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1 Systems of Equations

In this section, we will discuss techniques for solving systems of linear equations. There are
things to explore in this section. But mostly, I would like you to keep in mind that solution
techniques for systems of linear equations are tools we use for more interesting Linear Algebra
concepts.

1.1 Review from your basic Algebra class

In high school Algebra classes, students are usually asked to solve systems of equations such
as:

x + y = 2
x − y = 6

.

Let’s review what we know about these equations.

1. Each of these equations can be plotted on a cartesian (xy-plane). Plot these two.

2. What are the graphs of these two equations?

The solution to the system of equations is where these two graphs cross. We can use one of
two different methods to accurately find this point. Of course, you can look back at graphs
and estimate the solution and you would probably be correct because I chose the solution
to be an integer point. Let’s look at two solution techniques.

1.1.1 Substitution

The substitution method works just as the name suggests. Choose one equation and solve
for a variable and substitute into the other equation, like so:

x+ y = 2 ⇒ y = 2− x ⇒ x− (2− x) = 6.

Now we solve for x to get x = 4. Then we substitute to get y = 2− 4 = −2. So the solution
is (4,−2). Remember, the solution is a point where the two graphs cross.

1.1.2 Elimination

We will focus more on this technique in later subsections. The technique, again as the name
suggests, requires that we eliminate a variable in order to solve for the other variable. To
eliminate a variable, you can add multiples of equations together. In this case, we just want
to add the equations together to eliminate y:

x + y = 2
+ x − y = 6

2x = 8
.

We then solve for x and back substitute. We get x = 4 and y = −2 as before. So again, we
see that the solution is (4,−2).
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1.2 Systems of Equations with more variables

In this section, we will continue with the method of elimination, but this time we will solve
systems with 3 or more variables. The method of substitution still works, but becomes
messier with more variables so we will avoid using that method. Before we go through an
example, let’s lay out the rules.
Allowed operations when solving systems of linear equations.

• Multiply both sides of an equation by a nonzero number.

• Add multiples of equations together to change only one of them. This means you can
replace on equation by the result you get when you multiply two equations by a number
and then add them together.

• Change the order of equations.

Using only these operations, let’s look at an example. We will solve the system:

x + y + z = 0
2x − y + 3z = −6
−x + y − 2z = 5

.

If you have taken a Vector Calculus class, you know that the graphs of these equations are
planes in R3 (3-dimensional space). We are looking for the point (or points) where these
three planes cross each other. Like I said above, we will use elimination. There are many
choices to be made here. I tend to try to eliminate all x’s except in the first equation and
then all y’s except in the first two equations. It makes a kind of triangular shape to my
system, but mostly, it leaves only z terms in the third equation. We also want to maintain
good bookkeeping so, we will always keep the system together. Finally, I want to note that
we will make notations to indicate which of the three allowed operations we used in each
step. The notation I use (and you should find a notation you like) uses uppercase E to
indicate a newly made equation and a lowercase e to indicate equations from the previous
step. So, something like E2 = 2e1 + e2 means that I will replace equation 2 with a new
equation that is formed by taking twice the first equation added to the second.

Example 1.1. Let’s solve the above system now:

x + y + z = 0
2x − y + 3z = −6
−x + y − 2z = 5

E2=−2e1+e2−→
E3=e1+e3

x + y + z = 0
−3y + z = −6

2y − z = 5

E2=−e2−e3−→
x + y + z = 0

y = 1
2y − z = 5

.

It turns out that in my attempt to follow the above strategy, I found y sooner than expected.
As soon as I know one variable, I begin substituting back into the other equations. Notice
that I can find z by substituting y = 1 into equation 3. So, I get:

x + y + z = 0
y = 1
2 − z = 5

−→
x + 1 − 3 = 0

y = 1
z = −3

−→
x = 2

y = 1
z = −3

.

So, the solution to the system is the point (or vector in R3) (2, 1,−3).
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Now, let’s talk about how I chose the steps that I took. It is important to notice that I
made the choice from the start to eliminate all x’s below the first equation. So, I use the
first equation to eliminate the others. I asked, “what can I multiply the first equation by
so that when I add it to the second equation, the x will be eliminated?” The answer in this
case was 2 and so I chose the rule E2 = −2e1 + e2. I then ask a similar question for equation
3. The answer was 1 and so I chose the rule E3 = e1 + e3. In the second step, I wanted to
use the second equation to eliminate the y in the third equation (this was my plan). It’s
easier to do this if you have a coefficient of 1. I had a choice, I could have divided through
by −3, but that would have given me fractions. So, I used equation 3 to get my coefficient
of 1. I noticed that 3 − 2 = 1 so I chose the rule E2 = −e2 + e3. It turned out that I was
given a beautiful surprise because it eliminated z! Notice that if I had a coefficient different
than 1 for x in the first equation, I may have made different plans. Maybe I would rearrange
my equations if there’s another equation whose x coefficient is 1. Maybe I would choose to
eliminate a different variable whose coefficient is 1 (or it’s easier to get a coefficient of 1) in
one of the equations. These are the things I look for.

Example 1.2. Let’s look at another system.

x + y + z = 2
2x + 2y + 2z = 4
−x + y − 2z = −2

E2=−2e1+e2−→
E3=e1+e3

x + y + z = 2
0 = 0

2y − z = 0

E1=e3+e1−→
E2=e3, E3=e2

x + 3y = 2
2y − z = 0

0 = 0
.

Notice that in the original system, the first two equations were the same plane. This became
very apparent when I tried to eliminate x in the second equation. All variables eliminated.
We know that at the least, two planes that intersect intersect at infinitely many points. This
means that we will get either no solution or infinitely many solutions. We now back substitute
to find all solutions: We let y be any real number and see that z = 2y and x = 2 − 3y. So
our solutions are points of the form (2− 3y, y, 2y), where y can be any real number. We say
that y is a free variable in this case. Notice that we chose y to be the free variable. We could
have chosen any of the variables in this problem to be free. Finally, since there are infinitely
many solutions, we should write the solution set. The solution set is the set of all solutions
to the system of equations. In this case the solution set is the set

{(2− 3y, y, 2y)| y ∈ R} .

In our first example, there is only one point in the solution set. So, we could (though we
don’t usually) write that the solution set for the first example is {(2, 1,−3)}.

We should also look at a system of equations that doesn’t have a solution.

Example 1.3.

x + y + z = 2
2x + 2y + 2z = 1
−x + y − 2z = −2

E2=−2e1+e2−→
E3=e1+e3

x + y + z = 2
0 = −3

2y − z = 0

Notice that equation 2 is false. This means that there is not way for all three equations to be
true at the same time. So, there is no solution. We would then write that the solutions set
is ∅ (the empty set).

7



1.3 Using Matrices to solve systems of equations

In this section, we introduce matrices to help with the bookkeeping. Later we will use
matrices for other reasons and they may or may not be linked to systems of equations.
What this means is that the use of matrices is more general (one might even say more
powerful) than just solving systems of equations. With that said, let’s talk about matrices.
A matrix is a rectangular array of numbers. For example,

M =

(
1 2 3 4
2 2 −1 0.2

)
is a 2× 4 matrix. (Note, some people use parenthesis and some people use square brackets
around a matrix. Either is acceptable, and I may or may not go back and forth with these
throughout the notes.) This means that M has two rows (horizontal) and four columns
(vertical). Notice that a matrix has a nice structure where things are lined up, just like
we lined things up when we wrote our systems of equations above. We use this structure
to represent a system of equations as a matrix. In particular, we use what we call an
augmented matrix. This only means that we put a vertical line in the matrix to keep track
of where the equals sign is located.
For example, we represent the system of equations from the previous subsection

x + y + z = 0
2x − y + 3z = −6
−x + y − 2z = 5

with the following coefficient matrix 1 1 1 0
2 −1 3 −6
−1 1 −2 5

 .

Notice that it is called a coefficient matrix because the entries in the matrix are the coeffi-
cients from the system.
When solving systems of equations by hand, it can become very tedious writing the variables
over and over. So, we use matrices to solve systems. In order to use a matrix, we need to
note that when we eliminate, we are getting 0 entries. The process of elimination is now
called matrix reduction. I use a similar notation as before, but now the equations are rows,
so I use R and r instead of E and e to notate my steps. Let’s solve the same system, but
now using a matrix. Before we do, we rewrite the allowed operations in terms of rows:
Allowed operations when reducing a matrix.

• Multiply a row by a nonzero number.

• Add multiples of rows together to change only one of them.

• Change the order of rows.
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Using these allowed operations, we will reduce the augmented matrix: 1 1 1 0
2 −1 3 −6
−1 1 −2 5

 R2=−2r1+r2−→
R3=r1+r3

 1 1 1 0
0 −3 1 −6
0 2 −1 5


R2=−r2−r3−→

 1 1 1 0
0 1 0 1
0 2 −1 5

 .

Here, we can write the system corresponding to this last matrix and then back substitute
(which is just finishing up like we did in the last subsection) or we can continue to reduce.
If we reduce so that the 2 in row three is a zero, we will have the matrix in what we call
echelon form. If we continue to reduce so that down the main diagonal, there are 1’s and
above and below these 1’s are 0’s, we will have reduced to reduced echelon form. Let’s take
it all the way to reduced echelon form. 1 1 1 0

0 1 0 1
0 2 −1 5

 R1=−r2+r1−→
R3=−2r2+r3

 1 0 1 −1
0 1 0 1
0 0 −1 3


−→

R3=−r3

 1 0 1 −1
0 1 0 1
0 0 1 −3

 R1=−r3+r1−→

 1 0 0 2
0 1 0 1
0 0 1 −3

 .

Notice that the final matrix corresponds to the system x = 2, y = 1, z = −3. That is, the
solution is (2, 1,−3).
There’s some terminology that we skimmed over above. Let’s solidify the definitions.

Definition 1.1. Leading entries in a matrix are the first nonzero entries in a row, when
reading from left to right.

Definition 1.2. Echelon form of a matrix is the obtained when the following three things
are true:

• All leading entries are 1.

• All entries below each leading one is a zero.

• Any row of zeros is below a row that is not all zero.

Definition 1.3. Reduced echelon form of a matrix is obtained when the following three things
are true:

• All leading entries are 1.

• All entries above and below each leading one is a zero.

• Any row of zeros is below a row that is not all zero.
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Notice that the matrix on the left below is in echelon form while the matrix on the right is
in reduced echelon form:

1 3 −2 5
0 1 2 1
0 0 0 1
0 0 0 0




1 0 −8 0
0 1 2 0
0 0 0 1
0 0 0 0

 .

Note also, that these matrices need not represent systems of equations.

Exercises

Don’t forget to do the two exercises in the notes above.

1. Using both methods above, solve the system of equations. Verify your solution by
plotting both equations.
x + y = 2
x − y = 1

.

2. Using both methods above, solve the system of equations. Verify your solution by
plotting both equations.
2x + 3y = −5
2x − 2y = 10

.

3. Plot both equations in the system below. Solve the system of equations. What do you
notice?
2x + 3y = −5
4x + 6y = 10

.

4. Plot both equations in the system below. Solve the system of equations. What do you
notice?
x + 2y = 5
2x + 4y = 10

.

5. Give an example of a system of linear equations with no solution. What must be true
about the graphs of these equations?

6. Give an example of a system of linear equations with infinitely many solutions. What
must be true about the graphs of these equations?

7. Solve the system of equations. Write the solution set.

x − y − z = 4
2x − y + 3z = 2
−x + y − 2z = −1

.

8. Solve the system of equations. Write the solution set.

2x − y − 3z = 1
3x + y − 3z = 4
−2x + y + 2z = −1

.
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9. Solve the system of equations. Write the solution set.

x − 2y − 3z = 2
4x + y − 2z = 8
5x − y − 5z = 10

.

10. Solve the system of equations. Write the solution set.

x − 2y − 3z = 2
4x + y − 2z = 8
5x − y − 5z = 3

.

11. A system of equations is called homogeneous if the right-hand-sides of each equation
is 0. What is always a solution to a homogeneous system of equations?

12. We allowed three operations to be performed in finding the solution to a system of
equations. For each allowed operation, state how you know that performing this oper-
ation does not change the solution to the original system.

13. Use a matrix to solve the system of equations by reducing the matrix to reduced echelon
form, be sure to write the solution set.

x − y − z = 4
2x − y + 3z = 2
−x + y − 2z = −1

.

14. Use a matrix to solve the system of equations by reducing the matrix to reduced echelon
form, be sure to write the solution set.

2x − y − 3z = 1
3x + y − 3z = 4
−2x + y + 2z = −1

.

15. Use a matrix to solve the system of equations by reducing the matrix to reduced echelon
form, be sure to write the solution set.

x − 2y − 3z = 2
4x + y − 2z = 8
5x − y − 5z = 10

.

16. Use a matrix to solve the system of equations by reducing the matrix to reduced echelon
form, be sure to write the solution set.

x − 2y − 3z = 2
4x + y − 2z = 8
5x − y − 5z = 3

.
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2 Matrix operations and Matrix Equations

In case you have never used a matrix, seen a matrix, or played around with them at all, this
section will give the rules and procedures for doing operations on and with matrices. If you
are very familiar with these operations, this section will be mostly review. It happens that
in the mathematical world, when we introduce a new entity, we tend to want to do things
on or with it. In the case of matrices, we’ve seen that we can reduce them, but there is so
much more.
To make the following easier to discuss, we introduce some standard notation. We say
M = (mi,j) and mean that M is a matrix made up of entries where the i, jth entry is mi,j.
That is, in the ith row and jth column is the number mi,j. For example, let

A =

(
1 2 3
5 7 9

)
.

Then, we can say A = (ai,j) and this tells us that a1,1 = 1, a1,2 = 2, a1,3 = 3, a2,1 = 5,
a2,2 = 7, and a2,3 = 9. Note that this notation is mostly a way of speaking about general
results and definitions about matrices.

2.1 Basic Operations on Matrices

When working with matrices it becomes very important to know the dimensions of the matrix
with which we are working. So, here we make this concept clearer. A matrix is an array of
numbers arranged in a rectangular grid. We say that the dimensions of a matrix are m and
n or that the matrix is an m × n matrix if the number of rows (horizontal) is m and the
number of columns (vertical) is n. For example, the matrix

M1 =


1 −2 3
0 4 10
7 7 8
−1 0 0


is 4× 3 matrix, whereas

M2 =

 1 0 7 −1
−2 4 7 0

3 10 8 0


is a 3× 4 matrix.
This example brings up an important operation on matrices.

Definition 2.1. The transpose of a matrix M is to make the columns rows and the rows

columns. If N is the transpose of M , we write N = MT . (Note: The T is a superscript, not
an exponent.)

In the example above, if we take the transpose of M1, we get M2. That is, M2 = MT
1 . But

this means that MT
2 = M1 also. So, the transpose can be undone, by applying the transpose

twice.
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2.1.1 Matrix Addition

Like many mathematical objects, we like to be able to combine them. The first way we ever
learned to combine numbers was using addition. We will now define matrix addition.

Definition 2.2. Given two matrices A = (ai,j) and B = (bi,j). If they have the same
dimension, then we define matrix addition by A+B = (ai,j + bi,j).

That is, we add the matrices component-wise as long as they have components that can
be matched up. Notice that addition is not defined for two matrices that have different
dimensions. For example, let

P =

 1 2
3 4
5 6

 , Q =

 2 5
3 −2
7 −8

 and R =

(
2 0
1 −2

)
.

Then

P +Q =

 1 2
3 4
5 6

+

 2 5
3 −2
7 −8

 =

 1 + 2 2 + 5
3 + 3 4− 2
5 + 7 6− 8

 =

 3 7
6 2
12 −2

 .

But neither P +R nor Q+R are defined.

2.1.2 Matrix Multiplication

Being able to add matrices encourages us to consider multiplication of matrices. There are
several different ways one can multiply with a matrix. In this subsection, we will discuss a
few of these.

Definition 2.3. Given a set of numbers, X, which we will call scalars, we define scalar multiplication
in the following way. Let α ∈ X be a scalar and let A = (ai,j) be a matrix. Then αA = (αai,j).

That is, we multiply each entry in P by the scalar α. For example, using P above, we get

2P = 2

 1 2
3 4
5 6

 =

 2 · 1 2 · 2
2 · 3 2 · 4
2 · 5 2 · 6

 =

 2 4
6 8

10 12

 .

Definition 2.4. Given two m × n matrices A = (ai,j) and B = (bi,j), we define the
generalized dot product by A ·B =

∑m
i=1

∑n
j=1 ai,jbi,j.

Note, this is the same rule as the dot product used when discussing vectors in a physics or
vector Calculus class. For example, using P and Q above, we see that

P ·Q = 1 · 2 + 2 · 5 + 3 · 3 + 4 · (−2) + 5 · 7 + 6 · (−8) = 0.

Definition 2.5. Given an n×m matrix A = (ai,j) and an m×` matrix B = (bi,j), we define
matrix multiply by AB = (ci,j) where ci,j is obtained by finding the dot product between the
ith row of A and the jth column of B.
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Notice that there is no “·” between the matrices, rather they are written in juxtaposition to
indicate a matrix product. Notice also that in order for a matrix product to be defined, the
number of columns of the first matrix must match the number of rows of the second. For
example, using P,Q, and R above, we see that PQ is not defined because both P and Q are
3× 2 matrices. But, PR is defined. Let’s compute it.

PR =

 1 2
3 4
5 6

( 2 0
1 −2

)
=

 1 · 2 + 2 · 1 1 · 0 + 2 · (−2)
3 · 2 + 4 · 1 3 · 0 + 4 · (−2)
5 · 2 + 6 · 1 5 · 0 + 6 · (−2)

 =

 4 −4
10 −8
16 −12

 .

Let’s do another example. Let

P =

(
1 0 2
2 −1 1

)
and Q =

 2 1 −1 0
1 −1 1 1
2 1 1 2

 .

Notice that P is 2 × 3 and Q is 3 × 4. So, we can multiply them and the resulting matrix
will be 2× 4. Indeed,

PQ =

(
1 0 2
2 −1 1

) 2 1 −1 0
1 −1 1 1
2 1 1 2


=

(
1 · 2 + 0 · 1 + 2 · 2 1 · 1 + 0 · (−1) + 2 · 1 1 · (−1) + 0 · 1 + 2 · 1 1 · 0 + 0 · 1 + 2 · 2

2 · 2 + (−1) · 1 + 1 · 2 2 · 1 + (−1) · (−1) + 1 · 1 2 · (−1) + (−1) · 1 + 1 · 1 2 · 0 + (−1) · 1 + 1 · 2

)
=

(
6 3 1 4
5 4 −2 1

)
.

Notice that in neither case above, is the product QP defined. It turns out that matrix
multiply is not commutative.

2.2 Matrix Equations and more

Now that we know about matrix multiply, we can consider a system of equations again using
matrices. First, let us define what it means for two matrices to be equal.

Definition 2.6. Given two matrices A = (ai,j) and B = (bi,j), we say that A = B if
and only if A and B have the same dimensions and ai,j = bi,j for every pair i, j. That is,
corresponding components of A and B are equal.

Now, let us consider the system of linear equations from before:

x + y + z = 0
2x − y + 3z = −6
−x + y − 2z = 5

.

This system equations relates to the matrix equality given by x+ y + z
2x− y + 3z
−x+ y − 2z

 =

 0
−6

5

 .
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(Notice that each side of this equation is a 3× 1 matrix.) Using what we know from matrix
multiply, we can rewrite the left-hand-side as a matrix multiply. Doing this gives us 1 1 1

2 −1 3
−1 1 −2

 x
y
z

 =

 0
−6

5

 .

If we let

A =

 1 1 1
2 −1 3
−1 1 −2

 , X =

 x
y
z

 , and b =

 0
−6

5

 ,

then this equation is just
AX = b.

This looks like a simple equation from an algebra class. From here we will discuss how we
can solve this system of equations by “undoing the matrix multiply on the left side.” Note:
we have not defined matrix division because it doesn’t exist. But, consider what division of
real numbers really means. Let’s look at a simple example. Consider

2x = 4.

To solve this equation, we divide both sides by 2 and get x = 2. If we don’t allow division
and only allow multiplication, we would just multiply both sides by 1

2
instead and we get

the same answer x = 2. So the availability of this multiplicative inverse allows us to remove
the 2 from the left side of the equation. We want the same option with matrix equations.
Notice that if we multiply a real number by it’s multiplicative inverse (which exists as long
as the number is not 0), then we get the multiplicative identity, 1: a · 1

a
= 1

a
·a = 1. We want

to be able to do the same with matrices when possible. First, we define the multiplicative
identity matrix.

Definition 2.7. We define the n×n identity matrix, In×n, as the square matrix with leading
1’s in every row that is in reduced echelon form.

Examples are for n = 1: (1), for n = 2, 3, and 4 are (respectively)

I2×2 =

(
1 0
0 1

)
, I3×3 =

 1 0 0
0 1 0
0 0 1

 , and I4×4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

It is important to recognize why this is called the identity matrix. We know that 1 is the
multiplicative identity for the real numbers because a · 1 = 1 · a = a for any real number a.
I claim that In×n is the multiplicative identity in the sense that In×nA = AIn×n = A for any
n× n matrix A. Our goal is to find the multiplicative inverse (or simply called, the inverse)
of a matrix when it exists. Let us now define what we want.

Definition 2.8. Let A be an n× n matrix, we say B is the inverse of A if and only if B is
an n× n matrix so that

AB = BA = In×n.

If B satisfies this definition, then we say that A is invertible and we write

B = A−1.
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(Note that the −1 is a superscript not an exponent.)
Let’s now spend some time exploring how we compute (or find) the inverse. Suppose we
have a matrix

B =

 | | |
b1 b2 . . . bn
| | |


with columns b1, b2, ..., bn. Suppose also that B is the inverse of A. Then since AB = In×n,
we know that Ab1 = e1, where e1 is the first column of In×n, Ab2 = e2, where e2 is the second
column of In×n, and so on. So all we need to do is solve the n matrix equations:

Ab1 =e1

Ab2 =e2

...

Abn =en.

Let’s look at an example to see how this can be done. We’ll start with a simple example.
Let

A =

(
1 2
2 3

)
.

We want to find A−1. That is, we want to find the matrix

B =

 | |
b1 b2

| |


so that AB = I2×2. We find it one column at a time by solving the equations(

1 2
2 3

)(
b1,1

b2,1

)
=

(
1
0

)
(

1 2
2 3

)(
b1,2

b2,2

)
=

(
0
1

)
.

Notice that the first equation is the same as solving the system of equations

x + 2y = 1
2x + 3y = 0

.

And the second equation is the same as solving the system of equations

x + 2y = 0
2x + 3y = 1

.

We can solve these by using matrix reduction on the two augmented matrices(
1 2 1
2 3 0

)
.

and (
1 2 0
2 3 1

)
.
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Before we begin, recall that in choosing steps in our matrix reduction, we only consider the
entries on the left side of the augment line. This means the same steps will be taken in both
matrix reductions. So, we can do both at the same time by performing a matrix reduction
on the augmented matrix (

1 2 1 0
2 3 0 1

)
.

Now, we will begin(
1 2 1 0
2 3 0 1

)
R2=−2r1+r2−→

(
1 2 1 0
0 −1 −2 1

)
R1=2r2+r1−→
R2=−r2

(
1 0 −3 2
0 1 2 −1

)
.

Now, we interpret the results. This says that

A

(
−3

2

)
=

(
1
0

)
and A

(
2
−1

)
=

(
0
1

)
.

That is, (
1 2
2 3

)(
−3 2

2 −1

)
=

(
1 0
0 1

)
.

Which means that it is very likely that

A−1 =

(
−3 2

2 −1

)
.

We need only multiply in the reverse order to check that we have indeed found the inverse:(
−3 2

2 −1

)(
1 2
2 3

)
=

(
1 0
0 1

)
.

Thus A−1 =

(
−3 2

2 −1

)
. It turns out that if you do this many times, you will notice that

there’s an easy pattern for finding the inverse of invertible 2×2 matrices (see exercises), but
this does not translate to invertible n×n matrices in general. Let’s use this method to solve
the system we considered at the beginning of this subsection

x + y + z = 0
2x − y + 3z = −6
−x + y − 2z = 5

.

That is, we will solve the matrix equation 1 1 1
2 −1 3
−1 1 −2

 x
y
z

 =

 0
−6

5


by, first, finding the inverse of

A =

 1 1 1
2 −1 3
−1 1 −2

 .
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Following the same procedure, we augment A with I3×4 and reduce. 1 1 1 1 0 0
2 −1 3 0 1 0
−1 1 −2 0 0 1

 R2=−2r1+r2−→
R3=r1+r3

 1 1 1 1 0 0
0 −3 1 −2 1 0
0 2 −1 1 0 1


R2=−r3−r2−→

 1 1 1 1 0 0
0 1 0 1 −1 −1
0 2 −1 1 0 1

 R1=−r2+r1−→
R3=−2r2+r3

 1 0 1 0 1 1
0 1 0 1 −1 −1
0 0 −1 −1 2 3


R1=r3+r1−→
R3=−r3

 1 0 0 −1 3 4
0 1 0 1 −1 −1
0 0 1 1 −2 −3

 .

Thus,

A−1 =

 −1 3 4
1 −1 −1
1 −2 −3

 .

We then use this to solve AX = b by multiplying both sides of this equation on the left by
A−1. In doing this we get the following string of equations:

AX = b⇒ A−1AX = A−1b⇒ IX = A−1b⇒ X = A−1b.

(Here for simplicity, I used I for I3×3.) So, we can find our solution by multiplying our vector
on the right-hand-side by A−1. That is, x

y
z

 =

 −1 3 4
1 −1 −1
1 −2 −3

 0
−6

5

 =

 2
1
−3

 .

This is the solution we found the last two times we solved this same system, so that feels
pretty good. In the exercises, you will explore this further.

2.3 Determinants

In this section, we discuss how to calculate a determinant of a matrix and discuss some
information that we can obtain by finding the determinant. First, note that this section
is not a comprehensive discussion of the determinant of a matrix. There are geometric
interpretations that we will not discuss here.
This section will present the computation and then help you put together why we would
ever consider finding the determinant. At first, this computation seems lengthy and maybe
even more work than its worth. But, if you hold on until the end, you will see that the
determinant is a very useful tool. As a hint, we will use this tool to help us decide the
outcome when solving systems of equations or when solving matrix equations. We know the
solutions to easy matrix equations such as 1 0 0

0 1 0
0 0 1

 x
y
z

 =

 a
b
c


or 0 0 0

0 0 0
0 0 0

 x
y
z

 =

 a
b
c

 .
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But there are so many scenarios in between for which we would like to know a hint about
the solution before we begin the journey through matrix reduction (especially if we have to
do these by hand and if they are big). With that, we begin by discussing the properties that
we want the determinant of a matrix to have. These properties are all related to matrix
reduction steps.
Let α be a scalar. We want the determinant of an n× n matrix, A, to satisfy the following
properties

• det(αA) = αn det(A).

• det(AT ) = det(A).

• If B is obtained by performing the row operation, Rk = αrj + rk on A, then det(B) =
det(A).

• If B is obtained by performing the row operation, Rk = αrk on A, then det(B) =
α det(A).

• If B is obtained by performing the row operation, Rk = rj and Rj = rk on A, then
det(B) = −1 · det(A).

• If A is in echelon form, then det(A) is the product of the diagonal elements.

We can use these properties to find the determinant of a matrix by keeping track of the
determinant as we perform row operations on the matrix. Let us try an example. We will
find the determinant of

A =

 1 1 1
2 −1 3
−1 1 −2

 .

Our goal is to reduce A to echelon form all the while keeping track of how the determinant
changes. 1 1 1

2 −1 3
−1 1 −2

 R2=−2r1+r2−→
R3=r1+r3

 1 1 1
0 −3 1
0 2 −1

 R2=r2+r3−→

 1 1 1
0 −1 0
0 2 −1


det(A) det(A) det(A)

R2=−r2−→
R3=2r2+r3

 1 1 1
0 1 0
0 0 −1

 −→
R3=−r3

 1 1 1
0 1 0
0 0 1


− det(A) det(A)

.

Now to use the last property above, we see that

det

 1 1 1
0 1 0
0 0 1

 = 1.

Thus, det(A) = 1.
We will try one more example before giving another method for finding the determinant.
We will find the determinant of

A =

 2 2 2
1 0 1
−2 2 −4

 .
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Again, we will reduce A to echelon form all the while keeping track of how the determinant
changes. 2 2 2

1 0 1
−2 2 −4

 R1= 1
2
r1−→

 1 1 1
1 0 1
−2 2 −4

 R2=−r1+r2−→
R3=2r1+r3

 1 1 1
0 −1 0
0 4 −2


det(A) 1

2
det(A) 1

2
det(A)

R2=−r2−→
R3=4r2+r3

 1 1 1
0 1 0
0 0 −2

 −→
R3=− 1

2
r3

 1 1 1
0 1 0
0 0 1


−1

2
det(A) 1

4
detA

.

Now to use the last property above, we see that

det

 1 1 1
0 1 0
0 0 1

 = 1.

Thus, 1
4

det(A) = 1 and thus, det(A) = 4.
Clearly, there has to be another method because, well, I said that we would want to know
the determinant before going through all of those steps. Another method for finding the
determinant of a matrix is the method called cofactor expansion. First, if the matrix M is
2× 2, it is much easier to compute the determinant. Here’s the formula: Let

M =

(
a b
c d

)
then the determinant is detM = ad − bc. (This can be shown using the above steps, see
exercise below.) Note: detM is also written as |M | and from here on, we will use this
notation because it is simpler.
If M is a bigger matrix, then there’s more to do here. Here, we write out the formula given
by this method.
Let A = (ai,j) be an n× n matrix and choose any j so that 1 ≤ j ≤ n, then

|A| =
n∑
i=1

(−1)i+jai,j|Mi,j|,

where Mi,j is the sub-matrix of A where the ith row and jth column has been removed. We
can also expand about a column so that we choose an i so that 1 ≤ i ≤ n, then

|A| =
n∑
i=j

(−1)i+jai,j|Mi,j|,

Notice that if n is large, this process is iterative until the sub-matrices are 2 × 2. Here are
couple examples showing what this formula looks like.

Example 2.1. First, we consider an example when n = 3. Let A =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

,

then

|A| = a1,1

∣∣∣∣ a2,2 a2,3

a3,2 a3,3

∣∣∣∣− a1,2

∣∣∣∣ a2,1 a2,3

a3,1 a3,3

∣∣∣∣+ a1,3

∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣ .
From there, you just use the formula for the determinant of a 2× 2 to finish this.
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Example 2.2. In the previous example, we expanded about the first row. Here, we con-
sider another example when n = 3, but now expand about the second column. Let A = a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

, then

|A| = −a1,2

∣∣∣∣ a2,1 a2,3

a3,1 a3,3

∣∣∣∣+ a2,2

∣∣∣∣ a1,1 a1,3

a3,1 a3,3

∣∣∣∣− a3,2

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣ .
Again, you finish this by employing the formula for the determinant of 2× 2 matrices.

