MATH 256 – Homework 10

(1) Determine which of the following is a linear transformation. Prove your answer. (a) f(v) = Mv + x, where

$$M = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } x = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

(b) $\mathcal{F}(ax^2 + (3a - 2b)x + b) = 2ax + 3a - 2b$
(c) $\mathcal{G}(ax^2 + bx + c) = \begin{pmatrix} a & a - b \\ c - 2 & c + 3a \end{pmatrix}$
(d) $h \begin{pmatrix} a & b & c \\ 0 & b - c & 2a \end{pmatrix} = ax + c$
(e) $f(I) = ax^2 + (b + c)x + (a + c)$, where I is the image below

(f)
$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

(g) $f(ax^2 + bx + c) = \begin{pmatrix} a+b \\ a-c \end{pmatrix}$

- (2) Find the nullspace and nullity of each of the transformations from exercise 1. Be sure to clearly label which is the nullspace and which is the nullity.
- (3) For each of the transformations in exercise 1, state the domain, V, codomain W, $\dim(W)$, $\dim(V)$, $\operatorname{rank}(T)$ and verify the Rank-nullity Theorem using your answer from exercise 2.
- (4) For each of the domain spaces, V, specified in exercise 3, find a isomorphism $f: V \to \mathbb{R}^d$, where $d = \dim(V)$.
- (5) For each of the codomain spaces, W, specified in exercise 3, find an isomorphism $g: \mathbb{R}^w \to W$ where $w = \dim(W)$.
- (6) For each of the transformations in exercise 1, find the associated matrix.
- (7) Determine which of the transformations in exercise 1 are injective. Prove your answer.
- (8) Determine which of the transformations in exercise 1 are surjective. Prove your answer.
- (9) For each of the domain spaces V found in exercise 3, find two bases \mathcal{B}_1 and \mathcal{B}_2 with no common vector. (If $\mathcal{B}_1 = \{a, b, c\}$ then \mathcal{B}_1 cannot contain, a, b, nor c.) Then, find the change of basis matrix to get from \mathcal{B}_1 to \mathcal{B}_2 .

Added problems next page:

For each of the transformations:

- A. T_3 the third radiographic transformation from Lab 2.-
- B. $\frac{d}{dx} : \mathcal{P}_4 \to \mathcal{P}_3$ C. $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$, where θ is a specific fixed angle measured from the x axis and R_{θ} is the rotation transformation
- D. $\pi_v : \mathbb{R}^3 \to \mathbb{R}^3$, the component of v parallel to the x axis. E. $D : \mathbb{R}^3 \to \mathbb{R}$ defined by $D(v) = v \cdot u$, where u = (0, 1, -1).

Answer each of the following:

- (1) What is $\operatorname{null}(T)$?
- (2) What is ran(T)?
- (3) Is the transformation 1-1? Prove it.
- (4) Is the transformation onto? Prove it.