MATH 256 - HOMEWORK 5

(1) Determine whether the following sets are linearly independent.
(a) $\left\{1, x, x^{2}\right\}$
(b) $\left\{1, x+x^{2}, x^{2}\right\}$
(c) $\left\{x^{2}-1,1+x, 1-x\right\}$
(d) $\left\{1,1-x, 1+x, 1+x^{2}\right\}$
(e) $\left\{1,2 x, x-1,1+x-2 x^{2}\right\}$
(f) Which of the above is a basis for \mathcal{P}_{2} ?
(2) Suppose $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are linearly independent. Determine if the following sets are linearly independent. Justify your answer. If not, remove only enough vectors to make the set independent.
(a) $\left\{v_{1}, v_{2}\right\}$
(b) $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{1}-2 v_{3}\right\}$
(c) $\left\{v_{1}+v_{2}, v_{3}, v_{4}\right\}$
(d) $\left\{v_{1}+v_{3}, v_{2}+v_{4}, v_{3}, v_{4}\right\}$
(e) $\left\{v_{1}+v_{2}+v_{3}+v_{4}, v_{1}-v_{2}+v_{3}-v_{4}, v_{1}-v_{2}-v_{3}+v_{4}, v_{1}-v_{2}-v_{3}-v_{4}\right\}$
(f) $\left\{v_{1}-2 v_{2}, v_{2}, v_{3}-v_{4}-v_{2}, v_{4}\right\}$
(g) $\left\{v_{1}-v_{2}, v_{1}+v_{2}, 2 v_{1}+v_{2}-v_{3}, v_{1}-v_{2}-v_{3}-2 v_{4}, v_{3}-v_{4}\right\}$
(h) Which of the above is a basis for $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$?
(3) For each of the following decide whether or not \mathcal{B} is a basis for the vector space V. Justify your answer by showing that either all the properties of a basis are true or that one is false.
(a) $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}, V=\mathbb{R}^{3}$
(b) $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{2}\right\}, V=\mathbb{R}^{2}$
(c) $\mathcal{B}=\left\{\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right),\left(\begin{array}{rr}1 & 2 \\ 3 & -1\end{array}\right),\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right\}, V=\mathcal{M}_{2 \times 2}$
(d) $\mathcal{B}=\left\{x^{2}, x^{2}+x, x^{2}+x+2\right\}, V=\mathcal{P}_{2}$
(4) For each of the vector spaces below, find basis \mathcal{B} that is not the standard basis nor is it a basis on this sheet already.
(a) $\left\{\left.\left(\begin{array}{cc}a & c \\ 3 d & b\end{array}\right) \right\rvert\, a+b+c-2 d=0, a+3 b-4 c+d=0, a-d+b=c\right\}$
(b) $\left\{c x^{2}+3 b x-4 a \mid a-b-2 c=0\right\}$
(c) $\mathcal{M}_{2 \times 2}$
(d) \mathcal{P}_{2}
(e) $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$
(5) Given the set $\mathcal{B}=\{u, v, w\}$. Show that if \mathcal{B} is a basis, then so is $\mathcal{B}^{\prime}=\{u+2 v, u-$ $w, v+w\}$.
(6) Using \#5, make a general statement about how to get a basis from another basis. Be careful to use accurate linear algebra language.
(7) Determine whether $\mathcal{B}=\left\{I_{1}, I_{2}, I_{3}\right\}$, where the I_{n} are given below, is a basis for the vector space of images of the same as the I_{n} orientation. Justify your answer by showing all properties of basis are true or by showing one is not.

(8) Determine the dimension of each of the above vector spaces.