Example 2.3. Let A =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

, then

|A| =a1,1

∣∣∣∣∣∣
a2,2 a2,3 a2,4

a3,2 a3,3 a3,4

a4,2 a4,3 a4,4

∣∣∣∣∣∣− a1,2

∣∣∣∣∣∣
a2,1 a2,3 a2,4

a3,1 a3,3 a3,4

a4,1 a4,3 a4,4

∣∣∣∣∣∣
+ a1,3

∣∣∣∣∣∣
a2,1 a2,2 a2,4

a3,1 a3,2 a3,4

a4,1 a4,2 a4,4

∣∣∣∣∣∣− a1,4

∣∣∣∣∣∣
a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3

∣∣∣∣∣∣ .
From here, you need to employ a formula for the determinant of 3×3 matrices (as in Example
1 or 2 above).
Now, we shall apply this technique to the matrix:

A =

 2 2 2
1 0 1
−2 2 −4

 .

We will expand about the second column (because there is a 0, it’ll be less to keep track of).

|A| = −2

∣∣∣∣ 1 1
−2 −4

∣∣∣∣+ 0

∣∣∣∣ 2 2
−2 −4

∣∣∣∣− 2

∣∣∣∣ 2 2
1 1

∣∣∣∣ = −2(−4− (−2)) + 0− 2(2− 2) = 4.

Exercises

1. For each of the exercises below, use the matrices

P =

 1 1 1 0
2 1 3 −1
2 2 0 0

 , Q =


1 1 0
1 −1 2
1 2 0
3 0 0
2 2 2
1 0 −1

 , R =

 0 2 3 4
1 −1 −3 −1
−1 −2 0 1

 ,

and S =

 0 0 −1 0 2 1
−3 −1 −2 1 2 0

2 −1 0 1 2 −1
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(a) Compute P +Q, R + P , P + R, and Q+ S. If the addition is not defined, state
how you know.

(b) Compute P · Q, Q · R, and Q · S. If the generalized dot product is not defined,
state how you know.

(c) Compute 3P , 2Q, and 3S. If the scalar product is not defined, state how you
know.

(d) Compute PQ, QP , QS, QR, RS and PR. If the matrix product is not defined,
state how you know.

(e) Compute P T , QT , and RP T .

2. Multiply I2×2 by a general 2×2 matrix, A = (ai,j) to verify I2×2 is truly a multiplicative
identity.

3. Multiply I3×3 by a general 3×3 matrix, A = (ai,j) to verify I3×3 is truly a multiplicative
identity.

4. Use the method of this section to find the inverse of

A =

(
a b
c d

)
.

5. Based on what you notice happens when multiplying by In×n (from exercises 1 and 2),
give a word justification that In×n is indeed a multiplicative identity.

6. Rewrite the system of equations as a matrix equation. Find the inverse of the 3 × 3
matrix on the left side (if possible). If the inverse exists, use the inverse to find the
solution to the system. If not, state how you know. How many solutions does this
system have? (This system is the same as was given in a previous exercise set.)

x − y − z = 4
2x − y + 3z = 2
−x + y − 2z = −1

.

7. Rewrite the system of equations as a matrix equation. Find the inverse of the 3 × 3
matrix on the left side (if possible). If the inverse exists, use the inverse to find the
solution to the system. If not, state how you know. How many solutions does this
system have? (This system is the same as was given in a previous exercise set.)

2x − y − 3z = 1
3x + y − 3z = 4
−2x + y + 2z = −1

.

8. Rewrite the system of equations as a matrix equation. Find the inverse of the 3 × 3
matrix on the left side (if possible). If the inverse exists, use the inverse to find the
solution to the system. If not, state how you know. How many solutions does this
system have? (This system is the same as was given in a previous exercise set.)

x − 2y − 3z = 2
4x + y − 2z = 8
5x − y − 5z = 10

.
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9. Rewrite the system of equations as a matrix equation. Find the inverse of the 3 × 3
matrix on the left side (if possible). If the inverse exists, use the inverse to find the
solution to the system. If not, state how you know. How many solutions does this
system have? (This system is the same as was given in a previous exercise set.)

x − 2y − 3z = 2
4x + y − 2z = 8
5x − y − 5z = 3

.

10. Recall that a system of equations is called homogeneous if the right-hand-sides of each
equation is 0. How many solutions does a homogeneous system have if the coefficient
matrix is not invertible?

11. What can you say about the number of solutions to a system of equations if the inverse
of the coefficient matrix exists? What if it does not exist?

12. Use the properties of determinant to verify the formula for the determinant of a 2× 2
matrix. That is, reduce (

a b
c d

)
keeping track of what happens to the determinant.
For the next six exercises, use any of the above methods (it’s good to try multiple
methods to make an informed decision here) to find the following determinants.

13.

∣∣∣∣ 1 3
0 1

∣∣∣∣
14.

∣∣∣∣ 2 −3
1 1

∣∣∣∣
15. The determinant of the corresponding coefficient matrices from exercise 6 above.

16. The determinant of the corresponding coefficient matrices from exercise 7 above.

17. The determinant of the corresponding coefficient matrices from exercise 8 above.

18. The determinant of the corresponding coefficient matrices from exercise 9 above.

19. Using the previous 4 exercises, state what you notice about the determinant compared
to whether or not the matrix is invertible.

20. The invertible matrix theorem is an important theorem. Fill in the blanks or circle the
correct answer below to complete the statement of the theorem.

(a) AX = b has a unique solution if
(Choose one: A is invertible or A is not invertible).

(b) A is invertible if and only if detA .

(c) AX = b has a unique solution if detA .
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3 Radiograpy and Tomography in Linear Algebra Lab

#1

This lab will be discussed in class. We will introduce the application with a visual describing
our overall goal for this application. For this lab, you will need a computer with Matlab or
Octave on it. An alternative option for this lab, but not all labs in this class would be to
use Octave-online.

Instructions for using octave-online.net

1. Open octave-online.net in a web browser. Close (or read and close) the introduction
splash window.

2. Optional: Click the three bars in the upper right of the screen and sign in. This will
be necessary if you complete the next Lab using this service.

3. The rightmost window is the command prompt terminal. You will type your commands
here. You also have the option of creating your own scripts and functions to save and
run.

4. Now you are ready to complete the assignment!

3.1 Grayscale Images

A grayscale image can be associated with a set of numbers representing the brightness of
each pixel.
For example, the 2 × 2 pixel image below can be associated with the corresponding array
of numbers, where the black squares represent pixels with intensity 0 and the white squares
represent pixels with intensity 16:

0

~

16 8

16

Note that this interpretation gives us a way to think about multiplying an image by a
constant and adding two images. For example, suppose we start with the three images (A,
B, and C) below.
Then multiplying Image A by 0.5 results in Image 1 below. Note that the maximum intensity
is now half what it previously was, so the all pixels have become darker gray (representing
their lower intensity). Adding Image 1 to Image C results in Image 2 below; so Image 2 is
created by doing arithmetic on Images A and C.

Exercise 1: Write Image 3 and Image 4 using arithmetic operations of Images A, B, and
C.
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Image A Image B Image C

Image 1 Image 2

Image 3 Image 4

Images in Matlab

We’ll now see how to input matrices, convert them into grayscale images, and display them
in Matlab (or Octave). If you do not have access to Matlab or Octave through academic
or personal computing resources then you may complete this Lab using the online service
octave-online.net (instructions at the end of this writeup).

Exercise 2 Input these lines into the command window of Matlab. Note that ending a line
with a semicolon suppresses the output. If you want to show the result of a computation,
delete the semicolon at the end of its line. Briefly describe what the output of each of these
lines of code gives you. Note: In order to display an image, we have to know the minimum
and maximum pixel intensities. The imshow function allows the user to specify these values.

M_A = [0 0 8 8; 0 0 8 8; 8 8 0 0; 8 8 0 0];

M_B = [0 8 0 8; 8 0 8 0; 0 8 0 8; 8 0 8 0];

M_C = [8 0 0 8; 0 8 8 0; 0 8 8 0; 8 0 0 8];

figure;

subplot(1,3,1), imshow(M_A, [0, 16]),title(’Image A’);

subplot(1,3,2), imshow(M_B, [0, 16]),title(’Image B’);

subplot(1,3,3), imshow(M_C, [0, 16]),title(’Image C’);
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Exercise 3: Enter the following lines of code one at a time and state what each one does.

M_A

M_1 = .5*M_A

M_2 = M_1 + M_C

figure;

subplot(1,2,1), imshow(M_1, [0, 16]), title(’Image 1’);

subplot(1,2,2), imshow(M_2, [0, 16]), title(’Image 2’);

Exercise 4 Now write your own lines of code to check your conjectures to get Images 3
and 4. How close are these to Images 3 and 4? Be sure to print out your code and submit
it with this lab.

Food For Thought Be prepared to discuss these in class:

1. What happens when pixel intensities in an image exceed the display range as input
into the imshow function?

2. How should we interpret pixel intensities that lie outside our specified range?

3. What algebraic properties does the set of all images have in common with the set of
real numbers?

4 Vector Spaces

In Lab 1, we noticed that if you add two images, you get a new image. We also saw that if
you multiply an image by a scalar, you get a new image. Let’s recall the discussion in class.
We saw in Lab 1 that (rectangular pixelated) images can be represented as a rectangular
array of values or equivalently as a rectangular array of grayscale patches. This is a very
natural idea especially since the advent of digital photography. It is tempting to consider an
image (or image data) as a matrix – after all, it certainly looks like one. In our discussion,
we defined an image in the following way.

Definition 4.1. An image is a finite ordered list of real values with an associated geometric
array description.

Three examples of arrays along with an index system specifying the order of patches can be
seen in Figure 1. Each patch would also have a numerical value indicating the brightness
of the patch (not shown). The first is a regular pixel array commonly used for digital
photography. The second is a hexagon pattern which also nicely tiles a plane. The third is
a square pixel set with enhanced resolution toward the center of the field of interest. The
key point here is that only the first example can be written as a matrix, but all satisfy the
definition of image.
In recognizing the definition of an image, we were able to define the operations of scalar mul-
tiplication and image addition in a way that was similar to the same operations on matrices.
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Figure 1: Examples of image arrays. Numbers indicate example pixel ordering.

Definition 4.2. Given two images x and y with (ordered) intensity values (x1, x2, · · · , xn)
and (y1, y2, · · · , yn), respectively, the image sum, written z = x+y is the image with intensity
values zi = xi + yi for all i ∈ {1, 2, · · · , n}. Another way to say this is that the sum of two
images is the image that results by pixel-wise addition, that is, the sum of two images is the
image that results by adding corresponding values of the ordered list.

Definition 4.3. Given scalar a and image x with (ordered) intensity values (x1, x2, · · · , xn),
the scalar product of an image, written z = ax is the image with intensity values zi = axi
for all i ∈ {1, 2, · · · , n}. Another way to say this is that a scalar times an image is the image
that results by pixel-wise scalar multiplication. That is, a scalar times an image is the image
which results from multiplication of each of the intensity values (or values in the ordered list)
by that scalar.

We found that these operations had a place in a real-life example and when applying these
operations it is very important that our result is still an image in the same configuration. It
turns out that these operations are important enough that we give a name to sets that have
these operations with some pretty standard properties.

4.1 Vectors and Vector Spaces

The word vector may be familiar for many students who have taken Vector Calculus and/or
Physics. In these courses, there is a very specific type of vector used, vectors in Rm. That is,
the word vector may bring to mind something that looks like 〈a, b〉, 〈a, b, c〉, or 〈a1, a2, . . . , an〉.
Maybe you’ve even seen things like any of the following

(a, b), (a, b, c), (a1, a2, . . . , an),

 a
b
c

 ,

 a
b
c

 ,


a1

a2
...
an

 ,


a1

a2
...
an


called vectors. In this subsection, we define the type of set we want to consider when talking
about linear algebra concepts. Then, we discuss the elements, called vectors, of these sets.

Definition 4.4. A set V with a set of scalars and operations vector addition + and scalar
multiplication · is called a vector space if the following ten properties hold. Elements of V
are called vectors. Let u, v, w ∈ V be vectors and α, β be scalars.
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1. V is closed under addition +: u+ v ∈ V . (Adding two vectors gives a vector.)

2. V is closed under scalar multiplication ·: α · v ∈ V . (Multiplying a vector by a scalar
gives a vector.)

3. Addition is commutative: u+ v = v + u.

4. Addition is associative: (u+ v) + w = u+ (v + w).

5. Scalar multiplication is associative: α · (β · v) = (αβ) · v.

6. Scalar multiplication distributes over vector addition: α · (u+ v) = α · u+ α · v.

7. Scalar multiplication distributes over scalar addition: (α + β) · v = α · v + β · v.

8. V contains the additive identity or the 0 vector, where 0 + v = v + 0 = v.

9. V has additive inverses −v: v + (−v) = 0.

10. The scalar set has an identity element 1 for scalar multiplication: 1 · v = v for all
v ∈ V .

It is important to note that the identity element for scalar multiplication need not be the
number 1 and the zero vector need not be (and in general is not) the number 0.
Notice also that elements of a vector space are called vectors. These need not look like the
vectors presented above.
We now present some examples of vector spaces and their corresponding vectors.

Example 4.1. R, the set of real numbers is a vector space with scalars taken from the set of
real numbers. By definition of addition + between real numbers and multiplication · between
real numbers, they have all the properties above. So, there is nothing to show.
Here the vectors in this space are real numbers such as 0, 1,

√
2, π, 10

17
, 100, and many more.

Example 4.2. Rn, the set of points or vectors in n-dimensional space, is a vector space with
scalars taken from the set of real numbers. Here, we recognize that addition of two vectors
in Rn is computed component-wise. We will show that R2 is a vector space and recognize

how the same proofs generalize. Let

(
u1

u2

)
,

(
v1

v2

)
,

(
w1

w2

)
∈ R2 be vectors and α, β be

scalars.

• V is closed under addition +:(
u1

u2

)
+

(
v1

v2

)
=

(
u1 + v1

u2 + v2

)
∈ R2.

• V is closed under scalar multiplication ·:

α ·
(
v1

v2

)
=

(
αv1

αv2

)
∈ R2.
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• Addition is commutative:(
u1

u2

)
+

(
v1

v2

)
=

(
u1 + v1

u2 + v2

)
=

(
v1 + u1

v2 + u2

)
=

(
v1

v2

)
+

(
u1

u2

)
• Addition is associative:((

u1

u2

)
+

(
v1

v2

))
+

(
w1

w2

)
=

(
u1 + v1

u2 + v2

)
+

(
w1

w2

)
=

(
(u1 + v1) + w1

(u2 + v2) + w2

)
=

(
u1 + (v1 + w1)
u2 + (v2 + w2)

)
=

(
u1

u2

)
+

(
v1 + w1

v2 + w2

)
=

(
u1

u2

)
+

((
v1

v2

)
+

(
w1

w2

))
.

• Scalar multiplication is associative:

α ·
(
β ·
(
v1

v2

))
= α

(
βv1

βv2

)
=

(
α(βv1)
α(βv2)

)
=

(
(αβ)v1

(αβ)v2

)
= (αβ) ·

(
v1

v2

)
.

• Scalar multiplication distributes over vector addition:

α ·
((

u1

u2

)
+

(
v1

v2

))
= α

(
u1 + v1

u2 + v2

)
=

(
α(u1 + v1)
α(u2 + v2)

)
=

(
αu1 + αv1

αu2 + αv2

)
=

(
αu1

αu2

)
+

(
αv1

αv2

)
= α ·

(
u1

u2

)
+ α ·

(
v1

v2

)
.

• Scalar multiplication distributes over scalar addition:

(α + β) ·
(
v1

v2

)
=

(
(α + β)v1

(α + β)v2

)
=

(
αv1 + βv1

αv2 + βv2

)
=

(
αv1

αv2

)
+

(
βv1

βv2

)
= α ·

(
v1

v2

)
+ β ·

(
v1

v2

)
.

29



• V contains the 0 vector, where(
0
0

)
+

(
v1

v2

)
=

(
0 + v1

0 + v2

)
=

(
v1 + 0
v2 + 0

)
=

(
v1

v2

)
+

(
0
0

)
=

(
v1

v2

)
.

• V has additive inverses −v:(
v1

v2

)
+

(
−v1

−v2

)
=

(
v1 + (−v1)
v2 + (−v2)

)
=

(
0
0

)
.

• The scalar set has an identity element 1 for scalar multiplication:

1 ·
(
v1

v2

)
=

(
1(v1)
1(v2)

)
=

(
v1

v2

)
.

Here the vectors are just like the vectors we knew before Linear Algebra. Examples are(
1
0

)
,

(
1
2

)
,

(
π√
2

)
,

and many more.

Example 4.3. Notice that the set of images with a specified geometric arrangement is a
vector space with scalars taken from R. That is, if we consider the set

V = {Ia| I is of the form below and a1, a2, . . . a14 ∈ R} .

Ia =
a2

a1

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

We know this is a vector space since, by definition of addition and scalar multiplication on
images, we see that both closure properties hold. Notice that there is a corresponding real
number to each pixel (or voxel). Because addition and scalar multiplication are taken pixel-
wise (or voxel-wise), we can see that these 10 properties hold within each pixel (or voxel).
So, we know all 10 properties hold (just like they did in the last example).

It turns out that given any geometric configuration our definitions of image and operations
on images guarantee that the space of images with the chosen configuration is a vector space.
The vectors are then images.
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Example 4.4. We can consider now the set of solutions to a system of equations. That is,
consider

V =


 x

y
z

 ∈ R3

∣∣∣∣∣∣ x+ y + z = 0, 2x− y + 3z = −6, and − x+ y − 2z = 5

 .

We solved the system of equations

x + y + z = 0
2x − y + 3z = −6
−x + y − 2z = 5

several times above. We know the solution is (2, 1,−3). Thus, the set V =


 2

1
−3

.

Notice that V is not a vector space because it is not closed under scalar multiplication (nor

is it closed under addition). Indeed,

 2
1
−3

 is the only element of V and so no scalar

multiple of this vector is in V .

What is important about the last example is that all we need to show, in order to show a
set is not a vector space, is that one of the 10 properties fails.

Example 4.5. Let F = {f : R → R}, the set of all functions whose domain is R and
whose range is a subset of R. F is a vector space with scalars taken from R. We can define
addition and scalar multiplication in the standard way. That is, f + g is the function so that
(f+g)(x) = f(x)+g(x) (adding point-wise) and αf is the function so that (αf)(x) = α·(f(x))
(multiplying point-wise). Let f, g, h ∈ F and α, β ∈ R. Then:

• f : R→ R and g : R→ R. Based on the definition of addition, f + g : R→ R. So F
is closed over addition.

• Similarly, F is closed under scalar multiplication.

• Addition is commutative:

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

So, f + g = g + f.

• Addition is associative:

((f + g) + h)(x) =(f + g)(x) + h(x) = (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x))

=f(x) + (g + h)(x) = (f + (g + h))(x).

So (f + g) + h = f + (g + h).

• Scalar multiplication is associative:

(α · (β · f))(x) = (α · (βf(x))) = (αβ)f(x) = ((αβ) · f)(x).

So α · (β · f) = (αβ) · f .
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• Scalar multiplication distributes over vector addition:

(α · (f + g))(x) = α · (f + g)(x) = α · (f(x) + g(x))

= α · f(x) + α · g(x) = (α · f + α · g)(x).

So α(f + g) = αf + αg.

• Scalar multiplication distributes over scalar addition:

((α + β) · f)(x) = (α + β) · f(x) = α · f(x) + β · f(x)

= (α · f + β · f)(x).

So, (α + β) · f = α · f + β · f .

• F contains the constant function defined by z(x) = 0 for every x ∈ R. And,

(z + f)(x) = z(x) + f(x) = 0 + f(x) = f(x) = f(x) + 0 = f(x) + z(x) = (f + z)(x).

That is, z + f = f + z = f . So, the 0 vector is in F .

• F has additive inverses −f defined to as (−f)(x) = −f(x) and (f + (−f))(x) =
f(x) + (−f(x)) = 0 = z(x), where z is defined in part 4.5. So, f + (−f) = z.

• The real number 1 satisfies: (1 · f)(x) = 1 · f(x) = f(x). So, 1 · f = f .

Here, the vectors are functions.

4.2 Subspaces

Many times, we work in subsets of vector spaces. Because many of the ten properties don’t
go away when we look inside a set contained in a larger set, we need not reprove these
properties. In this section we discuss subspaces.

Definition 4.5. Let V be a vector space. If W ⊆ V (a subset of V ), then we say that W is
a subspace of V if it satisfies the following two properties.

1. 0 ∈ W (We don’t allow W to be empty and so we require that it contains the 0 vector.)

2. Let u, v ∈ W and α, β be scalars. Then αu+ βv ∈ W .

The last property is called the closure property under linear combinations.
It makes sense to define linear combinations now.

Definition 4.6. A linear combination of vectors v1, v2, . . . , vn is

α1v1 + α2v2 + . . .+ αnvn

for some scalars α1, α2, ...αn.
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Notice that if W is a subspace of V , then W is a vector space as well. The commutative,
associative, and distributive properties still hold because our scalars are the same and ele-
ments of W come from the set V so since these properties hold in V , they hold in W . We
say that these properties are inherited from V since V is like a parent set to W . The scalar 1
still exists in the scalar set also. This means that we need only show closure under addition
and scalar multiplication and that W contains 0. We force W to contain 0. Closure under
addition and scalar multiplication hold by choosing appropriate scalars (exercise).
Let’s look at some examples.

Example 4.6. Consider the set of images

V = {I| I is of the form below and a, b, c ∈ R}.

+2b

a

2a

a
+b

I =

a
−c

b

−b
a

a

c
−a

b

c
+b

b
+2c

2a
+2b
+2c

c

a

We can show that V is a subspace of images with the same geometric configuration. We
showed above that the set of these images is a vector space, so we need only show the two
subspace properties.
First, notice that the 0 image is the image with a = b = c = 0 and this image is in V . Now,
we need to show that linear combinations are still in the set V . Let α, β ∈ R, be scalars and
let I1, I2 ∈ V , then there are real numbers a1, b1, c1, a2, b2, and c2 so that

a1

I1 =

a1

2a1

b1

c1

b1

a1

+b1

a1

−b1
a1

−a1

+b1

+2c1

b1

2a1
+2b1
+2c1

+2b1

−c1
a1

c1

c1

+2c2

a2

2a2

I2 = a2
+b2

a2
−c2

b2

−b2
a2

a2
+2b2

c2

b2

a2

c2
−a2

c2
+b2

b2
+2c2

2a2
+2b2

Notice that αI1 + βI2 is also in V since
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αc1 + βc2

αI1 + βI2 =

2αa1 + 2βa2
+β(c2 − a2)

α(c1 − a1)

αa1 + βa2αa1 + βa2

+β(a2 − b2)

α(a1 − b1)
+β(c2 + b2)

α(c1 + b1)

αb1 + βb2+β(a2 + b2)

α(a1 + b1)

+β(a2 − c2)

α(a1 − c1)

αb1 + βb2 +β(b2 + 2c2)

α(b1 + 2c1)

+2b2 + 2c2)
+β(2a2
+2b1 + 2c1)
α(2a1

+β(a2 + 2b2)

α(a1 + 2b1)

Notice that performing the operations inside each pixel shows that we can write αI1 + βI2 in
the same form as I above. That is, αI1 + βI2 ∈ V . Thus V is a subspace of images that are
laid out in the geometric form above. Notice, this means that V is in itself a vector space.

Example 4.7. Let V = {ax2 + bx+ c| a+ b = 2, a+ b+ c = 0}. Notice that this is a subset
of P2. But, notice also that the 0 vector of P2 is not in V . We can see this because the 0
vector of P2 is 0x2 + 0x+ 0 and this is not in the set V because 0 + 0 6= 2.

Exercises

1. Let M2×3 =

{(
a b c
d e f

)
| a, b, c, d, e, f ∈ R

}
. Show that M2×3 is a vector space

when addition and scalar multiplication are defined as in Subsection 2 and scalars are
taken from R.

2. Let P2 = {ax2 + bx + c| a, b, c ∈ R}. Show that P2 is a vector space with scalars
taken from R and addition and scalar multiplication defined in the standard way for
polynomials.

3. Determine whether or not

V =


 x

y
z

 ∈ R3

∣∣∣∣∣∣ x+ y + z = 1, 2x+ 2y + 2z = 2, and − x− y − z = −1

 .

is a vector space. Prove your answer.

4. Determine whether or not

V =


 x

y
z

 ∈ R3

∣∣∣∣∣∣ x+ y + z = 0, 2x+ 2y + 2z = 0, and − x− y − z = 0

 .

is a vector space. Prove your answer.

5. Make a claim about what types of systems of equations have a solution set that is a
vector space.
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6. Show that since a subspace, W is closed under linear combinations it is also closed under
addition and closed under scalar multiplication, by choosing appropriate scalars.

7. Which of these subsets are subspaces ofM2×2? For each that is not, show the condition
that fails.

(a)

{(
a 0
0 b

)∣∣∣∣ a, b ∈ R
}

(b)

{(
a 0
0 b

)∣∣∣∣ a+ b = 0

}
(c)

{(
a 0
0 b

)∣∣∣∣ a+ b = 5

}
(d)

{(
a c
0 b

)∣∣∣∣ a+ b = 0, c ∈ R
}

8. Is this a subspace of P2?

{a0 + a1x+ a2x
2| a0 + 2a1 + a2 = 4}

If it is, prove it. If not, change the set only a little to make it a subspace.

9. Is R2 a subspace of R3? If yes, show it. If no, why not?

10. A manufacturing company uses a process called diffusion welding to adjoin several
smaller rods into a single longer rod. The diffusion welding process leaves the final rod
heated to various temperatures along the rod with the ends of the rod having the same
temperature. Every acm along the rod, a machine records the temperature difference
from the temperature at the ends to get an array of temperatures called a heat state.

(a) Plot the heat state given below (let the horizontal axis represent distance from
the left end of the rod and the vertical axis represent the temperature difference
from the ends).

u = (0, 1, 13, 14, 12, 5,−2,−11,−3, 1, 10, 11, 9, 7, 0)

(b) How long is the rod represented by u, the above heat state, if a = 1cm?

(c) Give another example of a heat state for the same rod, sampled in the same
locations. (There are many answers you could choose here, this is your choice.)

(d) Show that the set of all heat states, for this rod, is a vector space. (Hint: You
need not show all 10 properties.)

(e) What do the vectors in this vector space look like? That is, what is the key
property (or what are the key properties) that make these vectors stand out?

5 Span

In this section, we discuss linear algebra terminology that will follow us through the rest of
this course. In particular, we will define the word span and show some examples. This term
gets its own section in these notes for a couple reasons. First, this word is used both as a
noun and as a verb in this class. We want to distinguish both. We also want to be clear how
to accurately and appropriately use this term.
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5.1 Definition of Span

Let us begin with the definition of the noun span.

Definition 5.1. (n.) Let V be a vector space and let X = {v1, v2, . . . , vn} ⊂ V . Then the
span of the set X is the set of all linear combinations of the elements of X. That is,

span X = span {v1, v2, . . . , vn} = {α1v1 + α2v2 + . . .+ αnvn| α1, α2, . . . , αn are scalars}.

Let us now consider some examples.

Example 5.1. Let us find the span of the two polynomials x and 1. We get span {x, 1} =
{ax+ b| a, b ∈ R} = P1.

Example 5.2. Now, consider the vectors

v1 =

 −1
0
1

 , v2 =

 1
0
0

 , and v3 =

 0
0
1

 ∈ R3.

We can find the span of {v1, v2, v3}.

span {v1, v2, v3} =

α
 −1

0
1

+ β

 1
0
0

+ γ

 0
0
1

∣∣∣∣∣∣ α, β, γ ∈ R


=


 −α + β

0
α + γ

∣∣∣∣∣∣α, β, γ ∈ R

 =


 a

0
b

∣∣∣∣∣∣ a, b ∈ R


= span


 1

0
0

 ,

 0
0
1


This example is interesting because it shows two different ways to write the same set as a
span. We can also ask whether an element is in a span. We do this in the next example.

Example 5.3. Let

v1 = 3x+ 4, v2 = 2x+ 1, v3 = x2 + 2, and v4 = x2.

We can determine whether or not v1 ∈ span {v2, v3, v4} by deciding whether or not v1 can be
written as a linear combination of v2, v3, v4. That is, we want to know if there exist scalars
α, β, and γ so that

v1 = αv2 + βv3 + γv4.

If such scalars exist, then

3x+ 4 = α(2x+ 1) + β(x2 + 2) + γ(x2).

We can then match up like terms and get the following system of equations:

(x2 term:) 0 = β + γ
(x term:) 3 = 2α
(constant term:) 4 = α + 2β

.
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Thus α = 3
2
, β = 5

4
, and γ = −5

4
is a solution to this system. This means that

v1 =
3

2
v2 +

5

4
v3 −

5

4
v4.

In other words, v1 ∈ span {v2, v3, v4}.

Now, before continuing with examples, we should introduce the verb form of the term span.

Definition 5.2. (v.) We say that the set of vectors {v1, v2, . . . , vn} spans a set X if X =
span {v1, v2, . . . , vn}. In this case, we call the set {v1, v2, . . . , vn} a spanning set of X.

Example 5.4. Notice in Example 5.1, we found that {x, 1} spans P1.

Example 5.5. Notice also that {x + 1, x − 2, 4} spans P∞. Indeed, we know that if p ∈
span {x+ 1, x− 2, 4} then

p = α(x+ 1) + β(x− 2) + γ(4) = (α + β)x+ α− 2β + 4γ ∈ P1.

Thus, span {x + 1, x − 2, 4} ⊆ P1. Now if p ∈ P1, then p = ax + b for some a, b ∈ R.
We want to show that p ∈ span {x + 1, x − 2, 4}. That is, we want to show that there exist
α, β, γ ∈ R so that

p = α(x+ 1) + β(x− 2) + γ(4).

If such scalars exist, then as before, we can match up like terms to get the system of equations:

(x term:) a = α + β
(constant term:) b = α − 2β + 4γ

.

Thus, if α = 2a+b
3
, β = a−b

3
, and γ = 0, then

p = α(x+ 1) + β(x− 2) + γ(4).

(It should be noted that I noticed there must be infinitely many solutions, I chose γ = 0
(because 0 is an easy number to work with) and then solved for α and β.) So, for any
p ∈ P1, we can find such scalars. That means that P1 ⊂= span {x + 1, x − 2, 4} and
{x+ 1, x− 2, 4} spans P1.

Example 5.6. Notice that R2 is spanned by both

{(
1
0

)
,

(
0
1

)}
and

{(
1
1

)
,

(
1
2

)
,

(
−1
3

)}
.

Indeed, it is clear that

span

{(
1
0

)
,

(
0
1

)}
⊆ R2 and span

{(
1
1

)
,

(
1
2

)
,

(
−1
3

)}
⊆ R2.

Now, if v =

(
a
b

)
∈ R2, then

v = a

(
1
0

)
+ b

(
0
1

)
.

So,

R2 = span

{(
1
0

)
,

(
0
1

)}
.
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Now, we want to show that(
a
b

)
∈ span

{(
1
1

)
,

(
1
2

)
,

(
−1
3

)}
.

So, we find α, β, γ ∈ R so that(
a
b

)
= α

(
1
1

)
+ β

(
1
2

)
+ γ

(
−1
3

)
.

That is, (
a
b

)
=

(
α + β − γ
α + 2β + 3γ

)
.

Thus, we must solve the system of linear equations:

a = α + β − γ
b = α + 2β + 3γ

.

