MATH 256 - HOMEWORK 6

(1) Determine whether the following sets form a basis for \mathcal{P}_{3}. If not, state your reason. If so, prove it.
(a) $\left\{1, x, x^{2}+x, 1+x+x^{3}\right\}$
(b) $\left\{x-2,2 x^{-} 2, x^{3}-2\right\}$
(c) $\left\{1+x+x^{2}+x^{3}, 5+3 x+3 x^{2}+x^{3}, x^{2}, 3+2 x+2 x^{2}+x^{3}\right\}$
(2) Suppose $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for V. Determine whether each of the following sets is a basis for V as well. If not, state your reason. If so, prove it.
(a) $\left\{v_{1}+v_{3}, v_{2}+v_{4}\right\}$
(b) $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{1}-2 v_{3}\right\}$
(c) $\left\{2 v_{1}-3 v_{3}, v_{3}, 3 v_{1}+4 v_{4}+v_{3}, v_{3}+v_{1}+v_{4}\right\}$
(d) $\left\{2 v_{1}-3 v_{3}, v_{2}, 3 v_{1}+4 v_{4}+v_{3}, v_{3}+v_{1}+v_{4}\right\}$
(3) Do the following matrix multiplies if possible. If it is not possible, state the reason why not.
(a) $\left(\begin{array}{ll}2 & 3\end{array}\right) \cdot\binom{1}{-2}$
(b) $\left(\begin{array}{rr}1 & 2 \\ 1 & -1\end{array}\right) \cdot\left(\begin{array}{ll}2 & 4 \\ 3 & 8\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 3 & 5 & 1 \\ 0 & 2 & -2\end{array}\right) \cdot\left(\begin{array}{cc}1 & 1 \\ 2 & 3 \\ -4 & 0\end{array}\right)$
(d) $\left(\begin{array}{cccc}1 & 2 & 0 & 3 \\ 2 & 5 & -1 & 5\end{array}\right) \cdot\left(\begin{array}{cc}2 & 3 \\ -1 & 6\end{array}\right)$
(4) Multiply: $\left(\begin{array}{lll}a & b & c \\ d & f & g\end{array}\right) \cdot\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$ Write your answer as a linear combination of the vectors: $\left\{\binom{a}{d},\binom{b}{f},\binom{c}{g}\right\}$.
(5) Use the last question to give a different way of multiplying matrices (different than what was discussed in class).

