MATH 256 – HOMEWORK 5

- (1) Determine whether the following sets are linearly independent.
 - (a) $\{1, x, x^2\}$
 - (b) $\{1, x + x^2, x^2\}$
 - (c) $\{x^2 1, 1 + x, 1 x\}$
 - (d) $\{1, 1 x, 1 + x, 1 + x^2\}$
 - (e) $\{1, 2x, x 1, 1 + x 2x^2\}$
 - (f) Which of the above is a basis for \mathcal{P}_2 ?
- (2) Suppose $\{v_1, v_2, v_3, v_4\}$ are linearly independent. Determine if the following sets are linearly independent. Justify your answer. If not, remove only enough vectors to make the set independent.
 - (a) $\{v_1, v_2\}$
 - (b) $\{v_1, v_2, v_3, v_4, v_1 2v_3\}$
 - (c) $\{v_1 + v_2, v_3, v_4\}$
 - (d) $\{v_1 + v_3, v_2 + v_4, v_3, v_4\}$
 - (e) $\{v_1 + v_2 + v_3 + v_4, v_1 v_2 + v_3 v_4, v_1 v_2 v_3 + v_4, v_1 v_2 v_3 v_4\}$
 - (f) $\{v_1 2v_2, v_2, v_3 v_4 v_2, v_4\}$
 - (g) { $v_1 v_2, v_1 + v_2, 2v_1 + v_2 v_3, v_1 v_2 v_3 2v_4, v_3 v_4$ }
 - (h) Which of the above is a basis for span $\{v_1, v_2, v_3, v_4\}$?
- (3) For each of the following decide whether or not \mathcal{B} is a basis for the vector space V. Justify your answer by showing that either all the properties of a basis are true or that one is false.

(a)
$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}, V = \mathbb{R}^3$$

(b) $\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix} \right\}, V = \mathbb{R}^2$
(c) $\mathcal{B} = \left\{ \begin{pmatrix} 1&0\\1&2 \end{pmatrix}, \begin{pmatrix} 1&2\\3&-1 \end{pmatrix}, \begin{pmatrix} 3&0\\0&1 \end{pmatrix}, \begin{pmatrix} 1&0\\0&0 \end{pmatrix} \right\}, V = \mathcal{M}_{2\times 2}$
(d) $\mathcal{B} = \{x^2, x^2 + x, x^2 + x + 2\}, V = \mathcal{P}_2$

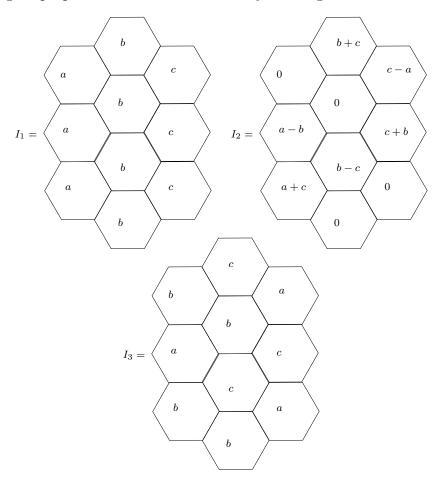
(4) For each of the vector spaces below, find basis \mathcal{B} that is not the standard basis nor is it a basis on this sheet already.

(a)
$$\left\{ \begin{pmatrix} a & c \\ 3d & b \end{pmatrix} \middle| a + b + c - 2d = 0, a + 3b - 4c + d = 0, a - d + b = c \right\}$$

(b) $\left\{ cx^2 + 3bx - 4a \middle| a - b - 2c = 0 \right\}$
(c) $\mathcal{M}_{2 \times 2}$
(d) \mathcal{P}_2
(e) span $\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$
Circum the set \mathcal{R} (so a set). Show that if \mathcal{R} is a basis, then as is \mathcal{R}'_{-1} (so

(5) Given the set $\mathcal{B} = \{u, v, w\}$. Show that if \mathcal{B} is a basis, then so is $\mathcal{B}' = \{u + 2v, u - w, v + w\}$.

- (6) Using #5, make a general statement about how to get a basis from another basis. Be careful to use accurate linear algebra language.
- (7) Determine whether $\mathcal{B} = \{I_1, I_2, I_3\}$, where the I_n are given below, is a basis for the vector space of images of the same as the I_n orientation. Justify your answer by showing all properties of basis are true or by showing one is not.



(8) Determine the dimension of each of the above vector spaces.