Using elimination, we get

a = α + β − γ
b = α + 2β + 3γ

−→
E2=−e1+e2

a = α + β − γ
b− a = + β + 4γ

Again, we see that there are infinitely many α, β, γ that solve this system. Let’s pick one.
We choose γ = 0 and so we get β = b− a and α = 2a− b. Thus(

a
b

)
= (2a− b)

(
1
1

)
+ (b− a)

(
1
2

)
+ 0 ·

(
−1
3

)
.

5.2 Span as a Vector Space

Notice that in each of these examples, we find that the span of a set turned out to be a
vector space. It turns out that this is always true.

Theorem 5.1. Let V be a vector space and let v1, v2, . . . , vn ∈ V . Then span {v1, v2, . . . , vn}
is a subspace of V .

proof We want to show that the two subspace properties hold. That is, we will show that

• 0 ∈ span {v1, v2, . . . , vn}.

• span {v1, v2, . . . , vn} is closed under linear combinations.

Notice that 0 = 0 · v1 + 0 · v2 + . . . + 0 · vn ∈ span {v1, v2, . . . , vn}. Now, suppose
u, v ∈ span {v1, v2, . . . , vn}. We want to show that if α, β are scalars, then αu + βv ∈
span {v1, v2, . . . , vn}. Since u, v ∈ span {v1, v2, . . . , vn}, we can find scalars a1, a2, . . . , an and
b1, b2, . . . , bn so that u = a1v1 + a2v2 + . . .+ anvn and v = b1v1 + b2v2 + . . .+ bnvn. Now,

αu+ βv = α(a1v1 + a2v2 + . . .+ anvn) + β(b1v1 + b2v2 + . . .+ bnvn)

= (αa1 + βb1)v1 + (αa2 + βb2)v2 + . . .+ (αan + βbn)vn ∈ span {v1, v2, . . . , vn}.

Thus, span {v1, v2, . . . , vn} is closed under linear combinations. .
The next example relates this back to our first secton.
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Example 5.7. Let V = {(x, y, z) ∈ R3| x + y + z = 0, 3x + 3y + 3z = 0}. We can write V
as a span. Notice that V is the solution set of the system of equations

x + y + z = 0
3x + 3y + 3z = 0

.

We see that after elimination, we get the system

x + y + z = 0
0 = 0

.

Thus y and z can be chosen to be free variables and we get (x, y, z) = (−y− z, y, z). That is,

V = {(−y−z, y, z)| y, z ∈ R} = {y(−1, 1, 0)+z(−1, 0, 1)| y, z ∈ R} = span {(−1, 1, 0), (−1, 0, 1)}.

Here, we summarize the terminology:
If for every element v ∈ V we see that v ∈ span {v1, v2, . . . , vn} this means the same as all
of the following statements:

{v1, v2, . . . , vn} spans the set V .

{v1, v2, . . . , vn} is a spanning set for V .

V is spanned by {v1, v2, . . . , vn}.

and

There are scalars α1, α2, . . . , αn so that v = α1v1 + α2v2 + . . . αnvn.

Finally, if V = span {v1, v2, . . . , vn} then all of the above are true and if w ∈ span {v1, v2, . . . , vn}
then w ∈ V .

Exercises

1. In Exercise 7 of Section 4, you found that some of the sets were subspaces. For each
that was a subspace, write it as a span.

2. Decide if the vector lies in the span of the set. If it does, find the linear combination
that makes the vector. If it does not, show that no linear combination exists.

(a)

 2
0
1

,


 1

0
0

 ,

 0
0
1

 in R2.

(b) x− x3, {x2, 2x+ x2, x+ x3}, in P3

(c)

(
0 1
4 2

)
,

{(
1 0
1 1

)
,

(
2 0
2 3

)}
, in M2×2

3. Which of these sets spans R3?

(a)


 1

0
0

 ,

 0
2
0

 ,

 0
0
3
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(b)


 2

0
1

 ,

 1
1
0

 ,

 0
0
1


(c)


 1

1
0

 ,

 3
0
0


(d)


 1

0
1

 ,

 3
1
0

 ,

 −1
0
0

 ,

 2
1
5


(e)


 2

1
1

 ,

 3
0
1

 ,

 5
1
2

 ,

 6
0
2


4. Find a set to span the given subspace

(a) The xz-plane in R3

(b)


 x

y
z

∣∣∣∣∣∣ 3x+ 2y + z = 0

 in R3

(c)




x
y
z
w


∣∣∣∣∣∣∣∣ 2x+ y + w = 0 and y + 2z = 0

 in R4

(d) {a0 + a1x+ a2x
2 + a3x

3| a0 + a1 = 0 and a2 − a3 = 0} in P3

(e) The set P4 in the space P4

(f) M2×2 in M2×2

5. Answer the following questions with justification.

(a) If S ⊂ T are subsets of a vector space is spanS ⊂ spanT? Always? Sometimes?
Never?

(b) If S, T are subsets of a vector space is span(S ∪ T ) = spanS ∪ spanT?

(c) If S, T are subsets of a vector space is span(S ∩ T ) = spanS ∩ spanT?

(d) Is the span of the complement equal to the complement of the span?

6. Let’s link this with the sections on systems of linear equations. In Exercise 9 Section
1 you found that there were infinitely many solutions to the system. Is any equation
in the span of the other two? What about Exercise 13 in Section 1? Is any equation
in the span of the other two?

7. Now, use Exercise 6 above to make a similar statement about the rows of the coefficient
matrix corresponding to a system of equations.

8. Show (using the allowed operations) that any equation, formed in the elimination
process for a system of equations, is in the span of the original equations.
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9. Find two different spanning sets (having different number of elements than each other)
for each of the following.

(a) P2

(b) M2×2

Which spanning set in each of the above is better? This is really your opinion, but tell
me why you think it’s better.

6 Linear Independence/Dependence

In the Radiography and Tomography Lab #1, you were asked to write one image using
arithmetic operations on three others. You found that this was possible sometimes and not
others. It becomes a useful tool to know whether or not this is possible. Let’s discuss some
terminology first.

6.1 Linear Dependence Definitions

Definition 6.1. Let V be a vector space. We say that the set {v1, v2, . . . , vn} ⊂ V , is
linearly independent if no element is in the span of the others. That is, if the linear dependence
relation

α1v1 + α2v2 + . . .+ αnvn = 0

holds only when
α1 = α2 = . . . = αn = 0.

We also say that the vectors v1, v2, . . . , vn are linearly independent.
If {v1, v2, . . . , vn} is not linearly independent, then we say that it is linearly dependent. Note
this means that we can write one element as a linear combination of the others.

Note: The linear dependence relation is definitely true if α1 = α2 = . . . = αn = 0, but this
tells us nothing about the linear dependence of the set. It is important to realize that, to
determine the linear dependence, you need to decide whether or not the linear dependence
relation is only true when all the scalars are zero. Notice that if the set {v1, v2} is linearly
dependent, then we can find α1 and α2, not both zero, so that α1v1 + α2v2 = 0. Suppose
that it is α1 that is not zero. then we can write v1 = −α2

α1
v2. That is, v1 is a scalar multiple

of v2. Thus, if we are considering the linear dependence a two element set, we need only
check whether one can be written as a scalar multiple of the other.
Notice also that the set {0, v1, v2, . . . , vn} is always linearly dependent. Indeed,

1 · 0 + 0 · v1 + 0 · v2 + . . .+ 0 · vn = 0,

but one of the scalars (the one on the zero vector) is not zero. Thus, a set containing the
zero vector is always linearly dependent. Let us now look at more examples.

Example 6.1. Let us determine whether {x+ 1, x2 + 1, x2 + x+ 1} is linearly dependent or
independent. We start by setting up the linear dependence relation. We let

α(x+ 1) + β(x2 + 1) + γ(x2 + x+ 1) = 0.
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Now, we want to find decide whether or not α, β, and γ must all be zero. Matching up like
terms in the linear dependence relation leads to the system of equations

(x2 term:) 0 = β + γ
(x term:) 0 = α + γ
(constant term:) 0 = α + β + γ

.

Using elimination, we get

0 = β + γ
0 = α + γ
0 = α + β + γ

−→
E3=−e1+e3

0 = β + γ
0 = α + γ
0 = α

.

Thus, α = 0, β = 0, γ = 0. This means that {x+1, x2 +1, x2 +x+1} is linearly independent.

Example 6.2. Now, let us determine the linear dependence of the set{(
1 3
1 1

)
,

(
1 1
1 −1

)
,

(
1 2
1 0

)}
.

Again, we begin by setting up the linear dependence relation. Let(
0 0
0 0

)
= α

(
1 3
1 1

)
+ β

(
1 1
1 −1

)
+ γ

(
1 2
1 0

)
.

We want to find α, β, and γ so that this is true. Matching up entries, we get the following
system of equations.

((1, 1) entry:) 0 = α + β + γ
((1, 2) entry:) 0 = 3α + β + 2γ
((2, 1) entry:) 0 = α + β + γ
((2, 2) entry:) 0 = α − β

.

We again, use elimination, but this time, let us use a coefficient matrix and reduce it.
1 1 1 0
3 1 2 0
1 1 1 0
1 −1 0 0

 R2=−3r1+r2−→
R3=−r1+r3,R4=−r1+r4


1 1 1 0
0 −2 −1 0
0 0 0 0
0 −2 −1 0


R2= 1

−2
r2

−→
R4=−r2+r4


1 1 1 0
0 1 1

2
0

0 0 0 0
0 0 0 0

 R1=−r2+r1−→


1 0 1

2
0

0 1 1
2

0
0 0 0 0
0 0 0 0


Thus, γ can be any real number and α = −1

2
γ and β = −1

2
γ. Thus there are infinitely many

possible choices for α, β, and γ. Thus,{(
1 3
1 1

)
,

(
1 1
1 −1

)
,

(
1 2
1 0

)}
is a linearly dependent set. Indeed, we found that (choosing γ = 2)(

0 0
0 0

)
= −

(
1 3
1 1

)
−
(

1 1
1 −1

)
+ 2

(
1 2
1 0

)
.

Notice that whenever we are determining whether a set is linearly independent or dependent,
we always start with the linear dependence relation and determine whether or not there is
only one set of scalars that (when they are all zero) make the linear dependence relation
true.
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6.2 Basis

In this section, we discuss a way to describe a vector space in terms of a much smaller subset.
Our goal is to find a subset that is big enough to describe all of the elements of our vector
space, but not so big that there’s double up. Let’s be more specific. Up until this point,
we have seen that a vector space can be written as a span of vectors. That means that we
can describe the vector space with all of those vectors. Now, we’ve also seen that sometimes
when we compute the span of a set of vectors, we see that it can be written as a span of a
smaller set of vectors. This meant that the vector space can be described with the smaller
set of vectors. It turns out this happens when the larger set of vectors is linearly dependent.
That is, one or more of the vectors is in the span of the rest of the vectors (there’s doubling
up, in a sense). Using these, let’s define the set that will describe our vector space.

Definition 6.2. Given a vector space V , we call B = {v1, v2, . . . , vn} the basis of V if and
only if B satisfies the following conditions:

• span B = V and

• B is linearly independent.

Note that the first condition in the definition of a basis gives us that B is big enough to
describe all of V and the second condition says that B isn’t so big that there’s doubling up.
Let us now look at examples

Example 6.3. The standard basis for R3 is

S =


 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 .

First, we show that span S = R3. Notice that span S ⊆ R3. Now, let

v =

 a
b
c

 ∈ R3.

We see that

v = a

 1
0
0

+ b

 0
1
0

+ c

 0
0
1

 ∈ span S.

Thus span S = R3. Now, we show that S is linearly independent. Let

α

 1
0
0

+ β

 0
1
0

+ γ

 0
0
1

 =

 0
0
0

 .

Then  α
β
γ

 =

 0
0
0

 .

Thus, α = β = γ = 0. So, S is linearly independent. We showed both conditions for a basis
hold for S, thus the standard basis is indeed a basis.
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Because the standard basis is used often, we introduce notation for each of the vectors. We
let e1, e2, and e3 denote the three vectors in S, where

e1 =

 1
0
0

 , e2 =

 0
1
0

 , and e3 =

 0
0
1


In general, for Rn, the standard basis is {e1, e2, . . . , en}, where ei is the n × 1 vector array
with zeros in every entry except the ith entry which contains a one.

Example 6.4. Another basis for R3 is

B =


 2

0
1

 ,

 1
1
0

 ,

 0
0
1

 .

Notice by Exercise 3b in Section 5, you proved that span B = R3. So, we need only show
that B is linearly independent. Let

α

 2
0
1

+ β

 1
1
0

+ γ

 0
0
1

 =

 0
0
0

 .

Then  2α + β
β

α + γ

 =

 0
0
0

 .

Thus, by matching components, we see that α = β = γ = 0. So, B is linearly independent
and is therefore a basis for R3.

Example 6.5. The standard basis for P2 is S = {x2, x, 1}. Notice in Exercise 1a in Section
6, you showed that S is linearly independent. Notice also that span S ⊆ P2. So we need to
show that P2 ⊆ span S. Let v = ax2 + bx+ c ∈ P2. Notice that v is a linear combination of
x2, x, and 1. Thus v ∈ span S. Thus span S = P2. Thus, S is a basis of P2.

Example 6.6. Let B = {1, x+ x2, x2}. In this example, we will show that B is also a basis
for P2. In Exercise 1b in Section 6 you showed that B is linearly independent. So, we need
only show that span B = P2. Notice, we need only show that P2 ⊆ span B since it is clear
that span B ⊆ P2. Let v = ax2 + bx+ c ∈ P2. We want to find α, β, and γ so that

α(1) + β(x+ x2) + γ(x2) = ax2 + bx+ c.

Matching up like terms, we see that α = c, β = b and β + γ = a or γ = a − b. That is,
v = c(1) + b(x) + (a− b)x2 ∈ span B. Thus, B is a basis for P2.

6.3 Dimension

Notice in the last four examples, we see two examples where the bases of a vector space had
the same number of elements. That is, both bases of R3 had the same number of elements
and both bases for P2 had the same number of elements. One should wonder if this is always
true. The answer is given in the next theorem.
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Theorem 6.1. Let V be a vector space with bases B1 = {v1, v2, . . . , vn} and B2 = {u1, u2, . . . , um}.
Then the number of elements, n in B1 is the same as the number of elements, m in B2.

Proof: Suppose both B1 and B2 are bases for V having different numbers of elements. We
show that this will create an impossible scenario. That is, we will assume that m 6= n and
find a reason that there are not two bases of different sizes for V . Suppose m > n (a very
similar argument can be made if we assumed n > m). Since B2 is a subset of V , we know
that there exist αi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n so that

u1 =α1,1v1 + α1,2v2 + . . .+ α1,nvn

u2 =α2,1v1 + α2,2v2 + . . .+ α2,nvn
...

um =αm,1v1 + αm,2v2 + . . .+ αm,nvn.

We want to show that B2 cannot be linearly independent (which would be impossible if it is
a basis). Let

β1u1 + β2u2 + . . .+ βmum = 0.

We will then find β1, β2, . . . , βm. Notice that if we replace u1, u2, . . . , un with the linear
combinations above, we can rearrange to get

(β1α1,1 + β2α2, 1 + . . .+ βmαm,1)v1

+(β1α1,2 + β2α2, 2 + . . .+ βmαm,2)v2

...

+(β1α1,n + β2α2, n+ . . .+ βmαm,n)vn = 0.

Since B1 is a basis, we get that the coefficients of v1, v2, . . . , vn are all zero. That is

β1α1,1 + β2α2, 1 + . . .+ βmαm,1) = 0 (1)

β1α1,2 + β2α2, 2 + . . .+ βmαm,2 = 0 (2)

... (3)

β1α1,n + β2α2, n+ . . .+ βmαm,n = 0. (4)

We know that this system has a solution because it is homogeneous. But, because there are
more scalars β1, β2, . . . , βm (that we are solving for) than there are equations, this system
must have infinitely many solutions. This means that B2 cannot be linearly independent and
so it cannot be a basis.
Thus, the only way both B1 and B2 can be bases of the same vector space is if they have the
same number of elements.
Because the number of elements in a basis is unique to the vector space, we can give it a
name.

Definition 6.3. Given a vector space V whose basis B has n elements, we say that the
dimension of V is n, the number of elements in B (dimV = n.) We also say that V is
n-dimensional.
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Notice that when proving Theorem 6.1, we saw that an n-dimensional vector space V
has no linearly independent set with more than n elements. That is, if we have a set
{u1, u2, . . . , uk} ⊂ V and k > n, then we automatically know that the set is linearly depen-
dent. This gives us another tool to make a quick check of linear dependence and may save
us time.
In the next few examples, we illustrate how we find the dimension of various vector spaces.

Example 6.7. Let

V =


 x

y
z

∣∣∣∣∣∣ x+ y + z = 0, 2x+ y − 4z = 0, 3x+ 2y − 3z = 0

 .

Notice that V is the solution set of a homogeneous system of equations. So, we know that V
is a subspace (and therefore a vector space) of R3. Notice also V has dimension 1. We show
this below.
First, we need to rewrite V as a span. We can reduce the system of equations

x + y + z = 0
2x + y − 4z = 0
3x + 2y − 3z = 0

use matrix−→

 1 1 1 0
2 1 −4 0
3 2 −3 0

 R2=−2r1+r2−→
R3=−3r1+r3

 1 1 1 0
0 −1 −6 0
0 −1 −6 0


R1=r2+r1−→

R3=−r2+r3,R2=−r2

 1 0 −5 0
0 1 6 0
0 0 0 0

 −→
 x

y
z

 =

 5z
−6z
z

 ,

where z can be any real number. This means we can rewrite V as below

V =


 5z
−6z
z

∣∣∣∣∣∣ z ∈ R

 = span


 5
−6

1

 .

Notice that the set

B =


 5
−6

1


is linearly independent and spans V . Thus it is a basis for V . This tells us that V has
dimension 1.

Example 6.8. Let V = {ax2 + bx+ c| a+ b− 2c = 0}. We know that V is a subspace of
P2. Indeed, 0x2 + 0x+ 0 ∈ V and if v1 = a1x

2 + b1x+ c1 and v2 = v1 = a2x
2 + b2x+ c2 are

vectors in V and α, β be scalars, then

a1 + b1 − 2c1 = 0 and a2 + b2 − 2c2 = 0.

Now,
αv1 + βv2 = (αa1 + βa2)x2 + (αb1 + βb2)x+ αc1 + βc2.

Also, we see that

αa1 + βa2 + αb1 + βb2 + 2αc1 + 2βc2 = α(a1 + b1 − 2c1) + β(a2 + b2 − 2c2) = 0 + 0 = 0.
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Thus, αv1 + βv2 ∈ V. Now, below, we show that V is 2-dimensional. Indeed, we can rewrite
V :

V =
{

(2c− b)x2 + bx+ c| b, c ∈ R
}

=
{

(−x2 + x)b+ (2x2 + 1)c| b, c ∈ R
}

= span {−x2+x, 2x2+1}.

Now, we can see that the elements of the set B = {−x2 +x, 2x2 + 1} are not scalar multiples
of one another so therefore B is linearly independent. Thus, B is a basis for V and so V is
2-dimensional.

What we see is that, in order to find the dimension of a vector space, we need to find a basis
and count the elements in the basis.

Exercises

1. Determine whether the following sets are linearly independent.

(a) {1, x, x2}
(b) {1, x+ x2, x2}
(c) {1, 1− x, 1 + x, 1 + x2}

2. Determine whether each of the following sets is linearly independent.

(a)


 1

1
−1

 ,

 0
−1
−1

 ,

 −1
2
1

 ,

 0
0
1


(b)

{(
1 1
1 0

)
,

(
0 1
−1 −1

)
,

(
−1 2

1 0

)}
3. Suppose {v1, v2, v3, v4} are linearly independent. Determine if the following sets are

linearly independent. Justify your answer. If not, remove only enough vectors to make
the set independent.

(a) {v1, v2}
(b) {v1, v2, v3, v4, v1 − 2v3}
(c) {v1 + v3, v2 + v4, v3, v4}
(d) {v1 − 2v2, v2, v3 − v4 − v2, v4}

4. Determine which of the following sets is a basis for P2.

(a) {1, x+ x2, x2}
(b) {x2 − 1, 1 + x, 1− x}
(c) {1, 1− x, 1 + x, 1 + x2}

5. Suppose {v1, v2, v3, v4} are linearly independent. Determine which of the following sets
is a basis for span{v1, v2, v3, v4}. Justify your answer.

(a) {v1, v2}
(b) {v1, v2, v3, v4, v1 − 2v3}
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(c) {v1 + v3, v2 + v4, v3, v4}
(d) {v1 − 2v2, v2, v3 − v4 − v2, v4}

6. For each of the following decide whether or not B is a basis for the vector space V .

(a) B =


 1

1
1

 ,

 1
2
3

 ,

 3
2
1

 ,

 0
0
1

, V = R3

(b) B =

{(
1
1

)
,

(
1
2

)}
, V = R2

(c) B =

{(
1 0
1 2

)
,

(
1 2
3 −1

)
,

(
3 0
0 1

)
,

(
1 0
0 0

)}
, V =M2×2

(d) B = {x2, x2 + x, x2 + x+ 2}, V = P2

7. For each of the vector spaces below, find basis a B that is not the standard basis. State
the dimension of the vector space.

(a)

{(
a c
3d b

)∣∣∣∣ a+ b+ c− 2d = 0, a+ 3b− 4c+ d = 0, a− d+ b = c

}
(b) {cx2 + 3bx− 4a| a− b− 2c = 0}
(c) M3×2

(d) P3

(e) span


 1

1
1

 ,

 1
2
3

 ,

 3
2
1

 ,

 0
0
1


8. Given the set B = {u, v, w}. Show that if B is a basis, then so is

B′ = {u+ 2v, u− w, v + w}.

9. Using #8, make a general statement about how to get a basis from another basis. Be
careful to use accurate linear algebra language.

10. Determine whether B = {I1, I2, I3}, where the In are given below, is a basis for the
vector space of images with the same orientation as each of the In below.
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I3 =

a

b

a

b

a

b

b

c

c

c

b

c

b

a

b

c

b

a

a c

0

b+ c

a− b

0

a+ c

b− c

0

c− a

c+ b

0

I1 = I2 =

11. What is the dimension of the vector space of heat signatures given in Exercise 10 in
Section 4?

12. Show that given a homogeneous system of linear equations with 3 variables, that the
system has only the trivial solution whenever the corresponding matrix when written
as a matrix equation Ax = b has linearly independent rows.

7 Coordinate Spaces

7.1 Coordinates in the Standard Basis

In our typical 3D space, we talk about vectors that look like

 x
y
z

. And we see that the

coordinates are x, y, and z respectively. We talk about this like it just makes sense, but we
should really spell out what this means. We mean that the vector points from the origin to
a point that is x units horizontally, y units vertically, and z units up from the origin (as in
Figure 2. The truth is that when we say that, we are assuming that we are working with
the standard basis. (This makes sense because, it is the basis that we usually think about,
x-axis perpendicular to the y-axis, forming a horizontal plane and the z axis perpendicular
to this plane.)
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Figure 2:

So, we can write  x
y
z

 = x

 1
0
0

+ y

 0
1
0

+ z

 0
0
1

 .

Notice that the coordinates are the scalars in this linear combination. That’s what we mean
by coordinates.

7.2 Coordinates in Other Bases

Now, let us consider a different basis,

B =


 1

1
1

 ,

 1
0
1

 ,

 0
0
1

 .

The coordinates of the vector v =

 1
2
3

 in the standard basis are 1, 2, and 3 respectively,

but in this new basis, they are found by finding the scalars α1, α2, and α3 so that 1
2
3

 = α1

 1
1
1

+ α2

 1
0
1

+ α3

 0
0
1

 .

Going through the motions to solve for α1, α2, and α3, we find that α1 = 2, α2 = −1, and
α3 = 2. (Be sure to check this yourself.) So, we can represent the vector v in coordinates
according to the basis B as

[v]B =

 2
−1

2

 .

Notice that we indicate that we are looking for coordinates in terms of the basis B by using
the notation, [v]B.
This means if we are given a vector space V and bases B1 = {v1, v2, . . . , vn} and B2 =
{u1, u2, . . . , un}, then if w = α1v1 + α2v2 + . . .+ αnvn, we have

[w]B1 =


α1

α1
...
αn

 .
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But, if w = β1u1 + β2u2 + . . .+ βnun, we have

[w]B2 =


β1

β1
...
βn

 .

It is really important, then, to always note the basis in which you are describing your vectors.
Notice also that coordinate vectors look like vectors in Rn for some n. Let us look at some
more examples.

Example 7.1. Let V = {ax2 + (b)x + (c) ∈ P2| a + b − 2c = 0}. We saw in Example 6.8
that a basis for V is B = {−x2 + x, 2x2 + 1}. We also know that v = 3x2 − 3x ∈ V. This
means that we can write v as a coordinate vector. We want to find α1, α2 so that

v = α1(−x2 + x) + α2(2x2 + 1).

Looking at this in the right way makes it clear that

v = −3(−x2 + x) + 0(2x2 + 1).

Thus

[v]B =

(
−3

0

)
.

Now, let

[w]B =

(
2
−1

)
.

Then we an find w, using our understanding of the coordinate vector and basis. as follows.

w = 2(−x2 + x)− 1(2x2 + 1) = −4x2 + 2x− 1.

We can check that w ∈ V . Indeed, −4 + 2 + 2(−1) = 0, thus w ∈ V .

Let’s now consider representations of a vector when we view the vector span in terms of two
different bases.

Example 7.2. Let

V =

{(
a a+ b

a− b b

)∣∣∣∣ a, b ∈ R
}
.

Then we can find two bases for V . First, we write V as a span.

V =

{
a

(
1 1
1 0

)
+ b

(
0 1
−1 1

)∣∣∣∣ a, b ∈ R
}

= span

{(
1 1
1 0

)
,

(
0 1
−1 1

)}
.

Notice that the set

B1 =

{(
1 1
1 0

)
,

(
0 1
−1 1

)}
is a basis for V . Note also that

B1 =

{(
1 2
0 1

)
,

(
1 0
2 −1

)}
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is also a basis for V . (Check to see that you actually believe this.) Now, consider the vector
w so that

[w]B1 =

(
1
2

)
.

Then, we know that

w =

(
1 1
1 0

)
+ 2

(
0 1
−1 1

)
=

(
1 3
−1 2

)
.

If we want to write w in terms of the basis B2, we need to find scalars α and β so that

and [w]B2 =

(
α
β

)
.

That is, we want α and β so that

w =

(
1 3
−1 2

)
= α

(
1 2
0 1

)
+ β

(
1 0
2 −1

)
.

By inspecting the components, we see that α = 3
2

and β = −1
2
. Thus,

[w]B2 =
1

2

(
3
−1

)
.

Example 7.3. Let V = {ax2 + (b− a)x+ (a+ b)|a, b ∈ R}. Then

V = {a(x2 − x+ 1) + b(x+ 1)| a, b ∈ R} = span{x2 − x+ 1, x+ 1}.

So a basis for V is
B = {v1 = x2 − x+ 1, v2 = x+ 1}.

This means that dimV = 2 and so vectors in V can be represented by vectors in R2. Notice
that v = 3x2 + x + 7 ∈ V . You actually should be able to check this. We can write v
in terms of the basis of V as v = 3v1 + 4v2. We can check this as follows3v1 + 4v2 =

3(x2 − x+ 1) + 4(x+ 1) = 3x2 + x+ 7. Thus, the coordinate vector for v is [v]B =

(
3
4

)
.

Example 7.4. Let W =

{(
α β
γ α + β + γ

)∣∣∣∣ α, β, γ ∈ R
}

. A basis, B̃, for W is

B̃ =

{(
1 0
0 1

)
,

(
0 1
0 1

)
,

(
0 0
1 1

)}
.

We can determine if w =

(
3 4
−1 6

)
∈ W . If it is, we can find the coordinate vector, [w]B̃

in R3.
First, we determine if w ∈ W . Let v1, v2, and v3 be the above basis elements. Then we write
w = α1v1 + α2v2 + α3v3 (and check to see if it is possible to find α1, α2, and α3.)(

3 4
−1 6

)
= α1

(
1 0
0 1

)
+ α2

(
0 1
0 1

)
+ α3

(
0 0
1 1

)
.
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This leads to the equations:

3 = α1

4 = α2

−1 = α3

6 = α1 + α2 + α3

These all are true if the first three equations are true. So, we know that w ∈ W and in this

process, we found that [w]B̃ =

 3
4
−1

.

Using other coordinate systems can be very useful. Sometimes the coordinates themselves
are just nicer numbers. We’ll see more use of this concept later.

Exercises

1. Using the vector space and corresponding basis in Example 7.3, find the coordinate
vector for ṽ = 5x2 − 7x+ 3.

2. Let X = {(x, y, x − y, x + y)|x, y ∈ R}. Find a basis, B for X. Determine if v =
(2, 3, 1, 5) ∈ X. If so, find [v]B.

3. Given V with basis B = {2x+ 1, x2, 2x3}, what element of w ∈ V is

[w]B =

 2
1
3

 .

4. Given V so that V = span B, where

B =

{(
1 2
1 1

)
,

(
0 1
1 1

)
,

(
0 0
1 1

)}
.

Verify that B is indeed a basis for V . Find the element v ∈ V so that

[v]B =

 −1
0
2

 .

5. Given V = span {v1, v2, v3, v4}. Suppose also that B = {v1, v2, v3, v4} is linearly
independent. Let u = v1 + 2v2 − 3v3 − v4. Write the coordinate vector [u]B.

6. Using the vector space and vector u in Exercise 5, with basis

B2 = {v1 − v2, v1 + v2 + 3v3 − v4, v2, v3},

find [u]B2 .
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7. Recall Exercise 10 in Section 4.2. Let V be a vector space of heat states with basis

B =




0
1
0
0
0
0

 ,


0
0
2
0
0
0

 ,


0
0
0
2
0
0

 ,


0
0
0
0
−3

0




.

Suppose that u is a heat state in V and that

u =


0
1
−2
−3
−1

0

 .

(Be sure you can write a proof to show that B is indeed a basis.) What is the dimension
V ? Write the coordinate vector [u]B.

8 Transmission Radiography and Tomography

A Simplified Overview

This material provides a brief overview of radiographic principles prerequisite to Lab #2 of
the Radiography and Tomography Linear Algebra Modules. The goal is to develop the basic
discrete radiographic operator for axial tomography of the human body. To accomplish this
goal, it is not necessary to completely understand the details of the physics and engineering
involved here. We wish to arrive at a mathematical formulation descriptive of the radio-
graphic process and establish a standard scenario description with notation. Read through
these notes and answer the questions at the end.

8.1 What is Radiography?

Transmission radiography and tomography are familiar and common processes in today’s
world, especially in medicine and non-destructive testing in industry. Some examples include

• Single-view X-ray radiography is used routinely to view inside the human body; for
example, bone fracture assessment, mammography, and angiographic procedures.

• Multiple-view X-ray radiography is realized in computerized axial tomography (CAT)
scans used to provide 3D images of body tissues.

• Neutron and X-ray imaging is used in industry to quantify manufactured part assem-
blies or defects which cannot be visually inspected.
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Figure 3: Typical radiographic experiment.

8.1.1 Transmission Radiography

is the process of measuring and recording changes in a high-energy particle beam (X-rays,
protons, neutrons, etc.) resulting from passage through an object of interest.

