MATH 256 －HOMEWORK 4

（1）Which of these sets is a vector space？Prove your answer．
（a）$\left\{\left.\left(\begin{array}{cc}a & 1 \\ 2 & b\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$
（b）$\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a+b=0, a-b=2\right\}$
（c）$\left\{\left.\left(\begin{array}{ll}a & 0 \\ c & b\end{array}\right) \right\rvert\, a+b=c\right\}$
（d）$\left\{\left.\left(\begin{array}{cc}a & c \\ 3 d & b\end{array}\right) \right\rvert\, a+b+c-2 d=0, a+3 b-4 c+d=0, a-d+b=c\right\}$
（2）Which of these sets is a vector space？Prove your answer．
（a）$\left\{x^{2}+3 b x-4 a \mid a, b \in \mathbb{R}\right\}$
（b）$\left\{c x^{2}+3 b x-4 a \mid a+b-c=2\right\}$
（c）$\left\{c x^{2}+3 b x-4 a \mid a-b-2 c=0\right\}$
（3）Given the set $\{@$ ，（仓），四，灰 $\}$ ．Which of the definitions for + and scalar multiplication makes this set is a vector space？Prove your answer．
（a）+ is defined as in the table and scalar multiplication is by integers in the usual sense：

＋	（0）		四
（0）	（0）	（0）	（0）（0）
（0）	（0）	四	（0）勿
四	（0）	（0）	勾 四
勾	（0）	勿	兆（0）

（b）where + is defined as in the table and scalar multiplication is by integers in the usual sense：

＋	（0）	©	四	匂
（0）	（0）	（0）	t	四
	（0）	（0）	四	，
毘	布	四	（0）	
T	四		（0）	

（c）where + is defined as in the table and scalar multiplication is by integers in the usual sense：

$+$	（0）	（2）	四	勿
（0）	四	四	四	四
	四	（0）	人	
四	四	－		
石	四			

（4）For each of the vector spaces in questions 1 and 2 ，write each as a span．
（5）For each of the vector spaces in questions 1 and 2，write each as a span that is different than the span you wrote in question 4.
（6）For each of the vector spaces in questions 1 and 2，write each as a span of two more vectors than the set chosen in question 5 ．
(7) Find a basis for each of the vector spaces in questions 1 and 2.
(8) Find a different basis than the one you found in question 7 for each of the vector spaces in questions 1 and 2 .
(9) Find a basis for $\{I \mid a, b, c, d \in \mathbb{R}$ and I is the image below $\}$

