ηr

if u` > u or ur > r
if 0 ≤ Qup < Qdwn or Qdwn < 0 ≤ Qup

α← 1;
elseif Qup = Qdwn

α← preferred direction (up=1,down=-1);
end

end
else

α← −1;
end

Table 9. L1 pTV algorithm

signatures are present at approximately 13 days, at 3-4 years and at 30 years. These scales are explained in
terms of the known dynamics of the sun and of sunspot activity.

We briefly discussed extensions to higher dimensional data, such as images, and to signals modified by
linear operators, such as blurring functions. It is not yet clear which types of extensions can be solved using
an ht algorithm because it depends strongly on the geometry of the objective function.

We would like to acknowledge Jamie O’Brien for finding a mistake in our algorithm description. We
would also like to thank the reviewers for taking the time to give valuable feedback on our original manu-
script.

References

[1] S. Alliney. A Property of the Minimum Vectors of a Regularizing Functional Defined by Means of the Absolute Norm. IEEE
Trans. Signal Process., 45:913–917, 1997.

[2] T. Chan and Esedoḡlu. Aspects of Total Variation Regularized L1 Function Approximation. SIAM J. Appl. Math., 65(5):1817–
1837, 2005.

[3] Rick Chartrand. Nonconvex regularization for shape preservation. In IEEE International Conference on Image Processing
(ICIP), 2007.

[4] Francis H Clarke, Yuri S Ledyaev, Ronald J Stern, and Peter R Wolenski. Nonsmooth analysis and control theory, volume
178. Springer, 1997.

[5] B. Dacorogna. Introduction to the Calculus of Variations. Imperial College Press, London, 2004.
[6] B. Dacorogna. Direct Methods in the Calculus of Variations, Second ed. Springer, 2008.
[7] L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence, 2002.
[8] H. Fu, M. K. Ng, M. Nikolova, and J. L. Barlow. Efficient minimization methods of mixed `2-`1 and `1-`1 norms for image

restoration. SIAM Journal on Scientific Computing, 27(6), 2006.
[9] D. Goldfarb and W. Yin. Parametric maximum flow algorithms for fast total variation minimization. SIAM Journal on Scientific

Computing, 31(5), 2009.
[10] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(2), 2004.

28 H. A. MOON AND T. J. ASAKI

[11] M Nikolova. Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM Journal on Numerical Analysis,
40:965–994, 2003.

[12] L. Rudin, S. Osher, and E. Fatemi. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D, 60(1-4):259–268,
November 1992.

[13] D. Strong and T. Chan. Edge-Preserving and Scale-Dependent Properties of Total Variation Regularization. Inverse Problems,
19, 2003.

[14] A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. Winston, 1977.
E-mail address: hamoon@smcm.edu

E-mail address: tasaki@wsu.edu

Department ofMathematics, Washington State University, Pullman, WA 99164-3113

	1. Introduction
	2. Properties of the discrete L1TV function
	3. Preliminary ht Algorithm for discrete L1TV
	4. Global Minimizers for a fixed
	4.1. Proof of Lemma 4.1
	4.2. Proof of Lemma 4.2
	4.3. Proof of Lemma 4.3
	4.4. Proof of Lemma 4.4

	5. Global Minimizers for all
	5.1. Extensions of the ht Algorithm

	6. Time Trials for L1TV ht Algorithm
	7. Example for L1TV ht Algorithm
	8. Hyperplane Traversal Algorithm for discrete L1pTV for p<1
	8.1. ht Algorithm for L1pTV

	9. Summary
	References