8.1.2 Tomography

is the process of infering properties of an unknown object by interpreting radiographs of the
object.
X-rays, just like visible light, are photons or electromagnetic radiation, but at much higher
energies and outside of the range of our vision. Because of the wavelength of typical X-
rays (on the order of a nanometer), they readily interact with objects of similar size such as
individual molecules or atoms. This property makes them particularly useful in transmission
imaging. Figure 3 is a cartoon of a typical x-ray radiographic experiment or procedure. An
x-ray beam is produced with known energy and geometric characteristics. The beam is
aimed at a region of interest. The photons interact with matter in the region of interest,
changing the intensity, energy and geometry of the beam. A detector measures the pattern
(and possibly the distribution) of incident energy. The detection data, when compared to
the incident beam characteristics, contains the known signature of the region of interest.
We consider the mathematics and some of the physics involved in each step with the goal
of modeling a radiographic transformation appropriate for mixed soft and hard tissue axial
tomography of the human body.

8.2 The Incident X-ray Beam

We begin with an x-ray beam in which the x-ray photons all travel parallel to each other in
the beam direction, which we take to be the positive x-direction. Additionally we assume
that the beam is of short time duration, the photons being clustered in a short pulse instead
of being continuously produced. A beam with these geometric characteristics is usually
not directly achievable through typical x-ray sources (see supplementary material for some
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Figure 4: X-ray beam attenuation computation for a beam path of fixed y and z.

discussion on x-ray sources). However, such a beam can be approximated readily through
so-called collimation techniques which physically limit the incident x-rays to a subset that
compose a planar (neither convergent nor divergent) beam.
While not entirely necessary for the present formulation, we consider a monochromatic x-
ray source. This means that every x-ray photon produced by the source has exactly the
same “color.” The term “monochromatic” comes from the visible light analog in which,
for example, a laser pointer may produce photons of only one color, red. The energy of a
single photon is proportional to its frequency ν, or inversely proportional to its wavelength
λ. The frequency, or wavelength, determine the color, in exact analogy with visible light.
In particular, the energy of a single photon is hν where the constant of proportionality h is
known as Planck’s constant.
The intensity (or brightness), E(x, y, z), of a beam is proportional to the photon density.
The intensity of the beam just as it enters the region of interest at x = 0 is assumed to be
the same as the itensity at the source. We write both as E(0, y, z). It is assumed that this
quantity is well known or independently measureable.

8.3 X-Ray Beam Attenuation

As the beam traverses the region of interest, from x = 0 to x = Dx (see Figure 4), the inten-
sity changes as a result of interactions with matter. In particular, a transmitted (resultant)
intensity E(Dx, y, z) exits the far side of the region of interest. We will see that under rea-
sonable assumptions this transmitted intensity is also planar but is reduced in magnitude.
This process of intensity reduction is called attenuation. It is our goal in this section to
model the attenuation process.
X-ray attenuation is a complex process that is a combination of several physical mechanisms
(outlined in the supplementary material) describing both scattering and absorption of x-rays.
We will consider only Compton scattering which is the dominant process for typical medical
x-ray radiography. In this case, attenuation is almost entirely a function of photon energy
and material mass density. As we are considering monochromatic (monoenergetic) photons,
attenuation is modeled as a function of mass density only.
Consider the beam of initial intensity E(0, y, z) passing through the region of interest, at
fixed y and z. The relative intensity change in an infinitesimal distance from x to x+ dx is
proportional to the mass density ρ(x, y, z) and is given by
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dE(x, y, z) = E(x+ dx, y, z)− E(x, y, z) = −µρ(x, y, z)E(x, y, z)dx

where µ is a factor that is nearly constant for many materials of interest. We also assume
that any scattered photons exit the region of interest without further interaction. This is
the so-called single-scatter approximation which dictates that the intensity remains planar
for all x.
Integrating over the path from x = 0 where the initial beam intensity is E(0, y, z) to x = Dx

where the beam intensity is E(Dx, y, z) yields

dE(x, y, z)

E(x, y, z)
= −µρ(x, y, z)dx

∫ E(Dx,y,z)

E(0,y,z)

dE(x, y, z)

E(x, y, z)
= −µ

∫ Dx

0

ρ(x, y, z)dx

lnE(Dx, y, z)− lnE(0, y, z) = −µ
∫ Dx

0

ρ(x, y, z)dx

E(Dx, y, z) = E(0, y, z)e−µ
∫Dx
0 ρ(x,y,z)dx.

This expression shows us how the initial intensity is reduced, because photons have been scat-
tered out of the beam. The relative reduction depends on the density (or mass) distribution
in the region of interest.

8.4 Radiographic Energy Detection

The transmitted intensity E(Dx, y, z) continues to travel on to a detector (e.g. film) which
records the total detected energy in each of m detector bins. The detected energy in any bin
is the intensity integrated over the bin cross-sectional area. Let pk be the number of x-ray
photons collected at detector bin k. pk is then the collected intensity integrated over the bin
area and divided by the photon energy.

pk =
1

hν

∫∫
(bin k)

E(0, y, z)
(
e−µ

∫Dx
0 ρ(x,y,z)dx

)
dydz.

Let the bin cross sectional area, σ, be small enough so that both the contributions of the
density and intensity to the bin area integration are approximately a function of x only.
Then

pk =
σE(0, yk, zk)

hν
e−µ

∫Dx
0 ρ(x,yk,zk)dx,

where yk and zk locate the center of bin k. Let p0
k be the number of x-ray photons initially

aimed at bin k, p0
k = σE(0, x, y)/hν. Due to attenuation, pk ≤ p0

k for each bin.

pk = p0
ke
−µ

∫Dx
0 ρ(x,yk,zk)dx.

Equivalently, we can write (multiply the exponent argument by σ/σ):

pk = p0
ke
−µ
σ

∫Dx
0 σρ(x,yk,zk)dx.
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The remaining integral is the total mass in the region of interest that the x-ray beam passes
through to get to bin k. We will call this mass sk. Now we have

pk = p0
ke
−sk/α,

where α = σ/µ. This expression tells us that the number of photons in the part of the beam
directed at bin k is reduced by a factor that is exponential in the total mass encountered by
the photons.
Finally, we note that the detector bins correspond precisely to pixels in a radiographic image.

8.5 The Radiographic Transformation Operator

We consider a region of interest subdivided into N cubic voxels (three-dimensional pixels).
Let xj be the mass in object voxel j and Tkj the fraction of voxel j in beam path k (see
Figure 5). Then the mass along beam path k is

sk =
N∑
j=1

Tkjxj,

and the expected photon count at radiograph pixel k, pk, is given by

pk = p0
ke
− 1
α

∑N
j=1 Tkjxj ,

or equivalently,

bk ≡
(
−α ln

pk
p0
k

)
=

N∑
j=1

Tkjxj.

The new quantities bk represent a variable change that allows us to formulate the matrix
expression for the radiographic transformation

b = Tx.

This expression tells us that given a voxelized object mass distribution image x ∈ RN , the
expected radiographic data (mass projection) is image b ∈ Rm, with the two connected
through radiographic transformation T ∈ Mm×N(R). The mass projection b and actual
photon counts p and p0 are related as given above. It is important to note that bk is defined
only for pk > 0. Thus, this formulation is only valid for radiographic scenarios in which
every radiograph detector pixel records at least one hit. This is always the case for medical
applications which require high constrast and high signal-to-noise ratio data.

8.6 Multiple Views and Axial Tomography

Thus far, we have a model that can be used to compute a single radiograph of the region
of interest. In many applications it is beneficial to obtain several or many different views of
this region. In some industrial applications, the region of interest can be rotated within the
radiographic apparatus, with radiographs obtained at various rotation angles. In medical
applications the radiographic apparatus is rotated about the region of interest (including
the subject!). In this latter case, the voxelization remains fixed and the coordinate system
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Figure 5: Object space and radiograph space discretization.

Figure 6: Example axial radiography scenario with six equally spaced views. Horizontal
slices of the object project to horizontal rows in the radiographs.

rotates. For each of a view angles the new m pixel locations require calculation of new mass
projections Tkj. The full multiple-view operator contains mass projections onto all M = a·m
pixel locations. Thus, for multiple-view radiography: x is still a vector in RN , but b is a
vector in RM and T is a matrix operator in MM×N(R).
Finally, we make the distinction between the general scenario and axial tomography (CAT
scans). In principle, we could obtain radiographs of the region of interest from any direction
(above, below, left, right, front, back, etc.). However, in axial tomography the physical
limitations of the apparatus and subject placement dictate that views from some directions
are not practical. The simplest scenario is to obtain multiple views by rotating the apparatus
about a fixed direction perpendicular to the beam direction. This is why CAT machines have
a donut or tube shaped appearance within which the apparatus is rotated. The central table
allows the subject to rest along the rotation axis and the beam can pass through the subject
along trajectories.
This axial setup also simplifies the projection operator. If we consider the `th slice of the
region of interest, described by an n × n arrray of N voxels, the mass projections of this
slice will only occur in the `th row of pixels in each radiographic view see Figure 6. As
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a result, 3D reconsructions can be obtained by a series of independent 2D reconstructed
slices. For example, the brown slice of the spherical object (represented in RN) is related to
the collection of brown rows of the radiographs (represented in RM) through the projection
operator T ∈ MM×N(R). The black slice and black rows are related through the same
projection operator.

8.7 Model Summary

The list below gathers the various mathematical quantities of interest.

• N is the number of object voxels.

• M is the number of radiograph pixels.

• x ∈ RN is the material mass in each object voxel.

• b ∈ RM is the mass projection onto each radiograph pixel.

• p ∈ RM is the photon count recorded at each radiograph pixel.

• T ∈ MN×M(R) is voxel volume projection operator. Tij is the fractional volume of
voxel j which projects orthogonally onto pixel i.

• p0
k is the incident photon count per radiograph pixel.

• b = −α ln p
p0

.

• b = Tx is the (mass projection) radiographic transformation.

The description of images (objects and radiographs) as vectors in RN and RM is compu-
tationally useful and more familiar than a vector spaces of images. One should keep in
mind that this is a particular representation for images which is useful as a tool but is
not geometrically descriptive. The price we pay for this convenience is that we no longer
have the geometry of the radiographic setup (pixelization and voxelization) encoded in the
representation.
A vector in R3, say (1, 2, 5), is a point in a three-dimensional space with coordinates described
relative to three orthogonal axes. We can actually locate this point and plot it. An image
represented in R3, say (1, 2, 5), is not a point in this space. Without further information
about the vector space of which it is a member, we cannot draw this image. The use of
R3 allows us to perform scalar multiplication and vector addition on images because these
operations are equivalently defined on R3.

8.8 Model Assumptions

The radiography model we have constructed is based on a number of approximations and
assumptions which we list here. This list is not comprehensive, but it does gather the most
important concepts.

60



• Monochromaticity. Laboratory sources generate x-rays with a wide range of en-
ergies as a continuous spectrum. We say that such x-ray beams are polychromatic.
One method of approximating a monochromatic beam is to precondition the beam
by having the x-rays pass through a uniform material prior to reaching the region of
interest. This process preferentially attenuates the lower energy photons, leaving only
the highest energy photons. This process is known as beam-hardening. The result is
a polychromatic beam with a narrower range of energies. We can consider the beam
to be approximately monochromatic, especially if the attenuation coefficient(s) of the
material, µ, is not a strong function of photon energy.

• Geometric Beam Characteristics. Laboratory sources do not naturally generate
planar x-ray beams. It is more characteristic to have an approximate point source
with an intensity pattern that is strongly directionally dependent. Approximate planar
beams with relatively uniform intensity E(0, y, x) can be achieved by selective beam
shielding and separation of source and region of interest. In practice, it is common to
use the known point source or line source characteristics instead of assuming a planar
beam. The model described here is unchanged except for the computation of T itself.

• Secondary Radiation. Our model uses a single-scatter approximation in which if a
photon undergoes a Compton scatter, it is removed from the analysis. In fact, x-rays
can experience multiple scatter events as they traverse the region of interest or other
incidental matter (such as the supporting machinery). The problematic photons are
those that scatter one or more times and reach the detector. This important secondary
effect is often approximated by more advanced models.

• Energy-Dependent Attenuation. The attenuation coefficient µ, which we have
taked to be constant, is not only somewhat material dependent but is also beam energy
dependent. If the beam is truly monochromatic this is not a problem. However, for
a polychromatic beam the transmitted total energy will depend on the distribution of
mass along a path, not just the total mass.

• Other Attenuation Mechanisms. We have included only Compton scattering in the
model. Four other mechanisms (outlined in the supplementary material) contribute to
the attenuation. While Compton scattering is the dominant contributor, photoelectric
scattering will have some effect. It becomes important at the lower energies of interest
and for materials of relatively high atomic number – such as calcium which is concen-
trated in bone. The major effect of ignoring photoelectric scattering is quantitative
mass uncertainty.

• There are a number of Detector-Related Effects which affect radiograph accuracy.
Energy detection efficiency can be a function of beam intensity, photon energy and
even pixel location. Detectors are subject to point-spread effects in which even an
infinitesimally narrow beam results in a finitely narrow detection spot. These types of
effects are usually well-understood, documented and can be corrected for in the data.
Detection is also prone to noise from secondary radiation, background radiation, or
simply manufacturing variances.
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8.9 Additional Resources

There is a variety of online source material that expands on any of the material presented
here. Here are a few starting points.

https://www.nde-ed.org/EducationResources/CommunityCollege/Radiography/c_rad_index.htm

http://web.stanford.edu/group/glam/xlab/MatSci162_172/LectureNotes/01_Properties%20&%20Safety.pdf

http://radiologymasterclass.co.uk/tutorials/physics/x-ray_physics_production.html

Several physical processes contribute to absorption and scattering of individual photons as
they pass through matter. Collectively, these processes alter the geometry and intensity of
a beam of such photons. What follows is a brief description of each.

• The Photoelectric Effect is the absorption of an x-ray photon by an atom accompa-
nied by the ejection of an outer-shell electron. This ionized atom then re-absorbs an
electron and emits an x-ray of energy characteristic of the atom. The daughter x-ray
is a low-energy photon which is quickly re-absorbed and is effectively removed from
the x-ray beam. Photoelectric absorption is the dominant process for photon energies
below about 100keV and when interacting with materials of high atomic number.

• Rayleigh Scattering is the process of a photon interacting with an atom without
energy loss. The process is similar to the collision of two billiard balls. Rayleigh
scattering is never the dominant mechanism, at any energy.

• Compton Scattering occurs when an x-ray photon interacts with an electron im-
parting some energy to the electron. Both electron and photon are emitted and the
photon undrgoes a directional change or scatter. Compton Scattering is the dominant
process for soft tissue at photon energies between about 100keV through about 8MeV.

• Pair Production is the process in which a photon is absorbed producing a positron-
electron pair. The positron quickly decays into two 510keV x-ray photons. Pari pro-
duction is only significant for photon energies of several MeV or more.

• Photodisintegration can occur for photons of very high energy. Photodisintegration
is the process of absorption of the photon by an atomic nucleus and the subsequent
ejection of a nuclear particle.

Exercises

1. Given Tkj = 0.42, what does this value mean?

2. What is accomplished in the matrix multiply when multiplying an object vector by
the kth row of T?

3. Explain how you change the radiographic operator when changing from one view to
many.

4. Why do we use pixel values bk where bk is defined as

bk ≡ −α ln

(
pk
p0

)
instead of the expected photon count pk?
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9 Radiography for Linear Algebra Lab #2

9.1 Radiographic Scenarios and Notation

A single-view radiographic setup consists of an area of interest where the object will be
placed, and a single screen onto which the radiograph will be recorded. A multiple-view
radiographic setup consists of a single area of interest experimentally designed so that ra-
diographs of this area can be recorded for different locations about the object.
The geometry of radiographic scenarios is illustrated in figures 1 and 2. The notation is as
follows.

• Slice of region of interest: n by n array of voxels.
• Total number of voxels in each slice is N = n2.
• Each voxel has a width and height of 1 unit.
• For each radiographic view we record m pixels of data.
• The width of each pixel is ScaleFac. If ScaleFac = 1 then pixel width is the same as

voxel width.
• Number of radiographic angles (views): a.
• Total number of pixels in the radiograph: M = am
• Angle of the ith view (measured in degrees east of south): θi
• Object mass at voxel j is xj
• Recorded radiograph value at pixel k is bk

In this Lab we will be constructing matrix representations of the radiographic transfor-
mation operators for example scenarios. Recall that an object can be represented by an
N -dimensional vector x and a set of radiographs can be represented by an M -dimensional
vector b. What will be the size of the corresponding matrix operator that maps object vec-
tor x to radiograph vector b? Read again the definition of the matrix operator from the
Radiography lecture notes. Notice that particular values for x and b are not necessary for
computing the matrix of the radiographic transformation!

Figure 1: The geometry of a single view

radiographic transformation.
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Figure 2: The Geometry of a multiple view
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9.2 A First Example

Let’s look at a specific scenario. For the setup pictured below, we have:

x3

x2 x4

b2

b1

x1

• Total number of voxels: N = 4 (n = 2).

• Total number of pixels: M = m = 2

• ScaleFac =
√

2

• Number of views: a = 1

• Angle of the single view: θ1 = 45◦

Recalling that Tkj is the fraction of voxel j which projects perpendicularly onto pixel k, the

matrix associated with this radiographic setup is T =

[
1/2 1 0 1/2
1/2 0 1 1/2

]
. Be sure and check

this to see if you agree! Hence, for any input vector x, the radiographic output is b = Tx.

Find the output when the object is the vector x =


10
0
5
10

.

9.3 Now it’s your turn!

Note: Some of the following exercises will ask you to use Matlab or Octave to compute
radiographic transformations. You will need to first download the function tomomap.m from
the class website. If you do not yet have access to personal or department computing re-
sources, you can complete this assignment using online Octave in a web browser. Instructions
are given at the end of this document.

Instructions for using octave-online.net

1. Download the file tomomap.m from the class website to your computer in a location of
your choice.

2. Open octave-online.net in a web browser. Close (or read and close) the introduction
splash window.

3. Click the three bars in the upper right of the screen and sign in.

4. The far left window is a list of your files. You need to place the file tomomap.m into this
octave-online folder. To do this either (a) drag and drop tomomap.m onto this window
or (b) click the upload file icon in the window, find tomomap.m, and click open. The
file opens automatically in the editor window.

5. FYI: The rightmost window is the command prompt terminal. You will type your
commands here. You also have the option of creating your own scripts and functions
to save and run.
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6. Run this example call to function tomomap.m by typing the following at the command
prompt and hitting return.

T = tomomap(2,2,[20 60],1)

You should see twelve entries in the variable T . All other entries are zero. To see the
full array try the following:

T = full(tomomap(2,2,[20,60],1))

7. Now you are ready to complete the assignment. You can always read the comments at
the beginning of tomomap.m (see editor window) to understand more about what this
code does and how to use it.

9.3.1 Part I: Finding the matrix associated with a radiographic transformation,
and using the matrix to determine radiographic outputs.

1. Suppose you have the setup where

• Height and width of image in voxels: n = 2 (Total voxels N = 4)
• Pixels per view in radiograph: m = 2
• ScaleFac = 1
• Number of views: a = 2
• Angle of the views: θ1 = 0◦, θ2 = 90◦

(a) Sketch this setup.

(b) Calculate the matrix associated with the setup.

(c) Find the radiographs of the following objects.

6

4 3

1 1

0 1

0

2. Suppose you have the setup where

• Height and width of image in voxels: n = 2 (Total voxels N = 4)
• Pixels per view in radiograph: m = 2
• ScaleFac = 1
• Number of views: a = 2
• Angle of the views: θ1 = 0◦, θ2 = 45◦

(a) Sketch this setup.

(b) Calculate the matrix associated with the setup.

(c) Repeat step (b) using the code tomomap.
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3. Suppose you have the setup where

• Height and width of image in voxels: n = 2 (Total voxels N = 4)
• Pixels per view in radiograph: m = 2
• ScaleFac =

√
2

• Number of views: a = 2
• Angle of the views: θ1 = 45◦, θ2 = 135◦

(a) Sketch this setup.

(b) Calculate the matrix associated with the setup.

(c) Repeat step (b) using the code tomomap.

4. Suppose you have the setup where

• Height and width of image in voxels: n = 2 (Total voxels N = 4)
• Pixels per view in radiograph: m = 4
• ScaleFac =

√
2/2

• Number of views: a = 1
• Angle of the views: θ1 = 45◦

(a) Sketch this setup.

(b) Calculate the matrix associated with the setup.

(c) Repeat step (b) using the code tomomap.

5. Suppose you have the setup where

• Height and width of image in voxels: n = 4 (Total voxels N = 16)
• Pixels per view in radiograph: m = 2
• ScaleFac = 1
• Number of views: a = 2
• Angle of the views: θ1 = 0◦, θ2 = 45◦

(a) Sketch this setup.

(b) Calculate the matrix associated with the setup.

(c) Find the radiographs of images A, B, and C from lab 1 under this transformation.

(d) Repeat steps (b) and (c) using the code tomomap.

6. Suppose you have the setup where

• Height and width of image in voxels: n = 4 (Total voxels N = 16)
• Pixels per view in radiograph: m = 4
• ScaleFac = 1
• Number of views: a = 3
• Angle of the views: θ1 = 0◦, θ2 = 25.5◦, and θ2 = 90◦

(a) Sketch this setup.

(b) Calculate the matrix associated with the setup using tomomap.

(c) Find the radiographs of images A, B, and C from lab 1 under this transformation.

66



9.3.2 Part II: Radiographs of Linear Combinations of Objects

Take the two objects in exercise 1 above to be x (left object) and y (right object). For each
of the transformations in exercises 1, 3, and 4 from Part I answer the following questions.

1. What is the radiograph of the object 3x?
2. What is the radiograph of the object 0.5y?
3. What is the radiograph of the object 3x+ 0.5y?

4. Generalize these observations to arbitrary linear combinations of object vectors. Write
your conjecture(s) in careful mathematical notation.

10 Transformations

First, let us clear up some terminology. Transformation is just another word for function.
We use the word to suggest that we are working in spaces (in this class vector spaces) and
the function will transform the space to another space. In a multivariable calculus class,
we see this when thinking about about a change of variables. For example, we transform
rectangular coordinates to polar through a transformation. In Figure 7 we see that this
change of variables transformation takes round things and makes them rectangular.

T

r

θ

x

y

Figure 7:

Another type of transformation is when we project from one space to a lower dimensional
space. For example, we can project a points in R2 to their component along the y axis as in
Figure 8. In this transformation, we take a space that is a 2-d plane and transform it into a
1-d line.

T y

x

y

Figure 8:

Notice that in Lab #2 above, we found that when we apply a radiographic transformation
to a linear combination, αu + βv, we get a linear combination of radiographs, αTu + βTv
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out. This is property of the radiographic transformation is useful because we may wonder
what is an object made of. If we know part of what is being radiographed (and what the
corresponding radiograph should be), we can subtract that away to be able to view the
radiograph of the part we don’t know.

Example 10.1. For example, suppose we expect an object to look like what we see on the
left in Figure 9 but the truth is actually like we see on the right in Figure 9. We then expect

Figure 9:

that the radiograph that comes from an object, xexp like we see on the left in Figure 9 to be
a certain radiograph, call it bexp. But, we take a radiograph of the actual object, x, and we
get the radiograph b. Now, we know for sure that the expected parts are in the object. We
can then remove bexp from the radiograph so that we can dig deeper into what else is present.
Thus, we want to know about the radiograph, bunexp, of the unexpected object, call this xunexp,
that is present. So we compute this radiograph like this:

T (xunexp) = T (x− xexp) = b− bexp.

Another reason this might be helpful comes in possible changes in an object.

Example 10.2. Suppose you radiograph an object as in Figure 9 and find that the radiograph
is bexp, but weeks later, you radiograph the same object (or so you think) and you get a
radiograph that is 1.3 times the radiograph bexp. This could mean that the object now looks
more like one of the objects we see in Figure 10. Again, we can see that the density is

Figure 10:

proportionally larger, possibly meaning the object grew.

10.1 Linear Transformations

Being able to perform the type of investigation above with our radiographic transformation
is very useful. It turns out that this property is useful beyond the application of radiography,
so useful that we define transformations with this property.
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Definition 10.1. Let V and W be vector spaces and let T be a function that maps vectors
in V to vectors in W . We say that T : V → W is a linear transformation if for vectors
v1, v2 ∈ V and scalars α, β,

T (αv1 + βv2) = αT (v1) + βT (v2).

Note: We also call T a homomorphism. (Linear and homomorphism mean the same thing
in this context.)
Notice, also, that the radiographic transformation is an example of a linear transformation.
Let’s look at some more examples.

Example 10.3. Consider the vector space V =M2×3. Let T : V → W be defined as follows.

T

(
a b c
d f g

)
=

(
a+ b+ c
d+ f + g

)
.

We can determine whether T is linear by determining whether or not T (αv1+βv2) = αT (v1)+
βT (v2) for some v1, v2 ∈ V and scalars α and β. Indeed, if v1, v2 ∈ V , then

v1 =

(
a1 b1 c1

d1 f1 g1

)
and v2 =

(
a2 b2 c2

d2 f2 g2

)
.

Thus,

T (αv1 + βv2) =T

(
αa1 + βa2 αb1 + βb2 αc1 + βc2

αd1 + βd2 αf1 + βf2 αg1 + βg2

)
=

(
αa1 + βa2 + αb1 + βb2 + αc1 + βc2

αd1 + βd2 + αf1 + βf2 + αg1 + βg2

)
=

(
α(a1 + b1 + c1) + β(a2 + b2 + c2)
α(d1 + f1 + g1) + β(d2 + f2 + g2)

)
=

(
α(a1 + b1 + c1)
α(d1 + f1 + g1)

)
+

(
β(a2 + b2 + c2)
β(d2 + f2 + g2)

)
=α

(
a1 + b1 + c1

d1 + f1 + g1

)
+ β

(
a2 + b2 + c2

d2 + f2 + g2

)
=αT (v1) + βT (v2).

Thus, T maps linear combinations to linear combinations with the same scalars. So, T is a
linear transformation.

Example 10.4. In basic algebra classes, we learn that f(x) = mx + b is a linear function.
Let’s explore this function in this example. First notice that f : R → R. That is, f maps
real numbers to real numbers. We also know that R is a vector space. So, is f linear like we
learned to call it? The answer is no. Here’s why. Let x, y ∈ R and let α, β be scalars. Then

f(αx+ βy) = m(αx+ βy) + b = α(mx) + β(my) + b 6= α(mx+ b) + β(my + b).

Thus, f does not satisfy our definition of linear. In fact, mathematicians prefer to call
functions of the form f(x) = mx+ b affine.
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So, we should explore what went wrong with the last function. It seems that the constant,
b caused problems. Notice that if b = 0 above, we would have the function f(x) = mx and

f(αx+ βy) = m(αx+ βy) + b = α(mx) + β(my) = αf(x) + βf(y).

That means, f : R→ R defined by f(x) = mx is linear. There’s a hidden property of linear
transformations that we should expose now.

Theorem 10.1. Let V and W be vector spaces. If T : V → W is a linear transformation,
then T (0) = 0.

Proof: Let V and W be vector spaces and let T : V → W be a linear transformation. Notice
that 0 ∈ V and 0 ∈ W . (Note also that these two vectors called 0 need not be the same
vector.) We also know that, for any scalar α, T (0) = T (α0) = αT (0). We can use this
equation to solve for T (0) and we get that either α = 1 or T (0) = 0. Since we know that α
can be any scalar, T (0) = 0 must be true.
This last theorem gives us a quick check to see whether a mapping is linear. We can determine
whether or not 0 maps to 0. If not, T cannot be linear.

Exercises

1. Determine which of the following is a linear transformation. Prove your answer.

(a) Define f : R3 → R2 by f(v) = Mv + x, where

M =

(
1 2 1
1 2 1

)
and x =

(
1
0

)
(b) Define F : V → P1, where

V = {ax2 + (3a− 2b)x+ b| a, b ∈ R} ⊆ P2.

by
F(ax2 + (3a− 2b)x+ b) = 2ax+ 3a− 2b.

(c) Define G : P2 →M2×2 by

G(ax2 + bx+ c) =

(
a a− b

c− 2 c+ 3a

)
.

(d) Define h : V → P1, where

V =

{(
a b c
0 b− c 2a

)∣∣∣∣ a, b, c ∈ R
}
⊆M2×3

by

h

(
a b c
0 b− c 2a

)
= ax+ c.

(e) Define f : I → P2 where I = {I| I is of the form below} by

f(I) = ax2 + (b+ c)x+ (a+ c),

where I is the image below
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I =

3a

a− b

b+ a

a

b

c+ b

2b− c

(f) Define f :M2×2 → R4 by

f

(
a b
c d

)
=


a
b
c
d

 .

(g) Define f : P2 → R2 by

f(ax2 + bx+ c) =

(
a+ b
a− c

)
.

(h) Let H14 be the set of all possible heat states representing the temperature dif-
ference, from the end temperatures, every 1 cm along a 6 cm long rod (start
measuring at one end). Define a function h : H6 → H6 by averaging neighboring
heat coordinates in the heat state. That is, if v = (0, a1, a2, a3, a4, a5, 0) is a heat
state in H6 then

h(0, a1, a2, a3, a4, a5, 0)

=

(
0,

0 + a1 + a2

3
,
a1 + a2 + a3

3
,
a2 + a3 + a4

3
,
a3 + a4 + a5

3
,
a4 + a5 + 0

3
, 0

)
.

Show h is a linear transformation.

11 Radiography and Tomography in Linear Algebra

Lab #3

In this activity, you will explore some of the properties of radiographic transformations.
In Lab #2 you found six radiographic transformation operators. These operators were de-
fined by each of the six setups given in Lab #2. You then found the corresponding matrix
T so that, mathematically, we defined the transformations as a matrix multiply. Then you
applied the matrix multiply to specific object images. The object image consisted of four
voxels and was represented as a vector in R4. The radiographic image was represented as a
vector in RM , one entry for each radiographic pixel. The price we pay for this representation
is that we no longer have the geometry of the radiographic setup encoded in the repre-
sentation. The use of representations in Rn is a computational tool and not geometrically
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descriptive of vector spaces of images. We want to reiterate that this is only a representation
and that these images are not vectors in RM . Because of these new image representations,
each transformation could be constructed as a matrix operator in MM×4(R).
In this lab, we are interested, specifically, in the radiographic transformations 1,
3, and 4 from Lab # 2 and not the specific object image examples given in that
lab.

Task 1

For each of the radiographic transformations (defined by the radiographic setups) 1,3 and 4
which you found in Lab #2 answer the following questions. Justify your conclusions.

1. Is it possible for two different objects to produce the same radiograph? If so, give an
example.

2. Are any nonzero objects invisible to this operator? If so, give an example. We say that
an object is nonzero if not all entries are zero. We say that an object is invisible if it
produces the zero radiograph.

3. Are there radiographs (in the appropriate dimension for the problem) that cannot be
produced as the radiograph of any object? If so, give an example.

Task 2

Go a little deeper into understanding the operators 1, 3, and 4 from Lab #2 by answering
these questions about operators 1,3, and 4.

1. Choose any two objects that produce the same radiograph and subtract them. What
is special about the resulting object?

2. Describe the set of all invisible objects. This could involve an equation that the entries
would have to satisfy or a few specific objects that could be used to construct all other
such objects. Be creative.

3. Describe the set of radiographs that can be produced from all possible objects. This
may require similar creativity.

Task 3

Now put this more into the language of Linear Algebra. For each of the operators 1, 3, and
4 from Lab # 2 do the following.

1. Give a basis for the set of all invisible objects.

2. Give a basis for the set of all possible radiographs.
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12 Properties of Transformations

In Lab # 3, we saw several properties of linear transformations that were useful to recognize.
We saw that it was possible for two objects to produce the same radiograph. This can be
an issue in the case of brain radiography. We would want to know if it was possible for
an abnormal brain to produce the same radiograph as a normal brain. We also saw that it
was possible to have radiographs that could not be produce from any object. This becomes
important in being able to recognize noise or other corruption in a given radiograph.

12.1 Injections and Surjections

Again, it turns out that these properties are not only important in radiography. There are
many other scenarios (some application based and some theoretical) where we need to know
if a transformation has these properties. So, let’s define them.

Definition 12.1. Let V and W be vector spaces. We say that the transformation T : V → W
is injective if the following property is true:

Whenever T (u) = T (v) it must be true that u = v.

A transformation that is injective is also said to be one-to-one (1-1) or an injection.

Notice, in Figure 11, we see that the transformation represented on the left is 1-1, but the
transformation represented on the right is not because both v1 and v2 map to w4, but v1 6= v2.

v1

v4

v5

v6

v3

v2 w3

w4

w5

w6

w7

w2

w1 v1

v4

v5

v6

v3

v2 w3

w4

w5

w6

w7

w2

w1

Figure 11:

Let us now look at some more concrete examples.

Example 12.1. Let T : P2 →M3×2 be defined by

T (ax2 + bx+ c) =

(
a b c
0 0 0

)
.

Notice that T is a linear transformation. Indeed, let v = ax2 + bx+ c and u = fx2 + gx+ h.
Then

T (αv + βu) =T ((αa+ βf)x2 + (αb+ βg)x+ (αc+ βh))

=

(
αa+ βf αb+ βg αc+ βh

0 0 0

)
=

(
αa αb αc
0 0 0

)
+

(
βf βg βh
0 0 0

)
=αT (v) + βT (u).
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Thus, T is a linear transformation.

Definition 12.2. Let V and W be vector spaces. We say that the transformation T : V → W
is surjective if every element in W is mapped to. That is, if w ∈ W , then there exists a
v ∈ V so that T (v) = w.
A transformation that is surjective is also said to be onto or a surjection.

In Figure 11, neither of the transformations represented are surjective. On the left, we see
that no vector maps to w5. On the right, no vector maps to w6 nor does a vector map to w7.
In Figure 12, the left two are surjective and neither is injective. Again, let’s consider some

v1

v4

v5

v3

v2 w3

w4

w5

w2

w1

v6

v1

v4

v5

v3

v2 w3

w4

w5

w2

w1

v6

Figure 12:

concrete examples.

Example 12.2. Let T : R2 →M3×2 be defined by

T

(
a
b

)
=

 a −b
b a+ b
0 −a

 .

We can show that T is a linear transformation. (I’ll leave this for the reader to do.) We
want to know if T is one-to-one and/or onto. Notice that if

T

(
a
b

)
= T

(
c
d

)

Then  a −b
b a+ b
0 −a

 =

 c −d
d c+ d
0 −c


Matching up entries, gives us a = c,−b = −d, b = d, a + b = c + d, 0 = 0, and −c = −d.
Thus, (

a
b

)
=

(
c
d

)
.

So, by definition, T is one-to-one.
Notice that,

w =

 1 1
1 1
1 1

 ∈M3×2.

But, there is no v ∈ R2 so that T (v) = w because every output has a 0 in the (3, 1) entry.
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Example 12.3. Let T : R2 → P1 be defined by

T

(
a
b

)
= ax+ b.

Notice that if we pick w ∈ P1, then w = ax+ b for some a, b ∈ R. Notice also that if we let

v =

(
a
b

)
∈ R2

then T (v) = w. Thus, T is onto.
Now, suppose

T

(
a
b

)
= T

(
c
d

)
.

Then
ax+ b = cx+ d.

Matching up like terms gives us that a = c and b = d. That is(
a
b

)
=

(
c
d

)
.

So, T is one-to-one.

12.2 Bijections and Isomorphisms

We see above that sometimes a linear transformation can be both injective and surjective.
In this subsection we discuss this special type of linear transformation.

Definition 12.3. We say that a linear transformation, T : V → W , is bijective if T is both
injective and surjective. We call a bijective transformation a bijection or an isomorphism.

Definition 12.4. Let V and W be vector spaces. If there exists a bijection mapping between
V and W , then we say that V is isomorphic to W and we write V ∼= W .

Notice that in the above example we found a bijection. This means that P1
∼= R2. Notice

also that dimP1 = dimR2. This is not a coincidence. In what follows, we will see the reason
this happens. But first, a preliminary result.

Lemma 12.1. Let V and W be vector spaces. Let B = {v1, v2, . . . , vn} be a basis for
V .T : V → W is an injective linear transformation if and only if {T (v1), T (v2), . . . , T (vn)}
is a linearly independent set in W .

Proof: As with every proof about linear dependence/independence, we will assume the
following linear dependence relation is true. Let α1, α2, . . . , αn be scalars so that

α1T (v1) + α2T (v2) + . . .+ αnT (vn) = 0.

Then because T is linear, we know that

T (α1v1 + α2v2 + . . .+ αnvn) = 0.
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But, we also know that T (0) = 0. That means that

T (α1v1 + α2v2 + . . .+ αnvn) = T (0).

And, since T is 1-1, we know that (by definition)

α1v1 + α2v2 + . . .+ αnvn = 0.

Finally, since B is a basis for V , B is linearly independent. Thus,

α1 = α2 = . . . = αn = 0.

Thus, {T (v1), T (v2), . . . , T (vn)} is linearly independent.
Now suppose that T is linear, let B = {v1, v2, . . . , vn} be a basis for V , and suppose
{T (v1), T (v2), . . . , T (vn)} ⊂ W is linearly independent. Suppose u, v ∈ V so that T (u) =
T (v). So, T (u− v) = 0. Since u, v ∈ V , there are scalars α1, α2, . . . , αn and β1, β2, . . . , βn so
that

u = α1v1 + α2v2 + . . .+ αnvn and v = β1v1 + β2v2 + . . .+ βnvn.

Thus
T ((α1 − β1)v1 + (α2 − β2)v2 + . . .+ (αn − βn)vn) = 0.

This leads us to the linear dependence relation

(α1 − β1)T (v1) + (α2 − β2)T (v2) + . . .+ (αn − βn)T (vn) = 0.

Since {T (v1), T (v2), . . . , T (vn)} is linearly independent, we know that

α1 − β1 = α2 − β2 = . . . = αn − βn = 0.

That is, u = v. So, T is injective. .
Notice that Lemma 12.1 tells us that if V is n-dimensional then basis elements of V map to
basis elements of an n-dimensional subspace of W . In particular, if dimW = n also, then
we see a basis of V maps to a basis of W . This is very useful in proving the next result.

Theorem 12.1. Let V and W be (finite dimensional) vector spaces. V ∼= W if and only if
dimV = dimW .

Note: If we allow the dimension of a vector space to be infinite, then this is not necessarily
true. In this class, we restrict to discussions of finite dimensional vector spaces only, so we
are happy with this result.
Proof: Suppose dimV = dimW . Suppose also that a basis for V is BV = {v1, v2, . . . , vn}
and a basis for W is BW = {w1, w2, . . . , wn}. Then we can define T : V → W to be the
linear transformation so that

T (v1) = w1, T (v2) = w2, . . . , T (vn) = wn.

We will show that T is an isomorphism. Now, we know that if w ∈ W , then w = α1w1 +
α2w2 + . . . + αnwn for some scalars α1, α2, . . . , αn. We also know that v = α1v1 + α2v2 +
. . .+ αnvn ∈ V . Since T is linear, we can see that

T (v) =T (α1v1 + α2v2 + . . .+ αnvn)

=α1T (v1) + α2T (v2) + . . .+ αnT (vn)

=α1w1 + α2w2 + . . .+ αnwn = w.
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Thus, T is onto. Now, suppose that T (v) = T (u) where v = α1v1 + α2v2 + . . . + αnvn and
u = β1v1 + β2v2 + . . .+ βnvn are vectors in V . Then we have

T (α1v1 + α2v2 + . . .+ αnvn) =T (β1v1 + β2v2 + . . .+ βnvn)

α1T (v1) + α2T (v2) + . . .+ αnT (vn) =β1T (v1) + β2T (v2) + . . .+ βnT (vn)

α1w1 + α2w2 + . . .+ αnwn =β1w1 + β2w2 + . . .+ βnwn

(α1 − β1)w1 + (α2 − β2)w2 + . . .+ (αn − βn)wn = 0.

Notice that this last equation is a linear dependence relation for the basis BW . Since BW is
linearly independent, we know that

α1 − β1 = 0

α2 − β2 = 0

...

αn − βn = 0.

That is to say u = v. Thus, T is injective. And, therefore, since T is both injective and
surjective, T is an isomorphism. Now, since there is an isomorphism between V and W , we
know that V ∼= W .
Now we will prove the other direction. That is, we will show that if V ∼= W then dimV =
dimW . First, let us assume that V ∼= W . This means that there is an isomorphism,
T : V → W , mapping between V and W .
Suppose, for the sake of contradiction, that dimV 6= dimW . Without loss of generality,
assume dimV > dimW . (We can make this assumption because we can just switch V ’s
and W ’s in the following argument and argue for the case when dimV < dimW .) Let
BV = {v1, v2, . . . , vn} be a basis for V and BW = {w1, w2, . . . , wm} be a basis for W . Then
m < n. We will show that this cannot be true. Lemma 12.1 tells us that since T is one-
to-one, the basis BV maps to a linearly independent set {T (v1), T (v2), . . . , T (vn)} with n
elements. But by Theorem 6.1, we know that this is not possible. Thus, our assumption
that n > m cannot be true. Again, the argument that tells us that n > m also cannot be
true is very similar with V ’s and W ’s switched. Thus, n = m. That is, dimV = dimW .

Theorem 12.1 gives us a tool for creating isomorphisms, when isomorphisms exist. It also
tells us that isomorphisms exist between two vector spaces so long as they have the same
dimension.

Example 12.4. Let V = M2×3 and W = P5. We know that V ∼= W because both are
6-dimensional vector spaces. Indeed, a basis for V is

BV =

{(
1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 1
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)}
and a basis for W is

BW = {1, x, x2, x3, x4, x5}.

Thus, we can create a bijection T that maps V to W . Using Theorem 12.1 we define T as
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follows

T

(
1 0 0
0 0 0

)
= 1

T

(
0 1 0
0 0 0

)
= x

T

(
0 0 1
0 0 0

)
= x2

T

(
0 0 0
1 0 0

)
= x3

T

(
0 0 0
0 1 0

)
= x4

T

(
0 0 0
0 0 1

)
= x5.

Notice that if we have any vector v ∈ V , we can find where T maps it to in W . Since v ∈ V ,
we know there are scalars, a, b, c, d, e, f so that

v = a

(
1 0 0
0 0 0

)
+b

(
0 1 0
0 0 0

)
+c

(
0 0 1
0 0 0

)
+d

(
0 0 0
1 0 0

)
+e

(
0 0 0
0 1 0

)
+f

(
0 0 0
0 0 1

)
.

That is,

v =

(
a b c
d e f

)
.

Thus, since T is linear,

T (v) = a(1) + b(x) + c(x2) + d(x3) + e(x4) + f(x5) = a+ bx+ cx2 + dx3 + ex4 + fx5.

Exercises

For the following exercises use only methods discussed in sections 12 or before. That is, do
not read ahead and use methods from later sections.

1. Determine which of the transformations in exercise 1 of Section 10 are injective. Prove
your answer.

2. Determine which of the transformations in exercise 1 of Section 10 are surjective. Prove
your answer.

3. Create a transformation that maps from R3 to P1 that is surjective. Prove that your
transformation is surjective.

4. Can you create an injective transformation that maps R2 to M2×3? If so, create and
prove that it is injective.

5. Can you create an surjective transformation that maps R2 toM2×3? If so, create and
prove that it is surjective.

6. Can you create an injective transformation that maps M2×3 to R2? If so, create and
prove that it is injective.
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7. Can you create an surjective transformation that mapsM2×3 to R2? If so, create and
prove that it is surjective.

8. Create a bijection between P1 and V = {(x, y, z)|x + y + z = 0}. Prove your trans-
formation is linear and is indeed a bijection. If such a bijection doesn’t exist, explain
why not.

13 Transformation Spaces

In Lab # 3, we saw more properties of linear transformations that were useful to recognize
and that were not discussed in Section 12. Some radiographic transformations cannot “see”
certain objects or we say that those objects are “invisible” to the transformation. In this
application, we really want to know if something might be present yet invisible to the trans-
formation we are using. In the case of brain scans, it would be most unhelpful if we cannot
see certain abnormalities because they are invisible to the radiographic setup. If something
we want to look for in a brain scan is invisible to our current setup, we can adjust the setup
to “see” the object we are looking for. Say, for example, we know that the object on the
right in Figure 13 is invisible to our radiographic transformation. Then when it is present
along with what we expect (Figure 9 in Section 10), we get the same radiographic transfor-
mation bexp and we might go along our merry way, not knowing that something unexpected
is present in our object so that instead of what is seen in Figure 9, we actually have what is
on the left in Figure 13.

Figure 13:

13.1 The Nullspace

Again, wanting to know which objects are “invisible” to a transformation extends beyond
the application of Radiography and Tomography. So, we define the space of all “invisible”
objects below.

Definition 13.1. The nullspace of a linear transformation, T : V → W , is the subet of V
that map to 0 ∈ W . That is,

null(T ) = {v ∈ V | T (v) = 0}.

We say that the nullity of a linear transformation, T , is the dimension of the subspace
null(T ).
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Example 13.1. Define F : V → P1, where

V = {ax2 + (3a− 2b)x+ b| a, b ∈ R} ⊆ P2.

by
F(ax2 + (3a− 2b)x+ b) = 2ax+ 3a− 2b.

We now find the nullspace of F :

null(F) = {v ∈ V | F(v) = 0}
= {ax2 + (3a− 2b)x+ b| 2ax+ 3a− 2b = 0}
= {ax2 + (3a− 2b)x+ b| a = 0, b = 0}
= {0}.

In this case, the nullity is 0 because there are no elements in the basis of nullF

In cases as in Example 13.1, we say that F has a trivial nullspace, or that the nullspace of
F is trivial.

Example 13.2. Define h : V → P1, where

V =

{(
a b c
0 b− c 2a

)∣∣∣∣ a, b, c ∈ R
}
⊆M2×3

by

h

(
a b c
0 b− c 2a

)
= ax+ c.

Let’s find null(h).

null(h) = {v ∈ V | h(v) = 0} =

{(
a b c
0 b− c 2a

)∣∣∣∣ h( a b c
0 b− c 2a

)
= 0, a, b, c ∈ R

}
=

{(
a b c
0 b− c 2a

)∣∣∣∣ ax+ c = 0, a, b, c ∈ R
}

=

{(
a b c
0 b− c 2a

)∣∣∣∣ a = 0, c = 0, b ∈ R
}

=

{(
0 b 0
0 b 0

)∣∣∣∣ b ∈ R
}

= span

{(
0 1 0
0 1 0

)}
.

In this case the nullity is 1 because there is one element in the basis for the nullspace.

Note that the above examples are indeed examples of linear transformations (this was proved
in Exercise 1 in Section 10).
Note that the name “nullspace” seems to imply that this set is a vector space. In fact, I’ve
discussed basis and treated it as if it is a vector space in my examples above. The next
theorem justifies my treatment of this set.

Theorem 13.1. Given vector spaces V and W and a linear transformation T : V → W ,
the nullspace null(T ) is a subspace of V .
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Proof: By definition of null(T ), we know that null(T ) ⊆ V . We also know that the zero vector
always maps to 0. Thus 0 ∈ null(T ). Now, let α and β be scalars and let u, v ∈ null(T ).
Then T (u) = 0 and T (v) = 0. Thus, since T is linear, we have

T (αu+ βv) = αT (u) + βT (v) = α · 0 + β · 0 = 0.

So, αu+ βv ∈ null(T ). Therefore, null(T ) is a subspace of V .

13.2 Domain and Range Spaces

When considering a transformation, we want to know to which vectors we are allowed to
apply the transformation. In the case of a Radiographic transformation, we wonder what is
the shape and size of objects/images that the particular radiographic transformation uses.
This was all part of our radiographic setup. As with most functions, this set is called the
domain. In linear algebra, we consider only sets that are vector spaces. So, it is often referred
to as the domain space.
There is also an ambient space to which all of the vectors in the domain space map. This
ambient space is defined next.

Definition 13.2. We say that the codomain of a linear transformation, T : V → W , is the
ambient vector space to which we map. That is, the codomain of T : V → W is W .

In Examples 13.1 and 13.2 the codomain is P1. The codomain tends to be much less in-
teresting for a given problem than the set of all thing mapped to. Notice that not all the
vectors in the codomain are mapped to. If they were, then we would say that T is onto.

Definition 13.3. We say that the range space of a linear transformation, T : V → W , is the
subspace of the codomain W that contains all of the outputs from V under the transformation
T . That is,

ran(T ) = {T (v)| v ∈ V }.

We say that the rank of a linear transformation, T , is the dimension of the subspace ran(T ).

Notice that, again, in this definition, we imply that the range is a vector space. We will
reserve this proof for the Exercises. But, we will state the theorem here.

Theorem 13.2. Let V and W be vector spaces and let T : V → W be a linear transforma-
tion. Then ran(T ) is a subspace of W .

Proof: Exercise 5
It turns out that in both Examples 13.1 and 13.2 the range is also P1. So in both of these
examples, the rank is 2. Like we noticed above, the codomain need not be the range. Let’s
consider some examples.

Example 13.3. Define f :M2×2 → R4 by

f

(
a b
c d

)
=


a

b+ a
b
c

 .
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We can find ran(f) and null(f). First the range.

ran(f) = {f(v)| v ∈M2×2} =

{
f

(
a b
c d

)∣∣∣∣ a, b, c, d ∈ R
}

=




a
b+ a
b
c


∣∣∣∣∣∣∣∣ a, b, c ∈ R


= span




1
1
0
0

 ,


0
1
1
0

 ,


0
0
0
1


 .

Thus rank(f) = 3. Now for the nullspace.

ran(f) = {v ∈M2×2| f(v) = 0} =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ R and f

(
a b
c d

)
= 0

}

=


(
a b
c d

)∣∣∣∣ a, b, c, d ∈ R and


a

b+ a
b
c

 = 0


=

{(
a b
c d

)∣∣∣∣ a, b, c = 0, d ∈ R
}

=

{(
0 0
0 d

)∣∣∣∣ d ∈ R
}

= span

{(
0 0
0 1

)}
.

Thus nullity(f) = 1.

Notice that, in this example, the codomain is R4 and ran(f) 6= R4. That means there are
elements in R4 that are not mapped to through f . That is, f is not surjective.
Also notice that there is more than one element of the nullspace. That means, since

f

(
0 0
0 1

)
= f

(
0 0
0 2

)
,

But, (
0 0
0 1

)
6=
(

0 0
0 2

)
.

Thus, f is not injective.

13.3 Injectivity and Surjectivity Revisited

Let’s consider this discussion again from the point of view of radiography. We saw that some
transformations had the property where two objects could give the same radiograph. This
particular radiographic transformation would not be injective. Notice also, that we found
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that if two objects produce the same radiograph, that there difference would then be invisible,
that is the difference is in the nullspace of the radiographic transformation. Notice that if
there is an object that is invisible to the radiographic transformation, any scalar multiple of
it will also be invisible. This means that two different objects are invisible, producing the
same radiograph, 0. Thus, the radiographic transformation would not be injective.
Recall, also, that we found that there were radiographs that could not be produced form an
object given a certain radiographic transformation. This means that there is a radiograph
in the codomain that is not mapped to from the domain. If this happens, the radiographic
transformation is not surjective.
We now state the theorems that go along with these results. Our first theorem says that an
equivalent statement to

T is onto.

is

The codomain of T is ran(T ).

Theorem 13.3. Let V and W be vector spaces and let T : V → W be a linear transforma-
tion. T is surjective if and only if ran(T ) = W .

Proof: Suppose ran(T ) = W then, by definition of ran(T ) if w ∈ W , there is a v ∈ V so that
f(v) = w. Thus T is onto. Now, if T is onto, then for all w ∈ W there is a v ∈ V so that
T (v) = w. That means that W ⊆ ran(T ). But, by definition of T and ran(T ), we already
know that ran(T ) ⊆ W . Thus, ran(T ) = W .
The next theorem says that an equivalent statement to

T is one-to-one.

is

null(T ) = {0}.

Theorem 13.4. A linear transformation, T : V → W , is injective if and only if null(T ) =
{0}. That is, T : V → ran(T ) is a bijection if and only if null(T ) = {0}.

Proof: Suppose T is one-to-one and suppose that u ∈ nullT . Then T (u) = 0. But, T (0) = 0.
So, since T is 1-1, we know that u = 0. Thus, null(T ) = {0}. Now, suppose null(T ) = {0}.
We want to show that T is 1-1. Notice that if u, v ∈ V satisfy

T (u) = T (v)

then
T (u)− T (v) = 0.

But since T is linear this gives us that

T (u− v) = 0.

Thus, u− v ∈ null(T ). But null(T ) = {0}. Thus, u− v = 0. That is, u− v. So, T is 1-1.
Theorems 13.3 and 13.4 give us tools to check injectivity and surjectivity. Let’s consider a
couple examples.
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Example 13.4. Define F : V → P1, where

V = {ax2 + (3a− 2b)x+ b| a, b ∈ R} ⊆ P2.

by
F(ax2 + (3a− 2b)x+ b) = 2ax+ 3a− 2b.

We showed in Example 13.1 that nullF = {0}. Thus F is injective. We also noted (check
that you know how to show this) that ran(F) = P1. Thus, the range and codomain of F are
the same. And, so we know F is surjective. But now we know that F is a bijection. This
means that V ∼= P1!
Notice also that dimV = 2, nullity(F) = 0, and rank(F) = 2.

Example 13.5. Define h : V → P1, where

V =

{(
a b c
0 b− c 2a

)∣∣∣∣ a, b, c ∈ R
}
⊆M2×3

by

h

(
a b c
0 b− c 2a

)
= ax+ c.

We found that

nullh = span

{(
0 1 0
0 1 0

)}
.

Thus, h is not 1-1. But, we also noted (again, be sure you know how to show this) that
ran(h) = P1. Thus, h is onto.
Notice also that dimV = 3, nullity(h) = 1, and rank(h) = 2.

Example 13.6. Define g : V → R3, where V = P1 by

g(ax+ b) =

 a
b

a+ b

 .

Notice that

null(g) = {ax+ b| a, b ∈ R, g(ax+ b) = 0}

=

ax+ b| a, b ∈ R,

 a
b

a+ b

 =

 0
0
0


= {ax+ b| a = 0, b = 0}
= {0}

Thus, g is injective. Now we find the range space.

ran(g) = {g(ax+ b)| a, b ∈ R}

=


 a

b
a+ b

∣∣∣∣∣∣ a, b ∈ R


= span


 1

0
1

 ,

 0
1
1
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Notice that since rank(g) = 2 and dimR3 = 3, R3 6= ran(g) and thus g is not onto.
Notice also that dimV = 2, nullity(g) = 0, and rank(g) = 2.

13.4 The Rank-Nullity Theorem

In each of the last examples of the previous section, we saw that the following theorem holds:

Theorem 13.5. [Rank Nullity Theorem] Let V and W be a vector spaces and let T : V → W
be a linear transformation. Then the following is true

dimV = rank(T ) + nullity(T ).

Proof: Let B = {v1, v2, . . . , vn}.
First, we consider the case when ran(T ) = {0}. Then, ran(T ) has no basis, so rank(T ) = 0.
We also know that if v ∈ V then T (v) = 0. Thus, B is a basis for null(T ) and nullity(T ) = n.
Thus, rank(T )+nullity(T ) = n.
Next, we consider the case when null(T ) = {0}. In this case, null(T ) has no basis so
nullity(T ) = 0. Now, we refer to Lemma 12.1 and Theorem 13.4. We then know that
{T (v1), T (v2), . . . , T (vn)} is linearly independent and we also know that span {T (v1), T (v2), . . . , T (vn)} =
ran(T ). Thus, {T (v1), T (v2), . . . , T (vn)} is a basis for ran(T ) and rank(T ) = n. Thus,
rank(T )+nullity(T ) = n.
Finally, we consider the case where rank(T ) = m and nullity(T ) = k. Let

BN = {v1, v2, . . . , vk}

be a basis for null(T ). And let

BR = {T (vk+1), T (vk+2), . . . , T (vk+m)}

be a basis for ran(T ). Notice that we know that none of the elements of B are zero
(for otherwise this set would not be linearly independent). So, we know that none of
T (v1), T (v2), . . . , T (vk) ∈ BR. We also know that span {T (v1), T (v2), . . . , T (vn)} = ran(T )
so there must be m linearly independent vectors in {T (v1), T (v2), . . . , T (vn)} that form a
basis for ran(T ). So, our choice of vectors for the basis of BR makes sense.
Our goal is to show that m+k = n. That is, we need to show that B = {v1, v2, . . . , vk+m}. We
know that {v1, v2, . . . , vk+m} ⊆ B. We need to show that if v ∈ B then v ∈ {v1, v2, . . . , vk+m}.
Suppose v ∈ B. Then T (v) ∈ ran(T ). Suppose v /∈ null(T ) (for otherwise, v ∈ BN .) Then
there are scalars α1, α2, . . . , αm so that

T (v) = α1T (vk+1) + α2T (vk+2) + . . .+ αmT (vk+m).

So
α1T (vk+1) + α2T (vk+2) + . . .+ αmT (vk+m)− T (v) = 0.

Using that T is linear, we get

T (α1vk+1 + α2vk+2 + . . .+ αmvk+m − v) = 0.

Thus
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v ∈ null(T ).
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So either
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v = 0

or
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v ∈ span BN .

If
α1vk+1 + α2vk+2 + . . .+ αmvk+m − v = 0

Then v ∈ span BT , but this is only true if v ∈ BT because B is linearly independent and
v ∈ B and all the elements of {vk+1, vk+2, . . . , vk+m} are also in B. Now, if

α1vk+1 + α2vk+2 + . . .+ αmvk+m − v ∈ span BN

then v ∈ BN again because v ∈ B and so are all the elements of BN .
Thus, v ∈ {vk+1, vk+2, . . . , vk+m}. So, we have that B = {vk+1, vk+2, . . . , vk+m}. Thus
k +m = n. That is, nullity(T )+rank(T ) = n.
A quick result of this theorem says that we can separate the basis of V into those that map
to 0 and those to a basis of ran(T ). More specifically, we have the following result.

Corollary 13.1. Let V and W be vector spaces and let T : V → W be a linear transfor-
mation. If B = {v1, v2, . . . , vn} is a basis for V , then {T (v1), T (v2), . . . , T (vn)} = {0} ∩ Br
where Br is a basis of ran(T ).

Proof: We can see in the proof of Theorem 13.5 that B was split into two sets {v1, v2, . . . , vk}
(a basis for null(T )) and {vk+1, vk+2, . . . , vn}, (where {T (vk+1), T (vk+2), . . . , T (vn)} is a basis
for ran(T )).
Theorem 13.5 is useful in determining rank and nullity, along with proving results about
subspaces. Let’s look at an example.

Example 13.7. Given a linear transformation T : M2×5 → P4. We know that T cannot
be one-to-one. The Rank-Nullity Theorem says that dimM2×5 = rank(T ) + nullity(T ).
Since rank(T ) ≤ dimP4 = 5 and dimM2×5 = 10, we know that nullity(T ) > 0. That is,
null(T ) 6= {0}. So by Theorem 13.4, we know that T cannot be injective.

Notice, we didn’t know anything about T except for the spaces from and to which it maps.

Exercises

1. Find the nullspace and nullity of each of the transformations from Exercise 1 in Section
10. Be sure to clearly label which is the nullspace and which is the nullity.

2. For each of the linear transformations in exercise 1 in Section 10, state the domain, V ,
codomain W , dim(W ), dim(V ), rank(T ) and verify the Rank-nullity Theorem using
your answer from exercise 1.

3. For each of the domain spaces, V , specified in exercise 2, find an isomorphism
f : V → Rd, where d = dim(V ).

4. For each of the codomain spaces, W , specified in exercise 2, find an isomorphism
g : Rw → W where w = dim(W ).

5. Prove Theorem 13.2.
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14 Matrix Representations

Earlier, we discussed matrices. Matrices tend to be a good way to store information in a
computer. They are also, at times, easier to work with (as they were when we solved systems
of equations). Coding a linear transformation based on the formula can at times be very
tedious also. So, we want to be able to use matrices as a tool for linear transformations as
well. Let’s look at an example that suggests that this might be a good idea.

Example 14.1. Define T : R2 → R3 by Tx = Mx, where M is a 3×2 matrix. T is a linear
transformation. We can show this using properties of matrix multiply. Let x, y ∈ R2 and let
α, β be scalars. Then

T (αx+ βy) = M(αx+ βy)

= Mαx+Mβy

= αMx+ βMy

= αTx+ βTy.

This example shows us that matrix multiply defines a linear transformation. So, what if we
can define all linear transformations with a matrix multiply? That would be really great!
The issue is that we cannot just multiply a vector, in say P2, by a matrix. What would that
mean? It turns out that there is a way to turn linear transformations into matrix multiplies!
Ok, so I know I have some explaining to do with this one. So, here goes.
What we do know is that, given a basis for V , we are able to represent any vector v ∈ V
as a coordinate vector in Rn, where n = dimV . Suppose B = {v1, v2, . . . , vn} is a basis for
V , then we find the coordinate vector [v]B by finding the scalars, αi, that make the linear
combination v = α1v1 + α2v2 + . . .+ αnvn and we get

[v]B =


α1

α2
...

αn

 ∈ Rn.

So, what we want is to figure out how to transform one vector space to another, possibly
taking a new path through a matrix multiply. Let’s suppose that we call T1 the transfor-
mation that turns vectors in V into vectors in Rn and call T2 the transformation that turns
vectors in Rm into vectors in W , where m = dimW . We know that we can multiply vectors
in Rn by m × n matrices to get vectors in Rm. So we want to find M that does that and
somehow transforms our vectors the way a linear transformation T does (See Figure 14).
Recall that Corollary 13.1 tells us that linear transformations take basis elements to basis

T2

V Rn Rm W

T = T1 ◦M ◦ T2

T1 M

Figure 14:

elements (or to the zero vector). So, we need to consider basis elements of coordinate spaces
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mapping to basis elements of coordinate spaces through some sort of matrix multiply. Let’s
first lay out our coordinate spaces. We want Rn to be the coordinate space for V according
a given basis. This means that we want everything in Rn to act just like vectors in V , only
just look different. So we want T1 : V → Rn to be an isomorphism. Similarly, we want
T2 : Rm → W to be an isomorphism. Finally, M will somehow have encoded in it, the linear
transformation working as a matrix multiply. This all seems pretty far out there, but it will
work. Don’t just trust me though! This is mathematics, let’s see why this will work. First,
we should look at an outline on how we want this to work.
Outline:

• Given two vector spaces V and W .

• Considering a transformation T : V → W .

• Choose a basis BV = {v1, v2, . . . , vn} of V .

• Choose a basis BW = {w1, w2, . . . , wm} of W .

• Want M so that [T (v)]BW = M [v]BV .

Notice that we will work with vectors in the coordinate spaces and interpret results afterward.
Notice also, that all of this depends strictly on the bases chosen. This is important.
So, here’s how we get M . On the left in Figure 15 we see what some linear transformation T
might do with basis elements of V . Notice that ran(T ) in this case is not W , but a subspace
of W . Notice also that null(T ) 6= {0}. M should do the same thing to the coordinate spaces
(See the right figure in Figure 15).

T

v1

v2
v3

v4
v5

v6

w1
w2

w3
w4

0

w5

w6

w7

V W
M

[v1]BV
[w1]BW

0

Rn Rm

[v2]BV
[v3]BV

[v4]BV

[v5]BV

[v6]BV

[w2]BW

[w3]BW
[w4]BW

[w5]BW

[w7]BW

[w6]BW

Figure 15:

We then need to create a matrix that does what we want: [T (v)]BW = M [v]BV . We do this
one basis element at a time. We want to construct the matrix so that

M [v1]BV = [T (v1)]BW
T [v2]BV = [T (v2)]BW

...

T [vn]BV = [T (vn)]BW .
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Notice that

[v1]BV =


1
0
0
...
0



[v2]BV =


0
1
0
...
0


...

So, [T (v1)]BW = M [v1]BV gives the first column of M , [T (v2)]BW = M [v2]BV gives the second
column of M , . . ., and M [T (vn)]BW = [vn]BV gives the nth column of M . Thus, we have that

M =


| | |

[T (v1)]BW [T (v2)]BW . . . [T (vn)]BW

| | |


Let’s see this with an example.

Example 14.2. Let V = {ax2 + (b− a)x+ (a+ b)| a, b ∈ R} and let W =M2×2. Consider
the transformation T : V → W defined by

T (ax2 + (b− a)x+ (a+ b)) =

(
a b− a

a+ b a+ 2b

)
.

We can show that T is linear (be sure you know how to do this). So, we can find a matrix
representation, M , of T . First, we must find bases for V and W so that we can consider the
coordinate spaces and figure out how big M must be.

V = {ax2 + (b− a)x+ (a+ b)| a, b ∈ R} = span
{
x2 − x+ 1, x+ 1

}
.

So a basis for V is BV = {x2 − x + 1, x + 1}. We can use the standard basis for M2×2.
Since V is a 2-dimensional space, it’s coordinate space is R2. W being a 4-dimensional space
means that it’s coordinate space is R4. So, we need to find M that will multiply by a vector
in R2 and output a vector in R4. This means that M must be a 4× 2 matrix. We also want
M to act like T . That is, we want [T (v)]BW = M [v]BV . So, we need to see where the basis
elements of V get mapped.

T (x2 − x+ 1) =

(
1 −1
1 1

)
T (x+ 1) =

(
0 1
1 2

)
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Now, we need to write these as coordinate vectors in R4 according to the standard basis for
M2×2. That is,

[T (x2 − x+ 1)]BW =

[(
1 −1
1 1

)]
BW

=


1
−1

1
1



[T (x+ 1)]BW =

[(
0 1
1 2

)]
BW

=


0
1
1
2


Thus,

M =


1 0
−1 1

1 1
1 2

 .

We should check this to be sure we agree that this matrix multiply will do what we want.
Let’s pick the vector v = 2x2 + 2x + 6. I know that v ∈ V because I just chose a = 2, b = 4
and put them into ax2 + (b−a)x+ (a+ b). Anyway, according to the definition for T , we get

T (v) = T (2x2 + (4− 2)x+ (2 + 4)) =

(
2 4− 2

2 + 4 2 + 2(4)

)
=

(
2 2
6 10

)
.

Now, we try the matrix multiply. The way I chose v tells us that v = 2(x2−x+1)+4(x+1).
So

[v]BV =

(
2
4

)
.

Now, we compute

[T (v)]BW = M [v]BV =


1 0
−1 1

1 1
1 2

( 2
4

)
=


1 · 2 + 0 · 4
−1 · 2 + 1 · 4

1 · 2 + 1 · 4
1 · 2 + 2 · 4

 =


2
2
6

10

 .

This is exactly what we wanted! I’ll show you why... Earlier we found that

T (v) =

(
2 2
6 10

)
.

Let’s write this as a coordinate vector. But, first notice that(
2 2
6 10

)
= 2

(
1 0
0 0

)
+ 2

(
0 1
0 0

)
+ 6

(
0 0
1 0

)
+ 10

(
0 0
0 1

)
.

So, [(
2 2
6 10

)]
BW

=


2
2
6

10
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When working with radiographic transformations, we found a matrix using tomomap. But,
our objects weren’t vectors in RN that could be multiplied by the matrix we found. Let’s
use the above information to explore, through an example, what was really happening. Let
V = I2×2, the space of 2× 2 objects. Let T be the radiographic transformation with 6 views
having 2 pixels each. This means that the codomain is the set of radiographs with 12 pixels.
To figure out the matrix M representing this radiographic transformation, we first change
the objects in V to coordinate vectors in R4 via the isomorphism T1. So T1 is defined by:


x1

x2

x3

x4

x1

x2

x3

x4

V

T1

R4

After performing the matrix multiply, we will change from coordinate vectors in R12 back to
radiographs via T2. So T2 is defined by:



b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12



WR12

b2b1
b4b3
b6b5
b8b7
b10b9
b12b11

T2

Our radiographic transformation is then represented by the matrix M (which we called T in
the labs). M will be a 12×4 matrix determined by the radiographic set up. We’ve computed
M several times in previous labs, but the real mathematics was all a bit hand-wavy and so
now we see that really, what we have is that T maps from V to W by taking a side excursion
through coordinate spaces and doing a matrix multiply.
Note: Typically, to simplify notation, we write T (v) = Mv when we actually mean [T (v)]BW =
M [v]BV . This is understandable by a mathematician because we recognize that when two
spaces are isomorphic, they are “essentially” the same set. The only difference is that the
vectors look different. In this class, we will maintain the notation discussed in this section
being aware that this is just to get used to the ideas before relaxing our notation.

Exercises

Find the matrix representation of the transformation T : V → W in each of the exercises
below.
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1. V = P3 with the basis B = {x3, x2 + 1, x+ 1, 1} and W = P2 with the standard basis.
T (ax3 + bx2 + cx+ d) = 3ax2 + 2bx+ c.

2. V = R3 with the standard basis andW = R3 with the basis


 1

0
0

 ,

 1
1
1

 ,

 0
0
1

.

T

 x
y
z

 =

 x+ y
y − z

0


3. V =M4×3 with the standard basis and W =M2×2 with the basis

B =

{(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
0 1

)
,

(
0 1
0 0

)}
.

T


a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

 =

 a11 + a12 + a13 a21 + a22 + a23

a31 + a32 + a33 a41 + a42 + a43



15 Matrix Spaces

In this section we will use the idea that any linear transformation has a matrix representation.
We will define spaces similar to the spaces for linear transformations. So, let’s start with a
reminder of some definitions.

Definition 15.1. Let V and W be vector spaces and let T : V → W be a linear transforma-
tion. We then define the following spaces corresponding to T .
The nullspace of T , is the subspace of V that map to 0 ∈ W . That is,

null(T ) = {v ∈ V | T (v) = 0}.

We say that the nullity of T , is the dimension of the subspace null(T ).
We say that the codomain of T , is the ambient vector space to which we map. That is, the
codomain of T is W .
We say that the range of T , is the subspace of the codomain W that contains all of the
outputs from V under the transformation T . That is,

ran(T ) = {T (v)| v ∈ V }.

We say that the rank of T , is the dimension of the subspace ran(T ).

Note, also, that nullity(T ) ≤ dimV since null(T ) is a subspace of V . And rank(T ) ≤ dimW
since ran(T ) is a subspace of W .
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15.1 The Nullspace of a Matrix

To find the nullspace, null(T ), for some transformation T : V → W , we go straight to the
definition. We are looking for all vectors v ∈ V so that

T (v) = 0.

Now, suppose that M is the matrix representation of T when working with the basis, BV , of
V . Then this equation becomes

M [v]BV = 0.

We can solve for v using our most basic of linear algebra tools: matrix reduction! So, this
may be tedious, but we can do it.
The take-away here is that the nullspace, null(M), of an m × n matrix M is really the
nullspace of the corresponding transformation, T , where T (x) = Mx for all x ∈ Rn. That
is, nullM = {x ∈ Rn| T (x) = Mx = 0}. The term nullity carries over to matrices as well.
We define the nullity of a matrix to be the dimension of the nullspace. Let’s try a couple
examples.

Example 15.1. Given the matrix

M =

 1 1 1
2 1 −1
−1 0 2


We can find null(M). This means that we need to find nulls(T ) where T is defined by
Tx = Mx. To do this, we solve the equation 1 1 1

2 1 −1
−1 0 2

 x
y
z

 =

 0
0
0

 .

We do this using matrix reduction. 1 1 1
2 1 −1
−1 0 2

 R2=−2r1+r2−→
R3=r1+r3

 1 1 1
0 −1 −3
0 1 3

 R1=r2+r1,R2=−r2−→
R3=r2+r3

 1 0 −2
0 1 3
0 0 0

 .

Thus  x
y
z

 =

 2z
−3z
z

 .

And we now find that

null(M) = span


 2
−3

1

 .

Example 15.2. Let V = {ax3 + bx2 − ax + c| a, b, c ∈ R} and W = M2×3. Now, let us
consider the transformation T : V → W defined by

T (ax3 + bx2 − ax+ c) =

(
a a a

a+ b −a −b

)
.
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We want to find the matrix representation, M , of T and then find null(M). First, we find a
basis for V .

V = {ax3 + bx2 − ax+ c| a, b, c ∈ R} = span {x3 − x, x2, 1}.

Thus, a basis for V is
BV = {x3 − x, x2, 1}.

Now we need to find where each basis element maps and to write them as coordinate vectors
(We’ll use the standard basis for W ).

[T (x3 − x)]BW =

[(
1 1 1
1 −1 0

)]
BW

=


1
1
1
1
−1

0



[T (x2)]BW =

[(
0 0 0
1 0 −1

)]
BW

=


0
0
0
1
0
−1



[T (1)]BW =

[(
0 0 0
0 0 0

)]
BW

=


0
0
0
0
0
0

 .

Thus, the matrix representation is

M =


1 0 0
1 0 0
1 0 0
1 1 0
−1 0 0

0 −1 0

 .

Now, to find null(M), we solve the equation
1 0 0
1 0 0
1 0 0
1 1 0
−1 0 0

0 −1 0

 [v]BV =


0
0
0
0
0
0

 .
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We will do this using matrix reduction (I will leave out the directions as they can be tedious
on this example.):

1 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0
−1 0 0 0

0 −1 0 0

 −→


1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 −1 0 0

 −→


1 0 0 0
0 1 0 0
0 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 −→


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

This gives us the solution

[v]BV =

 0
0
z

 , where z can be any real number.

That is,

null(M) = span


 0

0
1

 .

15.2 The Columns Space of a Matrix

As with the nullspace, we can define the range space of a transformation with a matrix
representation M which is an m × n matrix. Here, we are discussing the range space of
the linear transformation T , defined by T (x) = Mx for all x ∈ Rn. This space is actually
called the column space of the matrix M . Let’s see why. First recall that ran(T ) = {T (x) ∈
Rm| x ∈ Rn} = {Mx ∈ Rm| x ∈ Rn}. Let’s write this out. Let M be the matrix with
columns c1, c2, . . . , cn. That is,

M =

 | | |
c1 c2 . . . cn
| | |

 .

If T is as we described above then

ran(T ) ={Mx ∈ Rm| x ∈ Rn}

=


 | | |

c1 c2 . . . cn
| | |




α1

α2
...
αn

 ∈ Rm| α1, α2, . . . , αn ∈ R


= {α1c1 + α2c2 + . . .+ αncn| α1, α2, . . . , αn ∈ R} .

Thus, ran(T ) is the span of the columns of M . So, we call ran(T ) the column space of M
and write col(M). Note: This does not mean that the columns form a basis for col(M).
Let’s look further into this.
But first note that the term rank carries over to matrices. So, we define the rank of a matrix
to be the dimension of the column space.
Let’s look at another way to find col(M). This will help us find a basis. We want to find all
w ∈ Rm so that there is an v ∈ Rn so that Mv = w. Again, matrix reduction is very useful
here. Let us look at some examples.
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Example 15.3. Let us consider the matrix

M =

 1 1 1
2 1 −1
−1 0 2

 .

To find col(M), we set up the equation Mv = b and determine all possible b. 1 1 1
2 1 −1
−1 0 2

 x
y
z

 =

 a
b
c

 .

Using matrix reduction we get 1 1 1 a
2 1 −1 b
−1 0 2 c

 R2=−2r1+r2−→
R3=r1+r3

 1 1 1 a
0 −1 −3 −2a+ b
0 1 3 a+ c


R1=r2+r1,R2=−r2−→

R3=r2+r3

 1 0 −2 −a+ b
0 1 3 2a− b
0 0 0 −a+ b+ c

 .

Notice that as long as w =

 a
b
c

 with −a+ b+ c = 0 the equation Mv = w has a solution.

Thus,

col(M) =


 a

b
c

∣∣∣∣∣∣ − a+ b+ c = 0

 =


 b+ c

b
c

∣∣∣∣∣∣ b, c ∈ R


=span


 1

1
0

 ,

 1
0
1


Notice that one of the basis elements we found corresponds to one of the columns of M (the
second column of M to be exact). In fact, one of the leading coefficients is in the second
column of M and so therefore corresponds to that column. It seems that it would be very
nice to not have this extra step at the end after reducing the matrix. We see that there
are two leading ones and there are two basis elements. We also see that the columns in
M corresponding to the leading ones are linearly independent. It turns out that we can
actually pick out these columns (corresponding to the columns with leading entries after
being reduced) to make a basis. Let’s see why.
Notice that if col(M) = span {c1, c2, . . . , cn}, then to form a basis, we need only find the
columns that are linearly independent. Here’s a process to see that grabbing the columns
corresponding to the leading ones works.
Let’s choose c1 to be the first basis element for col(M). (Note: if c1 is all zeros, we just start
with the first column that isn’t all zeros.) Since c1 is not the zero vector, {c1} is linearly
independent. Now, we check to see if {c1, c2} is linearly independent. We can do this by
solving for α in the equation αc1 = c2. We can do this by reducing the augmented matrix | |

c1 c2

| |

 .

96



If the second column has a leading one, then that means there is a row with zeros to the
left of the augment and a nonzero on the right of the augment. This would mean that the
equation αc1 = c2 has no solution and they are linearly independent. If there is no leading
entry in the second column, then these columns are linearly dependent.
Now, we check to see if c3 is linearly independent with c1 and c2. That means we want
to solve for α and β in the equation αc1 + βc2 = c3. This can be done by reducing the
augmented matrix  | | |

c1 c2 c3

| | |

 .

If, after reducing, the third column has a leading entry, then {c1, c3} is linearly independent
and {c2, c3} is also linearly independent. If not, then either {c1, c3} or {c2, c3} is linearly
dependent. We can continue this process and see that set of columns corresponding to a
leading entry in the reduced matrix is a linearly independent set. So we choose them to be
in the basis for col(M). All other columns are in the span of these chosen vectors.

Example 15.4. Let V = {ax3 + bx2 − ax + c| a, b, c ∈ R} and W = M2×3. Now, let us
consider the transformation T : V → W defined by

T (ax3 + bx2 − ax+ c) =

(
a a a

a+ b −a −b

)
.

Recall that
BV = {x3 − x, x2, 1}

is a basis of V . Above, we found the matrix representation to be

M =


1 0 0
1 0 0
1 0 0
1 1 0
−1 0 0

0 −1 0

 .

To find col(M), we find all w ∈ R6 so that there is a v ∈ R3 with Mv = w. In other words,
we find all w ∈ R6 so that

w ∈ span




1
1
1
1
−1

0

 ,


0
0
0
1
0
−1

 ,


0
0
0
0
0
0




.

In this example, it is clear that the last column is not part of a linearly independent set.
Also, it is clear that the first two columns are linearly independent (they are not multiples of
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one another). Thus, a basis for the column space is


1
1
1
1
−1

0

 ,


0
0
0
1
0
−1




.

Exercises

1. For each of the following matrices, find null(M), col(M), rank(M), nullity(M), size(M),
the number of columns without leading entries, and the number of leading entries in
the echelon form.

(a)

M =


1 2 3 −1
1 1 −1 −1
2 3 2 −2
5 6 −1 −5


(b)

M =

 1 2 3 −1 0
1 3 −1 −1 2
3 3 −1 −2 −1


(c)

M =


1 0 1
1 1 −1
2 2 2
3 1 4
−1 0 1


(d)

M =

 3 0 0 0
0 2 0 0
0 1 1 0

 ,

2. For each of the examples in this section, state rankM , nullity(M), size M , the number
of columns without leading entries, and the number of leading entries in the echelon
form. (Note: you already know null(M) and col(M) for each of these matrices.)

3. How does nullity(M) show up in the echelon form of the matrix reduction?

4. How does rank(M) show up in the echelon form of the matrix reduction?

5. How are dimV and dimW related to M?

6. Use the Rank-Nullity Theorem to make a conjecture that brings together a relationship
with all or some of these.
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15.3 Onto, One-to-One, and what this means about Matrices

This section will bring together the properties of a linear transformation with properties
about the matrix representation. Mostly, I’m going to ask you some questions.
First, let’s recall what we know about one-to-one and onto transformations. In Theorem
13.3, we found that another definition for an onto transformation, T : V → W is that
ran(T ) = W . In Theorem 13.4, we found that another definition for a 1-1 transformation
T : V → W is that null(T ) = {0}. Use these and what you found in the previous section to
answer the following questions.

Exercises

1. If T : V → W and M is the matrix representation of T . What can you say about the
size of M?

2. If T : V → W and M is the n × m matrix representation of T . What can you say
about n and m if T is onto?

3. If T : V → W and M is the n × m matrix representation of T . What can you say
about n and m if T is one-to-one?

4. If T : V → W and M is the n × m matrix representation of T . What can you say
about n and m if T is a bijection?

5. Let T be the radiographic transformation described by the following scenario.

• Height and width of image in voxels: n = 2 (Total voxels N = 4)
• Pixels per view in radiograph: m = 2
• ScaleFac = 1
• Number of views: a = 3
• Angle of the views: θ1 = 0◦, θ2 = 45◦, and θ3 = 90◦

For ease of notation, call the corresponding matrix T . Determine whether T is one to
one, onto, both, or neither. You may use tomomap to find T .

6. For each of the transformations in Exercise 1 in Section 10, find the associated matrix.

7. For each of the transformations:

A. T3 the third radiographic transformation from Lab 2.-

B. d
dx

: P4 → P3

C. Rθ : R2 → R2, where θ is a specific fixed angle measured from the x axis and Rθ

is the rotation transformation

D. πv : R3 → R3, the component of v parallel to the x axis.

E. D : R3 → R defined by D(v) = v · u, where u = (0, 1,−1).
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Answer each of the following:

(a) What is null(T )?

(b) What is ran(T )?

(c) Is the transformation 1-1? Prove it.

(d) Is the transformation onto? Prove it.

16 Inverse Transformations

You might wonder why we would want to use matrices at all. After all, we already have
a way of computing the outputs of a transformation. What would getting a matrix do to
help us? Even algorithms can be computed to find these outputs without having a matrix
representation. So, all this complicated stuff gets in the way, right? Well...there’s so much
more to Linear Algebra than

• Determining if something is a vector space.
• Determining if something is in a vector space.
• Determining linear dependence.
• Finding the span of vectors.
• Computing the outputs of linear transformations.
• Solving systems of equations.

• ...

16.1 A (Very) Brief Introduction to Tomography

In this class, we’ve actually talked about an application: Radiography/Tomography. Well,
we haven’t talked about the Tomography part. We will get there. First note that nobody
ever really computes the radiograph. This is done using a machine that sends x-rays through
something. But what people want to be able to do is to figure out what the object being
radiographed looks like. This is the idea behind Tomography. So, we do need to be able to
find the object that was produced by a certain transformation.
Suppose we know that T : Rn → Rm is the transformation given by

T (v) = Mv.

where M ∈ Mm×n. Suppose also that we know that the vector w ∈ Rm is obtained by Tv
for some v, but we don’t know which v. How would we find it? Let’s look at some examples.

Example 16.1. Suppose we want to know what v ∈ V produces w =

(
1
1

)
in the equation

Tv = Mv = w where

M =

(
1 1
1 2

)
We can find v so that Tv = w by solving the equation:

Tv =

(
1
1

)
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which is the same as

Mv =

(
1
1

)
(

1 1
1 2

)(
x1

x2

)
=

(
1
1

)
.

This leads to the system of equations

x1 + x2 = 1
x1 + 2x2 = 1

We use matrix reduction to solve this system.(
1 1 1
1 2 1

)
→
(

1 1 1
0 1 0

)
→
(

1 0 1
0 1 0

)
⇒ x1 = 1, x2 = 0⇒ v =

(
1
0

)
.

Example 16.2. Let m = 2, n = 4, w =

(
1
3

)
and

M =

(
1 1 0 3
1 2 1 1

)
We can find v so that Tv = w by solving the equation:

Tv =

(
1
3

)
Mv =

(
1
3

)
(

1 1 0 3
1 2 1 1

)
x1

x2

x3

x4

 =

(
1
3

)

Which leads to the system of equations

x1 + x2 + 3x4 = 1
x1 + 2x2 + x3 + x4 = 3

We can use a matrix to solve this system, reduce it and find v:(
1 1 0 3 1
1 2 1 1 3

)
→
(

1 1 0 3 1
0 1 1 −2 2

)
→
(

1 0 −1 5 −1
0 1 1 −2 2

)
This gives us that

x1 = x3 − 5x4 − 1 and x2 = 2x4 − x3 + 2.

So, there are infinitely many v that could have led us to the result w through this transfor-
mation. One particular v is found when we let x3 = x4 = x5 = 1. In this case, we get

v =


−5
3
1
1
1

The next step would be to figure out the best of these to choose (but that’s for

later).
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Example 16.3. Let m = 3, n = 2, w =

 1
1
1

 and

M =

 1 0
2 1
1 2


Again, we can set up the equation Tv = w and solve for v.

Tv =

 1
1
1


Mv =

 1
1
1


 1 0

2 1
1 2

( x1

x2

)
=

 1
1
1


Which leads to the system of equations

x1 = 1
2x1 + x2 = 1
x1 + 2x2 = 1

We see that x1 = 1, but then x2 = −1 and x2 = 0. This gives us that there is no v that
would produce w under this transformation.

In each of the above examples, we may want to find each of the elements of the domain that
would produce several elements in the codomain: T (v1) = w1, T (v2) = w2, . . . , T (vk) = wk.
This would take quite a long time to compute these matrix reductions every time (granted
there are computers to do this, but in real life the matrices you use are MUCH bigger). So,
we need another way.

16.2 Finding solutions to Mv = w.

Notice that if we were to change the right-hand-side in an example above, the matrix re-
duction steps would not change. So, if we wanted to do this for many different outputs, we
could set up the matrix like:  | | |

M w1 w2 . . . wk
| | |

 . (5)

Where this augmented matrix has the matrix M on the left side of the augment and column
vectors w1, w2, . . . , wk on the right side of the augment. We could then perform the matrix
reduction all at once.
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Example 16.4. Find v1, v2, v3 when w1 =

(
1
1

)
, w2 =

(
1
3

)
, and w3 =

(
1
−1

)
and

M =

(
1 1
−1 1

)
by solving Mv1 = w1,Mv2 = w2, and Mv3 = w3 all at once using an augmented matrix of
the form in (5).
We set up the augmented matrix(

1 1 1 1 1
−1 1 1 3 −1

)
→
(

1 1 1 1 1
0 2 2 4 0

)
→
(

1 1 1 1 1
0 1 1 2 0

)
→
(

1 0 0 −1 1
0 1 1 2 0

)
.

Using the above, we get that the solution to Mv1 = w1 is v1 =

(
0
1

)
, to Mv2 = w2 is

v2 =

(
−1
2

)
, and to Mv3 = w3 is v3 =

(
1
0

)
.

Still, if there are a large number of wi, then we would still have a lot of work to do.
But, we know that all the wi come from the vector space Rm. This means that they can
each be written as a linear combination of e1, e2, . . . , em, the standard basis elements. So,
let’s look at what we can do to simplify all of this.

Exercises

1. Knowing that T is a linear transformation and w = α1e1 +α2e2 + . . .+αmem, what can
you say about where the basis vectors v1, v2, . . . vm ∈ Rm map in each of the following
cases?

(a) T is onto.

(b) T is one-to-one.

(c) T is a bijection.

You may want to review some of your answers in the previous section about these
cases.

2. Knowing that T is linear, how can the above answers tell us which v gives us T (v) = w
when T is a bijection?

3. Suppose T isn’t a bijection now. Recall that this means that null(T ) contains a basis
from V = Rm. What does this mean when we look for v that gives us Tv = w for some
specific w?

16.3 Finding solutions to Mv = ek, an element of the standard
basis.

All your answers should lead us to the fact that, if T is a bijection, we can see what maps
to each of the standard basis elements in Rm and be able to state where each vector w came
from. Let’s look at an example.
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Example 16.5. Let m = n = 2, M =

(
1 1
1 2

)
. Suppose T : R2 → R2 is defined

by T (v) = Mv. We will use the standard basis for mathbbR2. We want to know what

mapped to

(
1
0

)
and what mapped to

(
0
1

)
so we set up and reduce the augmented matrix

representing Mv1 = e1 and Mv2 = e2. Notice, this can be done with one augmented matrix.(
1 1 1 0
1 2 0 1

)
→
(

1 1 1 0
0 1 −1 1

)
→
(

1 0 2 −1
0 1 −1 1

)
Notice that this example tells us that if we are solving T (v1) = e1 (that is, Mv1 = e1) then

v1 =

(
2
−1

)
and if we are solving T (v2) = e2 (that is, Mv2 = e2) then v2 =

(
−1

1

)
.

Example 16.6. Now, to get back to a particular w. For w =

(
1
2

)
say we want to find v

so that (v) = w. Using T (v) = Mv we can solve Mv = w.(
1 1 1
1 2 2

)
→
(

1 1 1
0 1 1

)
→
(

1 0 0
0 1 1

)
.

So, v =

(
0
1

)
maps to w

We can now write v as a linear combination of the vectors v1 and v2 found above.(
0
1

)
= 1 ·

(
2
−1

)
+ 2 ·

(
−1

1

)
.

Example 16.7. Let’s try another w. For w =

(
3
5

)
we want to find v that gives us

Mv = w. (
1 1 3
1 2 5

)
→
(

1 1 3
0 1 2

)
→
(

1 0 1
0 1 2

)
.

So, v =

(
1
2

)
maps to w. Again, we write v as a linear combination of v1 and v2.(

1
2

)
= 3 ·

(
2
−1

)
+ 5 ·

(
−1

1

)
.

More Exercises

1. Use the matrix M above. For w =

(
−1

3

)
do each of the following.

(a) Find v that gives us Mv = w.

(b) Write v as a linear combination of v1 and v2 in Example 16.5.

2. Now make a conjecture about how you can find v if you know how to get e1 and
e2 through this transformation. Solidify your conjecture by writing down a matrix
multiply that you could use to get v. Hint: this matrix is “right” before your eyes.
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16.4 The Inverse Matrix, when m = n

The matrix that you found before is an important matrix. We call this matrix the inverse
matrix. The process that we used is how you would find the inverse to any square matrix.
Let us define the inverse more rigorously.

Definition 16.1. Let M be an n × n square matrix. We say that M has an inverse (and
call it M−1) if and only if

MM−1 = M−1M = In×n,

where In×n is the square identity matrix. If M has an inverse, we say that it is invertible.

We will now use the process above to find the inverse of some matrices.

Example 16.8. We want to find M−1 when

M =

(
1 3
0 1

)
.

Following the procedure above with an augmented matrix we find the inverse matrix M−1.
That is, we reduce the matrix

(
M e1 e2

)
as follows.(

1 3 1 0
0 1 0 1

)
→
(

1 0 1 −3
0 1 0 1

)
We see that

M

(
1
0

)
=

(
1
0

)
and M

(
−3

1

)
=

(
0
1

)
.

So we know that

M

(
1 −3
0 1

)
=

(
1 0
0 1

)
.

Thus,

M−1 =

(
1 −3
0 1

)
.

We’ve seen examples where the elimination process does not give us a leading 1 in every row.
This next example shows us what this means.

Example 16.9. M =

(
1 2
2 4

)
Again, we begin by reducing the augmented matrix

(
M e1 e2

)
as follows:(

1 2 1 0
2 4 0 1

)
→
(

1 2 1 0
0 0 −2 1

)
.

This cannot be reduced further. From the reduced echelon form, we see that there is no vector
v so that Mv = e1 nor is there a vector v so that Mv = e2. That is, there is no matrix M−1

so that MM−1 = I2×2, the identity matrix. So, M does not have an inverse.

Now, let’s look at a bigger example.
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Example 16.10. We will find the inverse of the matrix

M =

 1 1 −2
1 2 1
2 −1 1

 .

No matter the size of M , we always start by reducing the augmented matrix
(

M e1 e2

)
. 1 1 −2 1 0 0

1 2 1 0 1 0
2 −1 1 0 0 1

→
 1 1 −2 1 0 0

0 1 3 −1 1 0
0 −3 5 −2 0 1

→
 1 0 −5 2 −1 0

0 1 3 −1 1 0
0 0 14 −5 3 1



→

 1 0 −5 2 −1 0
0 1 3 −1 1 0
0 0 1 −5/6 1/2 1/6

→
 1 0 0 3/14 1/14 5/14

0 1 0 1/14 −5/14 −3/14
0 0 1 −5/14 3/14 1/14

 .

Using the above understanding, we see that

M

 3/14 1/14 5/14
1/14 −5/14 −3/14
−5/14 3/14 1/14

 =

 1 0 0
0 1 0
0 0 1

 .

Thus, we know that the inverse is

M−1 =

 3/14 1/14 5/14
1/14 −5/14 −3/14
−5/14 3/14 1/14

 .

Rest of the Exercises for Section 16

1. Find M−1 for

M =

(
2 −3
1 1

)
.

2. Let M =

 1 0 −1
3 1 −1
−2 −1 1

, find M−1.

3. Given M =

 1 1 −2
1 2 1
2 3 −1

 , find M−1.

17 Heat States in a (Vector) State Space

Recall in Exercise 10 Section 4.2, we introduced the application of diffusion welding. A
manufacturing company uses the process of diffusion welding to adjoin several smaller rods
into a single longer rod. The diffusion welding process leaves the final rod heated to various
temperatures along the rod with the ends of the rod having the same temperature. Every
a cm along the rod, a machine records the temperature difference from the temperature at
the ends to get heat states. We assume that the rod is thoroughly insulated except at the
ends so that heat is only lost out the end.
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We want to explore this application further. Let’s define a function f : [a, b] → R that
measures, along a rod of length L = b−a, the difference in temperature from the temperature
at the ends of the rod (f(a) = f(b) = 0). The quantity f(x) is the temperature of the rod
at position x for any x in the interval [a, b].
We know that as time goes on, the heat will spread along the rod. We can imagine that
after a very long time the heat will be the same all along the rod. We can even predict how
the heat will diffuse:

1. Places where the temperature is higher than the surrounding area will cool.

2. Places where the temperature is cooler than the surrounding area will warm.

3. As the heat diffuses, sharpest temperature differences disappear first.

4. The long term behavior is that temperatures smooth out approaching f(x) = 0.

17.1 The Heat Equation

What we expect to happen is actually described mathematically by a partial differential
equation. In fact, it is described by the heat equation, or diffusion equation, (with fixed unit
diffusion coefficient):

∂f

∂t
=
∂2f

∂x2
.

Notice that our initial intuition is seen in this equation.

1. A heat state vector f is a function of both position and time, though we often do not
explicitly write f(x, t) for clarity sake.

2. The rate of change of temperature at any location x is proportional to the second
derivative of the temperature with respect to position.

3. Temperature is changing fastest at sharp peaks or dips in temperature where the
curvature is large.

4. Regions where temperature is changing slowly are where |∂2f(x)/∂x2| is small. This
occurs under two different conditions:
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(a) Where the temperature profile has nearly constant slope.

(b) Near inflection points of the temperature profile.

5. The sign of the second derivative ensures that the heat state function does approach
the zero function.

Notice that the second derivative with respect to position (x) tells us about concavity of the
heat state along the bar. The “more” concave down, the faster the temperature will drop
and the “more” concave up, the faster the temperature will rise. The above bulleted list just
says this mathematically.

17.2 The Discrete Heat Equation, in x.

None of this seems very much like Linear Algebra. But it is! We formulate our problem in
a finite dimensional vector space. We will use our knowledge of linear algebra to compute
the heat state at any later time as the heat diffuses. In the previous part of the discussion
we modeled the heat along a bar by a continuous function f , which we call the heat state of
the bar. We will discretize such a heat state f by sampling the temperature at m locations
along the bar. If we space the m sampling locations equally, then for ∆x = L

m+1
= b−a

m+1
, we

can choose the sampling locations to be a + ∆x, a + 2∆x, . . . , a + m∆x. (We will assume
that the heat state is known (and fixed) at the endpoints so we don’t need to sample there!)
Then, the discretized heat state is the following vector u in Rm+2.

[0, u1, u2, ..., um, 0] = [f(a), f(a+ ∆x), f(a+ 2∆x), . . . , f(a+m∆x), f(b)].

Notice that f(a) = f(b) = 0, where b = a+ (m+ 1)∆x. Also, if uj = f(x) for some x ∈ [a, b]
then uj+1 = f(x + ∆x) and uj−1 = f(x − ∆x). The figure below shows a continuous heat
state on the left and a heat state with sampling points marked on the right.

To complete our vector space development (we need the set of heat states to form a vector
space so that we can use Linear Algebra in this setting), we must define heat state addition
and scalar multiplication.

1. We define scalar multiplication in the usual componentwise fashion. Scalar multiplica-
tion results in a change in amplitude only.
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2. We define vector addition in the usual componentwise fashion. Addition can result in
changes in both amplitude and shape.

Recall, heat diffuses in the way described by

∂f

∂t
=
∂2f

∂x2
.

Now, because derivatives are linear, intuitively we believe that it should be possible to get
a good discrete approximation. So, we discretize the derivatives, using the definition of
derivative

∂f

∂x
= lim

h→0

f(x+ h)− f(x)

h
.

Notice that in a discrete setting, it is not possible for h→ 0. The smallest h can be is ∆x.
Let’s use this to make the matrix representation for the second derivative operator, which
we call D2. That is, D2u approximates ∂2f/∂x2.

∂2f

∂x2
=

∂

∂x

∂f

∂x
= ∂

∂x

(
lim
h→0

f(x+h)−f(x)
h

)
≈ ∂

∂x

(
f(x+∆x)−f(x)

∆x

)
= 1

∆x
lim
h→0

[
f(x+∆x)−f(x)−f(x+∆x−h)+f(x−h)

h

]
≈ 1

(∆x)2
[f(x+ ∆x)− 2f(x) + f(x−∆x)]

Notice that we have used both a forward and backward difference definition of the derivative
in order to make our approximation symmetric. This helps us keep the later linear algebra
manageable. In our discretization, we have

∂2uj
∂x2

=
1

(∆x)2
(uj+1 − 2uj + uj−1).
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In-Class Exercise

Write the matrix representation for the second derivative operator, D2 with respect to the
standard basis, using (D2(u))j = 1

(∆x)2
(uj+1 − 2uj + uj−1) when m = 6.

Answer.

D2 =
1

(∆x)2


−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2

 .
This says that if we want to take a discrete second derivative, we do the matrix multiply
D2u.

17.3 The Disctrete Heat Equation, in t

The heat state u also changes over time. So we can write u = u(t), with a time dependence.

That means we have from above ∂2u(t)
∂x2

= D2u(t).
Now, we use a similar argument to discretize ∂u

∂t
.

∂u

∂t
≈ u(t+ ∆t)− u(t)

∆t
.

We want to find the diffusion operator E : Rm → Rm, for a fixed ∆t, so that
u(t+ ∆t) = Eu(t) (That is, u(t+ ∆t) is obtained via a matrix multiply). We put the above
discretizations into the heat equation to obtain:

u(t+ ∆t)− u(t)

∆t
=

1

(∆x)2
D2u(t).

So,

u(t+ ∆t) = u(t) +
∆t

(∆x)2
D2u(t) =

(
I +

∆t

(∆x)2
D2

)
u(t).

Let E be defined as the matrix I + ∆t
(∆x)2

D2. Then we have u(t+ ∆t) = Eu(t).

In-Class Exercise

Find the matrix representation of E.

E =


1− 2δ δ 0 0
δ 1− 2δ δ 0 . . .
0 δ 1− 2δ δ

...
. . .

 ,
Here we note that we need 0 < δ ≡ ∆t

(∆x)2
≤ 1

4
for computational stability, though the proof

is beyond the scope of this module (reference?). ∆x is fixed so we need to take small enough
time steps ∆t to get this inequality. Hence as we let ∆x→ 0, we are also implicitly forcing
∆t→ 0.
Consider the meaning of the row and column representations of E.

1. How can we interpret the values in column k of E?
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Answer. The kth column shows how the heat at time t distributes to heat at time
t + ∆t at location k in the heat state. In particular, fraction 1 − 2δ of the heat at
location k remains at location k and fraction δ of the heat moves to each of the two
nearest neighbor locations k + 1 and k − 1.

2. How can we interpret the values in row k of E?

Answer. The kth row shows where the heat at time t+∆t came from. In particular,
fraction 1− 2δ of the heat at location k was already at location k and fraction δ came
from each of the location’s two nearest neighbors.

3. How can we interpret the fact that all but the first and last columns (and rows) sum
to unity?

Answer. Based on the above discussion, we see that this guarantees that no heat is
lost from the system except at the end points. Heat is redistributed (diffused) not lost.

17.4 Heat State Evolution

Now, we consider the evolution over more than one time step.

u(t+ ∆t) = Eu(t)

u(t+ 2∆t) = Eu(t+ ∆t) = E(Eu(t)) = E2u(t)

This means k time steps later,
u(t+ k∆t) = Eku(t)

Exercises

In class, we found the matrix representation of the heat diffusion operator to be

E =


1− 2δ δ 0 0
δ 1− 2δ δ 0 . . .
0 δ 1− 2δ δ

...
. . .

 .
We see that if we are want to find the kth heat state, u(k∆t) in the heat diffusion, we need
to use

u(k∆t) = Eku(0),

where u(0) is the initial heat state. Let’s explore what happens when we do these calculations.

1. What is the equation for the heat state 2 steps in the future? 1000 time steps in the
future?

2. Find E2.

111



3. Does it look like raising E to higher and higher powers is an easy way to find the heat
state at some time far in the future (for example, 1000 time steps away)?

4. Pick your favorite nontrivial vector u ∈ R4 and compute Eu, E(Eu) and E(E(Eu)).

5. Does it look like multiplying over and over by the matrix E is an easy way to find the
heat state at some time far in the future?

6. If you had to perform this kind of operation, what characteristics would you prefer a
diffusion operator to have?

18 Heat Equation for Linear Algebra Lab 1

1. In the following picture, there are 12 different initial heat states (in orange) and their
corresponding diffusions (colors varying from orange to dark blue). Group the pictures
based on the diffusion behavior. Briefly list the criteria you used to group them. We
will use these descriptions in the next discussion so try to be as clear as possible.

2. Write the expression for Eu for the special vectors discussed in class.

3. Now let’s view the diffusion of linear combinations of these special vectors. What do
you see in the diffusion of a vector that is a linear combination of

(a) Two of these special vectors?

(b) Three of these special vectors?

4. Write out algebraically what happens in the diffusion of a heat state that is a linear
combination of these special vectors.

5. What if we want to find more of these special vectors? What matrix equation would
we solve?

6. What do this equation and the invertible matrix theorem tell us?

112



19 Heat Equation for Linear Algebra Lab 2

Recall that our goal is to find the heat state after k time steps in the heat diffusion. We
have observed that some heat states (simple vectors) only change in amplitude with time,
Evj = ajvj. Now we will explore what could happen if some set of simple vectors β =
{v1, v2, · · · , vm} is a basis for Rm.

1. Working with the standard basis for Rm, what can you determine about the diffusion
of a heat state u(t+ ∆t) = Eu(t) given basis β?
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2. Use your answer from question 1 to find a representation for the heat state after the
10th iteration of diffusion, that is, for u(t+ 10∆t).

3. Answer question 1 again, but consider a change of basis.

4. Using your answer from question 3, find a representation for the heat state after the
10th iteration of the diffusion.

5. How might these computations using the simple vector basis give us information about
the long term behavior of the heat diffusion? Make some observations.

20 Eigenvalues, Eigenvectors, Eigenspaces, and Diag-

onalizability

In the Heat Equation Labs 1 & 2 (Sections 18 and 19), we found that some heat states will
only change in amplitude in the heat diffusion (cooling) on a rod. This means that when
we apply the diffusion operator to one of these heat states, we get a result that is a scalar
multiple of the original heat state. Mathematically, this means

Ev = λv, (6)

for some scalar λ. We also saw that these vectors satisfy the matrix equation

(E − λI)v = 0. (7)

Since this is a homogeneous equation, we know that this equation has a solution. This means
that either there is a unique solution (only the trivial solution) or infinitely many solutions.
If we begin with a zero heat state (all temperatures are the same everywhere along the rod)
then the diffusion is very boring (my opinion, I know) because nothing happens. It would
be nice to find a nonzero vector satisfying the matrix Equation (7) because it gets us closer
to the possibility of having a basis of these vectors. By the invertible matrix theorem, we
know that this equation has a nonzero solution as long

det(E − λI) = 0.

Let’s remind ourselves why we want such a basis. In the case of heat states, we recognize
that if B = {v1, v2, . . . , vm} is a basis of these special vectors so that Evi = λivi and u0 is our
initial heat state, we can write u in coordinates according to B. That is, there are scalars
α1, α2, . . . αm so that

u0 = α1v1 + α2v2 + . . .+ αmvm.

Then, when we apply the diffusion operator to find the heat state, u1 a short time later, we
get

u1 =Eu0 = E(α1v1 + α2v2 + . . .+ αmvm)

=α1Ev1 + α2Ev2 + . . .+ αmEvm

=α1λ1v1 + α2λ2v2 + . . .+ αmλmvm.
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So, if we want to find uk for some time step k, far into the future, we get

uk =Eku0 = α1E
kv1 + α2E

kv2 + . . .+ αmE
kvm

=α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αmλ

k
mvm.

With this we can predict long term behavior of the diffusion. (You will get a chance to do
this in the exercises later.)

20.1 Eigenvectors and Eigenvalues

This property that the special vectors in a heat diffusion have is a very desirable property
elsewhere. So, in Linear Algebra, we give these vectors a name.

Definition 20.1. Let V be a vector space. Given a linear operator L : V → V , with
corresponding square matrix, and a nonzero vector v ∈ V . If Lv = λv for some scalar λ,
then we say v is an eigenvector of L with eigenvalue λ.

As with the heat states, we see that eigenvectors (with positive eigenvalues) of a linear
operator only change amplitude when the operator is applied to the vector. This makes
repetitive applications of a linear operator to its eigenvalues very simple.
Notice that in order to find the eigenvalues and eigenvectors of an operator, we need only
solve the equation

(L+ λI)v = 0.

Since every linear operator has an associate matrix, we will treat L as a matrix for the rest
of this section. We want to find nonzero solutions to this equation. That means we want to
find the scalars λ so that

det(L+ λI) = 0. (8)

We call Equation (8) the characteristic equation and det(L+λI) the characteristic polynomial
of L.
Let us now look at some examples:

Example 20.1. Let us find the eigenvalues and eigenvectors of the matrix

A =

(
5 −3
6 −4

)
.

First, we solve the characteristic equation for λ:

det(A− λI) =0∣∣∣∣( 5 −3
6 −4

)
− λ

(
1 0
0 1

)∣∣∣∣ =0∣∣∣∣ 5− λ −3
6 −4− λ

∣∣∣∣ =0

(5− λ)(−4− λ) + 18 =0

λ2 − λ− 2 =0

(λ+ 1)(λ− 2) =0

λ = −1, λ = 2
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So, now we have two eigenvalues λ1 = −1 and λ2 = 2. (In case it isn’t clear, the subscripts
on the λ’s have nothing to do with the actual eigenvalue. I’m just numbering them.) Using
our eigenvalues and Equation 6, we can find the corresponding eigenvectors. Let’s start with
λ1 = −1. We want to find v so that

(A− (−1)I)v = 0.

We can set this up as a system of equations:

(A+ I)v =0(
6 −3
6 −3

)(
x
y

)
=

(
0
0

)
6x + −3y = 0
6x + −3y = 0

We can see that this system has infinitely many solutions (that’s what we expected) and the
solution space is

E1 =

{(
x

2x

)∣∣∣∣x ∈ R
}

= span

{(
1
2

)}
.

Using the same process, we can find the eigenvectors corresponding to λ2 = 2.

(A− 2I)v =0(
3 −3
6 −6

)(
x
y

)
=

(
0
0

)
3x + −3y = 0
6x + −6y = 0

So, the solutions space to this system is

E2 =

{(
x
x

)∣∣∣∣x ∈ R
}

= span

{(
1
1

)}
.

20.2 Eigenbasis

In Heat Equation Lab 2, we saw that it would be nice if we could find a set of “simple
vectors” that formed a basis for the space of heat states. That is, we found that we could
predict long term behavior if we had an eigenbasis. In this section, we want to explore when
it is the case that we have an eigenbasis. Let’s first consider what we mean by an eigenbasis.
When we are searching for eigenvectors and eigenvalues of an n× n matrix A, we are really
considering the linear transformation T : Rn → Rn defined by T (v) = Av. Then the
eigenvectors are vectors in the domain of T that are scaled (by the eigenvalue) when we
apply the linear transformation T to them. That is, v is an eigenvector with corresponding
eigenvalue λ ∈ R if v ∈ Rn and T (v) = λv. An eigenbasis is just a basis for Rn made up of
eigenvectors. We define an eigenbasis more formally here.

Definition 20.2. Given an n × n matrix A. If A has n linearly independent eigenvectors,
v1, v2, . . . , vn then B = {v1, v2, . . . , vn} is called an eigenbasis of A for Rn.
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Let’s look back at Example 20.1. Notice that if we create a set out of the basis elements for

both of the eigenspaces E1 and E2, we get the set B =

{(
1
2

)
,

(
1
1

)}
, which is a basis

for R2.

Example 20.2. Consider the matrix A =

 2 0 0
0 3 1
0 0 3

. We want to know if A has an

eigenbasis for R3. We begin by finding the eigenvectors and eigenvalues. That is, we want
to know for which nonzero vectors v and scalars λ does Av = λv. We know that this has a
nonzero solution v if det(A− λI) = 0. So, we solve for λ in∣∣∣∣∣∣

2− λ 0 0
0 3− λ 1
0 0 3− λ

∣∣∣∣∣∣ = 0.

Finding the determinant gives the characteristic polynomial

(2− λ)(3− λ)(3− λ) = 0.

Thus, for λ1 = 2 and λ2 = 3, there is a nonzero v so that Av = λv. We now find the
corresponding eigenvectors (really the corresponding eigenspaces). That is, we want to find
the solutions to (A− 2I)v = 0 and (A− 3I)v = 0.

λ1 = 2 In this case we are solving the matrix equation

(A− 2I)v =

 0 0 0
0 1 1
0 0 1

 a
b
c

 = 0.

So, we will reduce the corresponding augmented matrix. 0 0 0 0
0 1 1 0
0 0 1 0

→
 0 1 1 0

0 0 1 0
0 0 0 0

→
 0 1 0 0

0 0 1 0
0 0 0 0

 .

Thus, a is a free variable and b = c = 0. Thus, E1 = span


 1

0
0

.

λ2 = 3 Now, in this case we are solving the matrix equation

(A− 3I)v =

 −1 0 0
0 0 1
0 0 0

 a
b
c

 = 0.

So, we will reduce the corresponding augmented matrix. −1 0 0 0
0 0 1 0
0 0 0 0

→
 1 0 0 0

0 0 1 0
0 0 0 0

 .

Thus, b is a free variable and a = c = 0. Thus, E2 = span


 0

1
0

.
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Notice, that in this example, we only have two linearly independent eigenvectors, v1 =

 1
0
0


and v2 =

 0
1
0

 for in order to get another eigenvector, we would need it to be either in E1

(and therefore a scalar multiple of v1) or in E2 (and therefore a scalar multiple of v2). This
means that we cannot find an eigenbasis of A for R3.

Notice that in each example above, the set made by taking the union of each basis for each
eigenspace is a linearly independent set. Let’s see why this is always true.

Lemma 20.1. Let A be a matrix and let v be an eigenvector with eigenvalue λ. Then for
any scalar c, cv is an eigenvector with eigenvalue λ.

Proof:(See Exercise 1 below)

Theorem 20.1. Let A be a matrix and let v1 and v2 be eigenvectors with eigenvalues λ1 and
λ2 respectively. If λ1 6= λ2 then {v1, v2} is linearly independent.

Proof: Suppose v1 and v2 are nonzero eigenvectors with eigenvalues λ1 and λ2 respectively.
Suppose also that λ1 6= λ2. Then Av1 = λ1v1 and Av2 = λ2v2. By Lemma 20.1, αv1 and βv2

are eigenvectors with eigenvalues λ1 and λ2 respectively. Let’s look at two cases 1.) λ1 = 0
and λ2 6= 0 (the case when λ2 = 0 and λ1 6= 0 is proved similarly so we won’t prove it) and
2.) λ1 6= 0 and λ2 6= 0:

Case 1: If λ1 = 0 then by definition, v1 ∈ nullA. But since λ2 6= 0, v2 /∈ null(A). Suppose that

αv1 + βv2 = 0.

Then
A(αv1 + βv2) = 0.

But this means that βAv2 = 0. So β = 0. But then αv1 = 0 and so α = 0 and {v1, v2}
is linearly independent.

Case 2: If λ1 6= 0 and λ2 6= 0 and
αv1 + βv2 = 0.

Then
A(αv1 + βv2) = 0

tells us that
αλ1v1 = −βλ2v2.

Then αv1 = λ2
λ1
βv2. Thus, λ2

λ1
βv2 is an eigenvector with eigenvalue λ1 and by Lemma

20.1, λ2
λ1
βv2 is an eigenvector with eigenvalue λ2. So

A
λ2

λ1

βv2 = λ2βv2 and A
λ2

λ1

βv2 =
λ2

2

λ1

βv2.

So,

λ2βv2 =
λ2

2

λ1

βv2 and (λ1 − λ2)βv2 = 0.
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Since, λ2 6= λ1 and v2 6= 0, we see that β = 0. Thus,

A(αv1 + βv2) = 0

implies αλ1v1 = 0. So, α = 0. Therefore {v1, v2} is linearly independent.

20.3 Diagonalizable matrices

We found in the second heat equation lab that if we have a basis made up of eigenvectors,
life is good. Well, that’s maybe a bit over reaching. What we found was that if B =
{v1, v2, . . . , vn} is an eigenbasis for Rn corresponding to the diffusion matrix E then we can
write any initial heat state vector v ∈ Rn as

v = α1v1 + α2v2 + . . .+ αnvn.

Suppose these eigenvectors have eigenvalues λ1, λ2, . . . , λn, respectively. Then with this
decomposition into eigenvectors, we can find the heat state at any later time (say k time
steps later) by multiplying the initial heat state by Ek. This became an easy computation
with the above decomposition because it gives us, using the linearity of matrix multiplication,

Ekv = Ek(α1v1 + α2v2 + . . .+ αnvn) = α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αnλ

k
nvn. (9)

We can then apply our knowledge of limits from Calculus here to find the long term behavior.
That is, the long term behavior is

lim
k→∞

α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αnλ

k
nvn.

We see that this limit really depends on the size of the eigenvalues. But we also saw, in Lab
2, that if we change basis to an eigenbasis, the diffusion works out really nice also. Let’s
remind ourselves how we went about that. First, we notice that if we want all computations
in the eigenbasis, we have to reconsider the diffusion matrix transformation as well. That
means, we want the matrix transformation that does the same thing that T (v) = Ev does,
but this matrix is created using the eigenbasis. That is, we want the matrix representation
for the linear transformation that takes a coordinate vector [v]E (where E = {v1, v2, . . . , vn}
is the eigenbasis) and maps it to [Ev]E . Let’s call this matrix E ′. What we are saying is
that we want E ′[v]E = [Ev]E . As always, the columns of this matrix are the vectors that
are the result of applying the transformation to the current basis elements (in E). Thus, the
columns of E ′ are [Ev1]E , [Ev2]E , . . . , [Evn]E . But

[Ev1]E = [λ1v1]E = λ1[v1]E = λ1


1
0
...
0



[Ev2]E = [λ2v2]E = λ2[v2]E = λ2


0
1
...
0
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...

[Evn]E = [λnvn]E = λn[vn]E = λn


0
0
...
1


So, we found

E ′ =


λ1 0 . . . 0
0 λ2

. . .
. . .

...

0 . . . 0 λn


Knowing that a change of basis is a linear transformation (actually, an isomorphism), we
can find the matrix representation (usually known as a change of basis matrix). Let’s call
this matrix M and let’s see how this works. We know that M [v]E = [v]S . This means that if
we are given a coordinate vector with respect to the basis E , this transformation will output
a coordinate vector with respect to the standard basis. Recall, to get the coordinate vector
in the new basis, we solve for the coefficients in

v = α1v1 + α2v2 + . . .+ αnvn.

Then

[v]E =


α1

α2
...
αn

 .

Our favorite way to solve this is to set up the matrix equation

 | | |
v1 v2 . . . vn
| | |




α1

α2
...
αn

 =

 |v
|

 .

Notice that this is the transformation written in matrix form!!!! That is, this means that
the matrix representation that takes a coordinate vector with respect to the basis E to a
coordinate vector with respect to the standard basis is | | |

v1 v2 . . . vn
| | |

 .

So the matrix representation for the transformation that changes from the eigenbasis E to
the standard basis is given by M . Let’s use that to rewrite

E ′[u]E = [v]E .

That is, [u]E = m−1u and [v]E = M−1v for some u and v in the standard basis. So, we have:

M−1(u(t+ ∆t)) = M−1(Eu(t)) = E ′M−1u(t)
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u(t+ ∆t) = Eu(t) = ME ′M−1u(t)

u(t+ k∆t) = Eku(t) = M(E ′)kM−1u(t)

u(t+ ∆t) = Eku(t) = M


λk1 0 . . . 0
0 λk2
...

. . .
...

0 . . . 0 λkn

M−1u(t)

Of course, all of this is dependent on having an eigenbasis for Rn. Exercise 5 below gives
the necessary tools to show that we indeed have an eigenbasis for the diffusion.
Following the same procedure in a general setting, let us see what this means in any context.
That is, we want to know when we can actually decompose a matrix A into a matrix product
MDM−1 where M is invertible (clearly) and D is diagonal. Notice from above we see that
to form the columns of M we use the eigenvectors of A. This means that as long as we can

find an eigenbasis {v1, v2, . . . , vn}, then M =

 | | |
v1 v2 . . . vn
| | |

 is invertible.

Definition 20.3. Given an n × n matrix A, we say that A is diagonalizable if there exist
matrices M and D so that A = MDM−1.

Let’s look at an example.

Example 20.3. Let A =

 1 0 1
2 1 3
1 0 1

. We want to determine whether A is diagonalizable.

To do this, we need to find the eigenvalues and eigenvectors of A. That is, we want to solve
Av = λv for both v and λ. It tends to be easier to find λ first. So, that’s what we will do.
(A− λI)v = 0 has infinitely many solutions when det(A− λI) = 0. In our case,

det(A− λI) =

∣∣∣∣∣∣
 1 0 1

2 1 3
1 0 1

− λ
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 1− λ 0 1

2 1− λ 3
1 0 1− λ

∣∣∣∣∣∣
=(1− λ)

∣∣∣∣ 1− λ 1
1 1− λ

∣∣∣∣ = (1− λ)
(
(1− λ)2 − 1

) set
= 0

Thus, λ = 0, 1, 2. Now, because there are three eigenvalues, Theorem 20.1 tells us that there
are at least three eigenvectors that are linearly independent. Thus, A is diagonalizable. Let’s
find the eigenbasis and decompose A into MDM−1.

λ = 0: We want to find v so that (A)v = 0. We will solve this equation by reducing an
augmented matrix. 1 0 1 0

2 1 3 0
1 0 1 0

→
 1 0 1 0

0 1 1 0
0 0 0 0

⇒ v ∈

c
 −1
−1

1

∣∣∣∣∣∣ c ∈ R

 .

λ = 1: We want to find v so that (A− I)v = 0. Again, we will solve this equation by reducing
an augmented matrix. 0 0 1 0

2 0 3 0
1 0 0 0

→
 1 0 0 0

0 0 1 0
0 0 0 0

⇒ v ∈

c
 0

1
0

∣∣∣∣∣∣ c ∈ R

 .
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λ = 2: We want to find v so that (A − 2I)v = 0. Once again, we will solve this equation by
reducing an augmented matrix. −1 0 1 0

2 −1 3 0
1 0 −1 0

→
 1 0 −1 0

0 1 −5 0
0 0 0 0

⇒ v ∈

c
 1

5
1

∣∣∣∣∣∣ c ∈ R

 .

From these, we can form the eigenbasis
 −1
−1

1

 ,

 0
1
0

 ,

 1
5
1

 .

We also know

M =

 −1 0 1
−1 1 5

1 0 1

 and D =

 0 0 0
0 1 0
0 0 2

 .

I leave it to the reader to find M−1 and show that MDM−1 = A.

Notice that in Exercise 20.2, there are only two eigenvectors and two eigenvalues. This means
that we cannot form an eigenbasis for R3. Thus, A is not diagonalizable.
This might lead someone to think that we can just count the eigenvalues instead of eigen-
vectors. Let’s see an example where this is not the case.

Example 20.4. Let A =

 3 1 0
1 3 0
2 2 2

 . We can find the eigenvalues and eigenvectors of A

to determine if A is diagonalizable. Let’s step through the same steps. First, we solve the
characteristic polynomial det(A− λI) = 0.∣∣∣∣∣∣

3− λ 1 0
1 3− λ 0
2 2 2− λ

∣∣∣∣∣∣ = (2− λ)

∣∣∣∣ 3− λ 1
1 3− λ

∣∣∣∣ = (2− λ)
(
(3− λ)2 − 1

) set
= 0.

So, λ = 2, 4. We only have two eigenvalues! Let’s find the corresponding eigenspaces.

λ = 4: We will solve (A− 4I)v = 0. −1 1 0 0
1 −1 0 0
2 2 −2 0

→
 1 −1 0 0

0 4 −2 0
0 0 0 0

→
 1 0 −1/2 0

0 1 −1/2 0
0 0 0 0

 .

So, the eigenspace is span


 1

1
2

.

λ = 2: We will solve (A− 2I)v = 0. 1 1 0 0
1 1 0 0
2 2 0 0

→
 1 1 0 0

0 0 0 0
0 0 0 0

 .

So, the eigenspace is span


 0

0
1

 ,

 −1
1
0

.
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Notice that even though we have two eigenvalues, we still have three linearly independent
eigenvectors! So, A is diagonalizable with A = MDM−1 where

M =

 1 0 −1
1 0 1
2 1 0

 and D =

 4 0 0
0 2 0
0 0 2

 .

Exercises

1. Prove Lemma 20.1.

2. Why does Theorem 20.1 tell us that given a matrix with eigenspaces E1, E2, . . . Ek,
E1 ∪ E2 ∪ . . . ∪ Ek is a linearly independent set?

3. Show that MDM−1 = A in Example 20.3.

4. Determine which of the following matrices is diagonalizable. Whenever it is, write out
the diagonalization of A.

(a) A =

(
1 1
−2 3

)

(b) A =

 5 10 −3
0 −2 0
0 3 −1


(c) A =

 1 0 0
1 2 1
5 4 2


(d) A =

 3 −4 2
2 −3 2
0 0 1



(e) A =


1 0 0 0
1 2 0 0
5 4 2 0
1 1 1 1


5. Consider the heat diffusion operator E : Rm → Rm with standard basis matrix repre-

sentation

E =



1− 2δ δ 0 0

δ 1− 2δ δ 0 . . .

0 δ 1− 2δ δ

...
. . .


,

where 0 < δ < 1
4
. Show that the kth eigenvector vk (1 ≥ k ≥ m) is given by
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vk =

(
sin

πk

m+ 1
, sin

2πk

m+ 1
, sin

3πk

m+ 1
, . . . , sin

(m− 1)πk

m+ 1
, sin

mπk

m+ 1

)
and provide the kth eigenvalue. Discuss the relative size of the eigenvalues.

21 Heat Equation for Linear Algebra Lab #3

In this lab, you will explore details of the nature of heat diffusion. This lab requires that
you use Matlab or Octave and gives you commands to type at the Matlab/Octave prompt.

1. First watch the demo from class of the diffusion on a heat state by typing the following
command in Matlab/Octave:

HeatEqnClassDemos(1);

What characteristics of heat flow (discussed at the beginning of this module) did you
observe in the demo? In the rest of this lab, you’ll discover how those characteristics
can be traced back to linear algebra concepts that we’ve been studying!

2. First start by finding the eigenvectors and eigenvalues for the heat diffusion operator.
Do this using the eig command in MatLab (or Octave). First, run the function that
creates the diffusion operator by typing, at the Matlab/Octave prompt, the two lines
below (with a “return” or “enter” key).

m=5;

E=full(EvolutionMatrix(m));

Check that E looks like you want it to by typing

E

What is the value of δ used by this code? Now, use then use the eig command to find
the eigenvalues and eigenvectors

[V,D]=eig(E);

3. Now, we want to verify that V is the matrix whose columns are eigenvectors and D is
the matrix whose diagonal entries are the eigenvalues.

(a) To see that D is actually diagonal, type
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D

(b) Now verify that the first column of V is the eigenvector of E whose eigenvalue is
the first diagonal entry of D. Do this by typing in Matlab/Octave

E*V(:,1)

D(1,1)*V(:,1)

The first of these commands multiplies our diffusion operator E by the first column
of the V matrix. The second of these commands multiplies the (1, 1) entry of the
D matrix by the first column of V . These should be the same.

(c) Try this again with the second column of V and the (2, 2) entry of D. You may
notice that the third entry in this eigenvector may be represented by a very small
value ∼ 10−16. This is a numerical artifact; such small values in relation to other
entries should be taken to be zero.

(d) Now we can get a better form for the entries in D. Type

L=diag(D)

This gives a vector made of the diagonal elements of D. (Caution: the diag

command has many uses other than extracting diagonal elements.)

4. Let’s see what this has to do with our heat diffusion.

(a) Now redo the steps (2) and (3d) in Matlab/Octave with m=100 to get the new
eigenvectors and eigenvalues of E.

(b) Now we will visualize these eigenvectors as heat states.

i. We will choose to view 5 eigenvectors with their the corresponding eigenval-
ues. Use the plotting function EigenStuffPlot by typing

choices=[80,85,90,95,100];

EigenStuffPlot(V(:,choices),L(choices));

ii. How are the individual eigenvectors similar or dissimilar? Make some obser-
vations about the relationship between these eigenvectors and eigenvalues.

iii. Choose different eigenvectors (remember we have 100 of them) to plot by
changing entries in vector in the command that starts

choices=...

What did you choose for choices?

iv. Now rerun the plotting function by entering
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EigenStuffPlot(V(:,choices),L(choices));

v. Write a list of observations relating eigenvectors and eigenvalues. (Try the
above commands with a few more choices if needed to answer this question.)

5. In the previous lab, you wrote an arbitrary heat state as a linear combination of the
eigenvectors. Let’s view some diffusions of linear combinations of a few eigenvectors.

(a) First, just two eigenvectors.

i. Choose the eigenvectors:

choices=[60,80];

ii. Choose their coefficients (these should be between −2 and 2 for the stability
of the code):

coeffs=[1,-0.25];

iii. What is the linear combination we are about to plot?

iv. Plot and watch the diffusion of these by choosing a maximum number of time
steps MaxTime and running the function DiffuseLinearCombination:

MaxTime=50;

DiffuseLinearCombination(V(:,choices),L(choices),coeffs,MaxTime);

v. Do this again by changing the command lines starting as

choices=...

coeffs=...

You can change MaxTime if you want also, but making it larger than 500 might
make you sit for a very long time. You can also change the pause time between
frames by giving a fifth input to function DiffuseLinearCombination which
is the pause time in seconds.

vi. Make some observations about the diffusion of a linear combinations of two
eigenvectors. Try various linear combinations as needed.

(b) Now, 5 eigenvectors (the code is not set up to do more).

i. Choose the eigenvectors:

choices=[60,70,80,90,100];

ii. Choose their coefficients (these should be between −2 and 2 for the stability
of the code):
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coeffs=[1,-1,1,-1,1];

iii. What is the linear combination we are about to plot?

iv. Plot and watch (you may want to watch this multiple times) the diffusion
of these by choosing a maximum number of time steps MaxTime and running
the function DiffuseLinearCombination:

MaxTime=100;

DiffuseLinearCombination(V(:,choices),L(choices),coeffs,MaxTime);

v. Do this again by changing the command lines starting as

choices=...

coeffs=...

vi. Make some observations about the diffusion of linear combinations of eigen-
vectors. Try various linear combinations as needed.

(c) Use the above explorations to make a statement about diffusion details for an
arbitrary heat state u = α1β1 +α2β2 + . . .+αmβm, where the βi are eigenvectors.

22 Radiography and Tomography in Linear Algebra

Lab #4

In this activity, you will explore some of the properties of radiographic transformations.

In Lab #3 you investigated the questions: (1) whether a radiographic operator can produce
the same radiographs from different objects, (2) whether there are invisible objects other
than the “zero” object, and (3) whether there are radiographs that are not the image of any
object.

22.1 Task 1

After reviewing Lab 3, answer the following questions about spaces related to a radiographic
transformation T .

1. For a radiographic transformation T , is the nullspace of T a subspace consisting of
objects or of radiographs?

2. Describe the importance of the nullspace of a radiographic transformation given that
the goal is to reconstruct objects.

3. For a radiographic transformation T , is the column space of T a subspace consisting
of objects or of radiographs?

4. Describe the importance of the column space of a radiographic transformation given
that the goal is to reconstruct objects.
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22.2 Task 2

Now consider the questions of whether T is injective and/or surjective.

1. What does it mean for T to be injective?

2. What does it mean for T not to be injective? If two objects produce the same radio-
graph, what can you say about the ‘object’ that is their difference?

3. What does it mean for T to be surjective? Not surjective?

22.3 Task 3

Using your answers above, consider the following questions.

1. What must be true about the radiographic transformation T so that can we determine
(reconstruct) the object that produces a given radiograph?

2. Suppose that the matrix corresponding to the radiographic transformation T is injec-
tive and square. In order to reconstruct an object that produces a given radiograph,
what must be true about the transformation?

3. Is it possible for the radiographic transformation to correspond to a nonsquare matrix
that is taller than it is wide (more rows than columns)? If so, what would this mean?
If not, why not?

4. Is it possible for the radiographic transformation to correspond to a non-square matrix
that is wider than it is tall (more columns than rows)? If so, what would this mean?
If not, why not?

5. Brainstorm ideas that might help to reconstruct an object for a given radiograph if the
radiographic transformation is injective, but the corresponding matrix is not square.

23 Special Matrices

Let’s pause and explore some matrices that we may have seen in this course already. We
want to review some properties of these matrices.

23.1 Identity Matrix

The Identity matrix is the square matrix whose entries are zero except along the diagonal,
where they are ones. These matrices has been used as a goal when reducing matrices. When
we reduce a matrix, the identity is the form we have in mind, whether or not we actually
achieve that form is not the issue. We use the identity to test inverses: A is the inverse of B
if AB = I and BA = I. When finding the inverse of a matrix A, we augment the matrix with
the identity ([A|I]) and reduce so that the left side of the augment is the identity ([I|A−1]).
The identity matrix is the easiest (except, of course, the zero matrix) matrix to multiply by.
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23.2 Diagonal Matrices

Diagonal matrices are similar to the identity with the only possible difference being along
the diagonal. The diagonal matrix can have any entry (even zero). Diagonal matrices are
nice to have when we want to repeatedly multiply by one. Indeed, if

D =


d1 0 0 . . . 0
0 d2 0 0
...

. . .
...

0 0 0 . . . dn

 ,

then

Dk =


dk1 0 0 . . . 0
0 dk2 0 0
...

. . .
...

0 0 0 . . . dkn

 .

Multiplying by a diagonal matrix is almost as easy as multiplying by the identity. In this
case, the components are scaled by the diagonal entries. That is, if

v =


a1

a2

. . .
an

 , then Dv =


d1a1

d2a2

. . .
dnan

 .

23.3 Triangular and Block matrices

There are two types of triangular matrices.

Definition 23.1. Upper triangular matrices are matrices whose entries below the diagonal
are all zero. That is, U is an upper triangular matrix if it is of the form

U =


a1,1 a1,2 a1,3 . . . a1,n

0 a2,2 a2,3 . . . a2,n

0 0 a3,3 . . . a3,n
...

. . .
...

0 0 . . . 0 an,n

 .

Lower triangular matrices are matrices whose entries above the diagonal are all zero. That
is, L is a lower triangular matrix if it is of the form

L =


a1,1 0 0 . . . 0
a2,1 a2,2 0 . . . 0
a3,1 a3,2 a3,3 . . . 0

...
. . .

...
an,1 an,2 an,3 . . . an,n

 .

In both of the above, we see that the matrices are split into two triangles, but named by
where the nonzero entries are located. Notice that a diagonal matrix is both upper and lower
triangular.
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Another type of matrix showing geometric patterns in the layout of the entries are block
matrices. Given matrices A1, A2, A3, and A4, we can create the block matrix

B =

(
A1 A2

A3 A4

)
as long as A1 has the same number of rows as A2 and the same number of columns as A3. A2

also needs to have the same number of columns as A4 and A3 must have the same number
of rows as A4. So, if A1 is n1×m1 and A4 is n4×m4, we know that A2 is n1×m4 and A3 is
n4 ×m1. We also know that B is (n1 + n4)× (m1 +m4). Notice that we can multiply block
matrices as if they are regular matrices.

Example 23.1. Let

B =

(
A1 A2

A3 A4

)
and C =

(
Ã1 Ã2

Ã3 Ã4

)
.

Then

BC =

 A1Ã1 + A2Ã3 A1Ã2 + A2Ã4

A3Ã1 + A4Ã3 A3Ã2 + A4Ã4

 .

So as long as the matrix multiplies inside make sense, this matrix multiply also makes sense.

Exercises

1. Using the above definition, create a 3 × 3 upper triangular matrix. Call it U . Now
create a 3× 3 lower triangular matrix. Call it L. (Hint for later: Don’t put too many
large numbers because you will use it in upcoming exercises.)

2. Find U2, U3, and U4. What do you notice about what happens when you raise U to
powers?

3. Find L2, L3, and L4. What do you notice about what happens when you raise U to
powers?

4. Now create a 6× 6 block matrix, with a nine 2× 2 block matrices. Call it B1.

5. Create another 6 × 6 block matrix, with a nine 2 × 2 block matrices, but this time
make only the three blocks along the diagonal nonzero matrices and the others zeros
matrices. Call this block matrix B2.

6. Find B2
2 and B3

2 . What do you notice? Write Bk
2 in block form.

7. Given the matrices A1, A2, A3, we can create the block matrix:

B =

 A1 0 0
0 A2 0
0 0 A4

 ,

where 0 represents a block of zeros. Find Bk using your observations from above.
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23.3.1 The Transpose and Symmetric Matrices

We saw the transpose in Section 2. Finding the transpose of an n ×m matrix gives a new
matrix that is m × n. Let’s compare the matrix spaces of the transpose of a matrix to the
original matrix. We will do this through exercises. In this section, we mention symmetric
matrices as well. These matrices also follow a pattern. The diagonal of such matrices acts
as a line of reflection (in a sense) for the matrix entries.

Definition 23.2. Symmetric matrices are matrices whose entries correspond across the di-
agonal so that ai,j = aj,i.

An example of a matrix that is symmetric is the matrix 1 3 5
3 2 6
5 6 8

 .

Note, we mention these matrices in the same section as the transpose because the transpose
of a symmetric matrix is itself. More formally, if S is a symmetric matrix, then ST = S.
The following theorem is something that is really useful about the transpose of a matrix.

Theorem 23.1. Let V and W be finite-dimensional vector spaces and T : V → W a linear
transformation. If rank(T ) = dim(V ) then T TT is invertible. (Here T TT is understood to
be the matrix representation.)

There are two ways you might want to think about this.

• Rationale #1: T : V → W having rank(T ) = dim(V ) = n (full rank) gives us that
ran(T ) is a subspace of W with the same dimension as V . So, we know that if we

define the restriction of T T to ran(T) to be T̃ T : ran(T ) → V , then T̃ T , having full

rank maps onto V . That is, ran(T̃ T ) = V . So, T TT : V → V has only a trivial null
space.

• Rationale #2: Show that N(T TT ) = {0}, then because T TT is square we have that
T TT is invertible. Let x ∈ N(T TT ). We have

0 = xT0 = xTT TTx = (Tx)T (Tx) = ‖Tx‖2

which implies Tx = 0, that is, N(T TT ) = N(T ). Now, since rank(T ) = dim(V ),
N(T ) = {0} and N(T TT ) = {0}.

Exercises

1. For each matrix, find AT and then the row, space, column space, nullspace, rank, and
nullity of both A and AT .

(a)

A =


1 1 2
1 2 5
2 3 7
2 1 4

 .
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(b)

A =

 1 0 2 4
1 1 5 3
2 1 7 1

 .

(c)

A =

 1 1 2
2 1 5
3 2 8

 .

2. What do you notice about how the matrix spaces of A and their dimensions compare
to the matrix spaces of AT and their dimensions? List all patterns you saw.

3. For each A and AT above, find AAT and ATA. Find the matrix spaces of this new
matrix and their dimensions. What do you notice about how these matrix spaces
compare to those of A and AT ?

4. Do you notice anything about the structure of the matrices AAT and ATA?

24 Radiograpy and Tomography in Linear Algebra Lab

#5: Reconstruction Without an Inverse

In this lab, we will consider the cases when the matrix representation of the radiographic
transformation does not have an inverse. (Note: we say that T : V → W has an inverse
T−1 : W → V if T−1T = IV , the identity mapping from V to V , and TT−1 = IW the identity
mapping from W to W . We say that T : V → W has a one-sided inverse, P : W → V if
PT = IV .)

24.1 Invertible transformation

In this section, we will consider the following example: We are given a radiograph with 24
pixels that was created by applying some radiographic transformation, T to an object with
16 voxels.

1. Give a scenario for a radiographic transformation T that fits the above example. Don’t
calculate a T , rather give the following:

- Size of the object: × .

- Number of pixels per view:

- Number of views:

2. Suppose we know b and we want to find x. This means that we want

x = T−1b.

(a) What properties must the transformation T have so that T is invertible?

(b) What properties must the transformation T have so that the one-sided inverse of
T exists?
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(c) What matrix properties must the matrix representation of T have so that it is
invertible?

(d) When N ≤M (as in the example above), what matrix properties must the matrix
representation of T have so that it has a one-sided inverse?

3. For ease of notation, we typically use the same notation for the matrix and the trans-
formation, that is, we call the matrix representation of T , T . Suppose, N ≤ M and
a one-sided inverse, P of T exists. This means that x = Pb. We know that if T is
invertible, we have that P = T−1 and x = Pb. But, in the example above, we know
that T is not invertible. Using the following steps, find the one-sided inverse of T .

(a) Because Tx = b, for any linear operator A, we can write ATx = Ab. This is
helpful if AT is invertible. Since T is one-to-one, we know that for AT to be
invertible, the only vector in ran(T ) that is in null(A) is the zero vector. What
other properties must A have so that AT is invertible?

(b) Provide a matrix, A so that A has the properties you listed in 3a and so that AT
is invertible.

(c) Solve for x in the matrix equation ATx = Ab using the A you found and provide
a representation of the one-sided inverse of P .

4. Putting this all together now, state the necessary and sufficient condition for T to have
a one-sided inverse?

24.2 Application to a small example

Consider the following radiographic example.

• Total number of voxels: N = 16 (n = 4).

• Total number of pixels: M = 24

• ScaleFac = 1

• Number of views: a = 6

• View angles: θ1 = 0◦, θ2 = 20◦,θ3 = 40◦,θ4 = 60◦,θ5 = 80◦,θ6 = 100◦.

1. Use tomomap.m to compute T and verify that the one-sided inverse of T must exist.
Note that function tomomap returns a transformation matrix in sparse format. To use
and view as a full matrix array use the command T=full(T); after constructing T .

2. Compute the one-sided inverse P . Use P to find the object that created the following
radiograph vector (You should be able copy and paste this into Octave or Matlab.
If you need assistance in using your one-sided inverse, ask and I will help you with
syntax):

b=[0.00000

32.00000

32.00000

0.00000

133



1.97552

30.02448

30.02448

1.97552

2.71552

29.28448

29.28448

2.71552

2.47520

29.52480

29.52480

2.47520

1.17456

30.82544

30.82544

1.17456

1.17456

30.82544

30.82544

1.17456]

24.3 Application to Brain Reconstruction

Now, lets reconstruct some brain images from radiographic data. This section will guide you
in this process.

1. Collect the necessary provided files and place them in your working Octave/Matlab
directory.

(a) Data File: Lab5radiographs.mat

(b) Plotting Script: ShowSlices.m

(c) Octave/Matlab Code: tomomap.m

2. Choose whether to create a new script file (“.m” file) for all of your commands or to
work at the Octave/Matlab prompt.

3. Load the provided radiographic data with the following command.

load Lab5radiographs.mat

This line loads an array variable named B which is a 12960x362 array. Each column is a
radiograph corresponding to one horizontal slice of the human head. Each radiograph
has 12960 total pixels spread across many views. The first 181 columns are noiseless
radiographs and the last 181 columns are corresponding radiographs with a small
amount of noise added.

4. Use the familiar function tomomap.m to construct the transformation operator T corre-
sponding to the following scenario (which is the scenario under which the radiographic
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data was obtained): n = 108, m = 108, ScaleFac = 1, and 120 view angles: the first
at 1◦, the last at 179◦, and the rest equally spaced in between (hint: use the linspace
command).

5. Some Octave/Matlab functions do not work with sparse arrays (such as your T ). So,
simply just make T a full array with this command:

T=full(T);

6. It is tempting to compute the one-sided inverse P as found in 3c of the first part.
However, such a large matrix takes time to compute and much memory for storage.
Instead we can use a more efficient solver provided by Octave/Matlab. If we seek a
solution to Lx = b, for invertible matrix L, we find the unique solution by finding
L−1 and then multiplying it by b. Octave/Matlab does both operations together in an
efficient way (by not actually computing L−1) when we use the command x=L\b.

Let’s try this with the first radiograph in the matrix B. That is, we will reconstruct
the slice of the brain that produced the radiograph that is represented in the 50th
column of B. We want to solve the equation you found 3c (recall the matrix you found
to be A). Using the A you found in 3c in the following commands

b=B(:,50);

x=(A*T)\(A*b);

you will find your first brain slice reconstruction. Now to view your reconstruction,
use the following commands

figure;

x=reshape(x,108,108);

imshow(x,[0,255]);

(The reshape command is necessary above because the result x is a (108 · 108) × 1
vector, but we want the object to be 108× 108 image.)

7. Notice also that x and b could be matrices, say X and B. In this case, each column
of X is the unique solution (reconstruction) for the corresponding column of B. Use
these ideas to reconstruct all 362 brain slices using a single Octave/Matlab command.

Use the variable name X. Make sure that X is an 11664x362 array. Now, the first
181 columns are reconstructions from noiseless data and the last 181 columns are
reconstructions from noisy data.

8. Run the script file ShowSlices.m which takes the variable X and plots example slice
reconsructions. Open ShowSlices.m in an editor and observe the line

slices=[50 90 130];

You can choose to plot any three slices by changing the slice numbers. In the figure,
the left column of images are reconstructions from noiseless data, the right column of
images are reconstructions from the corresponding noisy data. IMPORTANT: Once
you have computed X you need only run ShowSlices.m to view different slices; running
the other commands described above is time consumming and unnecessary.
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Congratulations! You have just performed your first brain scan tomography. Using your
new tool, answer the following questions.

1. Are the reconstructions from the noiseless radiographs exact discrete representations
of the brain? Based on the concepts you have learned about matrix equations, explain
why the reconstructions are exact or why not?

2. Determine a way to find the relative amount of noise in the noisy radiographs. It
might be useful to know that the noisy radiograph corresponding to the radiograph
represented in the 50th column of B is in the (181 + 50)th column of B. (Note: There
are many ways you can determine this, be creative.) Is there a lot or a little noise
added to the radiographs?

3. Are the reconstructions from the noisy radiographs exact representations of the brain?

4. Compare the degree of “noisiness” in the noisy radiographs to the degree of “noisi-
ness” in the corresponding reconstructions. Draw some conclusion about what this
comparison tells us about the practicality of this method for brain scan tomography.

25 Inner Products and Projections

In this section, we will discuss a more generalized dot product, how we can measure the
size of a vector using this generalized dot product, and then we will use these to discuss a
particular type of linear transformation, a projection.

25.1 Inner Products

We have already seen the dot product for vectors in Rn. We want to generalize this notion
to all vector spaces. We do this by defining the inner product. Below we give the formal
definition.

Definition 25.1. Let V be a vector space with scalars in R. An inner product is a mapping
〈·, ·〉 : V × V → R that satisfies the following three properties. For every u, v, w ∈ V

1. 〈u, v〉 = 〈v, u〉 (Symmetric)

2. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 (Linearity in the first argument)

3. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0. (Positive definite)

A vector space with an inner product is called an inner product space.

It is important to note that the above definition assumes our scalars are real. If they are
not, the symmetry property can be different, but for now, we will consider only real inner
product spaces. Let’s look at an example:

Example 25.1. Let us define 〈·, ·〉 :M2×3×M2×3 → R by 〈u, v〉 the sum of the component-
wise products. That is, if

u =

 a b
c d
e f

 and v =

 g h
j k
` m
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then,
〈u, v〉 = ag + bh+ cj + dk + e`+ fm.

Notice that because multiplication in R is commutative, 〈u, v〉 = 〈v, u〉. Also, because multi-
plication distributes over addition, we get linearity: let

w =

 n p
q r
s t

 .

Then

〈u+ v, w〉 = (a+ g)n+ (b+ h)p+ (c+ j)q + (d+ k)r + (e+ `)s+ (f +m)t

= (an+ bp+ cq + dr + es+ ft) + (gn+ hp+ jq + kr + `s+mt = 〈u,w〉+ 〈v, w〉.

Finally, notice that
〈u, u〉 = a2 + b2 + c2 + d2 + e2 + f 2 ≥ 0.

And, if 〈u, u〉 = 0 then a = b = c = d = e = f = 0 so u = 0. So, this is indeed an inner
product.

Let’s look at another example

Example 25.2. Let 〈·, ·〉 : P2 × P2 → R be defined by

〈p1, p2〉 =

∫ 1

0

p1p2 dx, for p1, p2 ∈ P2.

Notice again that because polynomial multiplication is commutative, the symmetric property
holds:

〈p1, p2〉 = 〈p2, p1〉.

To show linearity in the first argument, we let p1 = ax2 + bx + c, p2 = dx2 + ex + f , and
p3 = gx2 + hx+ k and we compute (I’ve suppressed a lot of algebra here).

〈p1 + p2, p3〉 =

∫ 1

0

(ax2 + bx+ c+ dx2 + ex+ f)(gx2 + hx+ k) dx

=

∫ 1

0

((a+ b)gx4 + ((b+ e)g + (a+ d)h)x3

+ ((a+ d)k + (c+ f)g + (b+ e)h)x2

+ ((b+ e)k + (c+ f)h)x+ (c+ f)k) dx

=

∫ 1

0

(agx4 + (bg + ah)x3 + (ak + cg + bh)x2 + (bk + ch)x+ ck) dx

+

∫ 1

0

(dgx4 + (eg + eh)x3 + (ek + fg + eh)x2 + (ek + fh)x+ fk) dx

=〈p1, p3〉+ 〈p2, p3〉

Finally, if p ∈ P2 then 〈p, p〉 =
∫ 1

0
p2(x) dx ≥ 0. If 〈p, p〉 = 0 then

∫ 1

0
p2(x) dx = 0 which

means p must be the zero polynomial. So, we now have an inner product on polynomial
spaces.
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Notice that this was only an example and can be extended to all polynomial spaces.
Now that we have inner products, we can define a way to measure the “size” of a vector
using the inner product.

Definition 25.2. Let V be an inner product space with inner product 〈·, ·〉 : V × V → R.

We define the norm of u ∈ V by ||u|| = (〈u, u〉)1/2.

We can compare this to the magnitude of a vector in Rn. Recall, we said that, when in Rn,
the inner product is the same as the dot product. So, according to Definition 25.2, if u ∈ Rn

is the vector u = (u1, u2, . . . , un), then ||u|| = (〈u, u〉)2 = (u · u)1/2 =
√
u2

1 + u2
2 + . . .+ u2

n.
This is exactly how we have always defined the magnitude of a vector.
Using this definition with Example 25.2, we can find the “size” of a polynomial. Let p ∈ P2

be defined by p = ax2 + bx+ c. Then

||p|| =
(∫ 1

0

(ax2 + bx+ c)2 dx

)1/2

=

(∫ 1

0

a2x4 + 2abx3 + (2ac+ b2)x2 + 2bcx+ c2 dx

)1/2

=

(
a2

5
+
ab

2
+

2ac+ b2

3
+ bc+ c2

)1/2

.

When we first learn about vectors, in Rn, we learn that the dot product of two perpendicular
vectors is zero. Let’s define this situation more generally.

Definition 25.3. Let V be an inner product space with inner product 〈·, ·〉 : V × V → R.
Given two vectors u, v ∈ V , we say u and v are orthogonal if and only if 〈u, v〉 = 0.

Notice that this definition tells us that the 0 ∈ V is orthogonal to all other vectors.

Definition 25.4. We say that a set of vectors {v1, v2, . . . , vn} is orthogonal if and only if
〈vi, vj〉 = 0 whenever i 6= j. If an orthogonal set also satisfies 〈vi, vi〉 = 1, then we say that
the set is orthonormal.

The first part of Definition 25.4, says that the vectors are pairwise orthogonal. The second
part of Definition 25.4 says the vectors all have norm (or magnitude) equal to 1.(We say that
a vector is normalized or normal if it has norm 1.)
Orthogonality will play a big role in helping us reconstruct objects from radiographs. Let’s
first look at some properties of orthogonality.

Theorem 25.1. Let V be an n-dimensional vector space and let B = {v1, v2, . . . , vn} be a
set of vectors in V . If B is orthogonal, then B is a basis for V .

proof: Notice that we need only prove that B is linearly independent since there are n
elements in B. I leave this proof as an exercise for the reader.
In this class, we will focus our attention specifically on the inner product space, Rn with
the inner product defined to be the dot product. The following will generalize to other
inner product spaces and it would be a great use of your time between semesters to see how
generalizations can be made rigorous.
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25.2 Projections

As always, let V be a vector space. Given a proper subspace W ( V and a vector v ∈ V
(but not in W ), we are interested in finding a vector w ∈ W that is closest to v. Let’s first
start with an example in R2 to understand the idea.

Example 25.3. Suppose we have a vector u ∈ R3 and we want to project u onto another
vector v ∈ {(x, y, 0)|x, y ∈ R} (the x-y plane). In reality, we are projecting onto the line
that is parallel to v: L = {αv : α ∈ R}. That is, we want to apply the transformation
πL : R3 → L. Then we are looking for the vector projv(u) shown in the figure on the left in
Figure ??. Notationally, we write πL(u) = projv(u).

V

u

p
ro
j V
(u
)

v

u

projv (u)

Figure 16: Projection onto a vector (left) and Projection onto a space (right)

Now, suppose we want to project u onto the vector space spanned by two vectors, say V =
span {(1, 1, 1), (1, 0, 0)}. Then, we want to apply πV : R3 → V to get projV (u) shown in the
figure on the right in Figure 16.

In terms of the Linear Algebra language that we have been using, to find the projection of
a vector u onto a space V = span {v1, v2, . . . , vn}, we first find the part (or component) of
u that is orthogonal to the basis elements of V (thus, orthogonal to all vectors in V ). We
call this component u⊥. Then, the projection, projV (u) is the vector that is left over after
we subtract the orthogonal part:

projV (u) = u− u⊥.

We define this more rigorously below. But first we define some preliminary sets.

Definition 25.5. Let V be a vector space and W ⊂ V . We define the orthogonal complement
of W is

W⊥ = {v ∈ V |〈v, w〉 = 0, for all w ∈ W}.

In words W⊥ is just the set of vectors orthogonal to all vectors in W .
Notice that, in Definition 25.5, W is allowed to be the whole space V . This should make
you wonder what V ⊥ is. In case you are curious, I’ve made it an exercise.
We use the orthogonal complement to define projections.
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Definition 25.6. Let V be a vector space and let W be a subspace of V . If u ∈ V , then we
say that the projection of u onto W is the vector in W closest to u. That is,

projW (u) = u− n ∈ W,

where n is the vector in W⊥ with smallest norm, ||n|| = (〈n, n〉).

Notice that Definition 25.6 along with Figure 16, we see that, at least in R, a triangle is
formed. Let us use this triangle to compute the projection, projW (u).
We begin with W = span {w1}, the span of only one vector. This means, we want the
projection of u onto a line. First, we recognize that we are looking for w ∈ W so that
u = w + n where n ∈ W⊥. Let’s use our knowledge of Linear Algebra to make some
conclusions.

• First, w ∈ W means w = αw1 for some scalar α.

• Next, n ∈ W⊥ says that 〈n,w1〉 = 0.

• Putting these together with u = w + n, we get

u = αw1 + n

〈u,w1〉 = α〈w1, w1〉+ 0

So, α =
〈u,w1〉
〈w1, w1〉

.

Thus, w =
〈u,w1〉
〈w1, w1〉

w1.

The above shows us that as long as we are projecting onto a line, we can easily find the
projection. Let’s now consider a projection onto a higher dimensional space (such as is seen
in Figure 16 on the right). We will follow similar steps we followed in the last example.
This time, we begin with W = span {w1, w2, . . . , wm}, where {w1, w2, . . . , wm} is linear inde-
pendent. That means w is in an m-dimensional space. This means, we want the projection
of u this m-dimensional space. First, we recognize that we are looking for w ∈ W so that
u = w + n where n ∈ W⊥. We will attempt to follow the same steps as above.

• First, w ∈ W means w = α1w1 + α2w2 + . . .+ αmwm for some scalars α1, α2, . . . , αm.

• Next, n ∈ W⊥ says that 〈n,wi〉 = 0 for i = 1, 2, . . . ,m.

• Putting these together with u = w + n, we get

u = αw1 + α2w2 + . . .+ αmwm + n

〈u,w1〉 = α〈w1, w1〉+ α〈w2, w1〉+ . . .+ α〈wm, w1〉+ 0

〈u,w2〉 = α〈w1, w2〉+ α〈w2, w2〉+ . . .+ α〈wm, w2〉+ 0

...

〈u,wm〉 = α〈w1, wm〉+ α〈w2, wm〉+ . . .+ α〈wm, wm〉+ 0

So,to get α1, α2, . . . , αm, we need to solve a system of equations with m unknowns and
n equations. This looks pretty tedious! It would be so nice if 〈wi, wj〉 = 0 whenever
i 6= j. If this were the case, we could easily solve for α1, α2, . . . , αm. But, this means
we want the basis for W to be orthogonal.
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Exercises

1. Prove Theorem 25.1.

2. Given a vector space V and a subspace W =


 a

b
c

∣∣∣∣∣∣ a+ b+ c = 0

, what is W⊥?

3. Prove that W⊥ is a vector space.

4. Given an ambient vector space V what is V ⊥ ⊂ V ?

5. Find a basis to V =




a
b
c
d


∣∣∣∣∣∣∣∣ a+ 2c = 0

. Use the basis you found to find an

orthonormal basis.

6. Given the matrix A =

 1 1 1
2 −2 0
1 0 −1

. Determine whether or not A is an orthogonal

matrix. If not, find a matrix whose column space is the same as the column space of
A, but is orthogonal.

7. Given the matrices Aθ =

(
sinθ cos θ
cos θ − sin θ

)

(a) Draw the vector u =

(
1
1

)
and its images under the transformation T (u) = Au

for θ = 45◦, 90◦, 30◦, 240◦.

(b) Use your results to state what multiplication by A is doing geometrically.

(c) Show that A is an orthogonal matrix for every value of θ.
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