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This poem was an encouragement in one of those times when I needed it most. At times, it
seemed like there was no hope, but there was always a thrush singing.

The Darkling Thrush
I leant upon a coppice gate

When Frost was spectre-grey,
And Winter’s dregs made desolate

The weakening eye of day.

The tangled bine-stems scored the sky
Like strings of broken lyres,

And all mankind that haunted nigh
Had sought their household fires.

The land’s sharp features seemed to be
The Century’s corpse outleant,
His crypt the cloudy canopy,
The wind his death-lament.

The ancient pulse of germ and birth
Was shrunken hard and dry,
And every spirit upon earth

Seemed fervourless as I.

At once a voice arose among
The bleak twigs overhead
In a full-hearted evensong

Of joy illimited;
An aged thrush, frail, gaunt, and small,

In blast-beruffled plume,
Had chosen thus to fling his soul

Upon the growing gloom.

So little cause for carolings
Of such ecstatic sound

Was written on terrestrial things
Afar or nigh around,

That I could think there trembled through
His happy good-night air

Some blessed Hope, whereof he knew
And I was unaware.

–Thomas Hardy
December 29, 1900

One last note for the reader: a tip for the proof of Lemma 5.13 is to remember in the definitions
of qg, qe, and q`, that it’s all about u.
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A STUDY OF p-VARIATION AND THE p-LAPLACIAN FOR 0 < p ≤ 1 AND FINITE

HYPERPLANE TRAVERSAL ALGORITHMS FOR SIGNAL PROCESSING

Abstract

by Heather A. Van Dyke, Ph.D.
Washington State University

May 2013

Chair: Thomas J. Asaki

In this work (freely available by contacting the author), we study and find minimizers of the prob-

lem

min
∫

Ω

|∇u|p + λ| f − u| dx, for 0 < p ≤ 1,

where Ω ⊂ Rn is an open bounded convex set. We find fast algorithms that find minimizers for the

p = 1 problem and local minimizers for the p < 1 problem. Our algorithms solve the minimization

problem for p = 1 for all λ at the computational cost of solving only the λ = 0 problem. We also

find and characterize the set of minimizers of the λ = 0 problem.

We compare minimizers to stationary solutions to the p-Laplacian evolution equation

ut = ∆pu, for 0 < p < 1.

We also consider a curvature approach to understanding the nature of the evolution in this equation.

We use the curvature understanding to find families of classical stationary solutions.
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CHAPTER ONE

INTRODUCTION

The goal of this work is to study and find minimizers of the minimization problem

min
u∈L2(Ω)

∫
Ω

|∇u|p + λ| f − u|dx, with 0 < p ≤ 1, (1.1)

where Ω ⊂ Rn is an open bounded convex set, for image and data analysis tasks. In this work, we

will call this problem L1 pTV . Of particular interest, are finding fast algorithms for the p ≤ 1 cases

and seeking minimizers of the λ = 0 case

∫
Ω

|∇u|p, 0 < p < 1. (1.2)

I also consider other stationary points for (1.2) by considering the stationary solutions of the cor-

responding Euler-Lagrange equation, which is the p-Laplacian evolution equation,


ut = ∆pu ≡ ∇ ·

(
|∇u|p−2∇u

)
in Ω × [0,∞)

u = u0 in Ω × {0}
, (1.3)

for 0 < p < 1 and Ω ⊂ Rn. Here we use ∇ to mean derivatives with respect to the spatial variables.

1.1 Motivation and Past Work

The motivations behind these goals are found in signal and image analysis tasks such as denoising

and finding scales in data. The idea for image denoising is that we are given noisy data, f : Ω ⊂
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Rn → R, from which we want to obtain an approximation, u∗, to the true image. The goal in

denoising is to find u∗ satisfying the expectations that it should approximate, in some sense, f and

have little variation, since a noisy image will have high variation.

Variational and PDE based methods of denoising have been used for more than two decades

([29],[26],[6],and [8]). The most notable variational techniques solve the problem

u∗ = arg min
u∈L2(Ω)

∫
Ω

|∇u|p + λ| f − u|qdx, (1.4)

where p, q > 0 and the fidelity and variation terms are weighted by λ > 0. We can see that the

second term is small when u is close to f and so this term addresses the data fidelity requirement.

We also see that if |∇u| is small, that is, if u has little variation, then the first term is small as well.

Notice that for large λ, the minimizer will be more like f and for small λ, the minimizer should

have very little variation. In the case of denoising, with f a noisy signal or image, the minimizer

when λ is very large is noisy, but the minimizer when λ is very small is rather flat.

Before discussing particular results, we discuss the calculus of variations used to find the de-

sired minimizers. Given the minimization problem

u∗ = arg min
u

∫
Ω

L(x, u,∇u) dx, (1.5)

we can seek minimizers by considering the Euler-Lagrange equation (or the weak form of the

Euler-Lagrange equation). More specifically, we know that if ξ 7→ L(x, z, ξ) is convex, then solu-

tions to the Euler-Lagrange equation

∇ · Lξ(x, u,∇u) = Lz(x, u,∇u) (1.6)

or solutions to the weak form of the Euler-Lagrange Equation

∫
Lξ(x, u,∇u)ϕ +Lz(x, u,∇u)ϕdx = 0 ∀ test functions ϕ (1.7)
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are minimizers (and stationary points) of (1.5). If ξ 7→ L(x, z, ξ) is strictly convex, the only

stationary point of problem (1.5) is the minimizer. And, thus, the solution to the Euler-Lagrange

Equation is unique and is the minimizer of (1.5). However, if ξ 7→ L(x, z, ξ) is nonconvex, then

stationary solutions to (1.5) can be local or global minimizers, saddle points, or local or global

maximizers. Thus, solutions to the Euler-Lagrange equations are merely these stationary points

for the functional (1.5) (see [11], [12], [14] for more details).

Computationally, a common technique is to seek the minimizers of (1.5) using the method of

gradient descent. That is, we start with an initial guess and we use the ‘gradient’ of the functional

given in (1.5) to determine the direction of steepest descent, in the space of functions, to take us to

a minimizer. That is, we introduce a new variable, t and seek u : Rn × [0,∞) → R so that u(x, t)

satisfies the evolution equation

ut(x, t) = Lz(x, u(x, t),∇u(x, t)) − ∇ · Lξ(x, u(x, t),∇u(x, t)) (1.8)

given initial data u(x, 0) = u0(x). Since the right-hand side is the negative gradient of the functional,

we expect that u changes over time so that
∫

Ω
L(u,∇u) dx goes down to a minimizer. So, we look

to the limit as t → ∞ to seek a stationary solution to (1.8). Notice that when the left-hand side of

(1.8) is zero (that is, at a stationary solution), we have found a solution to (1.6).

Let us define the functional, Fp,q : L2(Ω)→ R by

Fp,q(u,∇u) =

∫
Ω

|∇u|p + λ| f − u|qdx. (1.9)

We now briefly discuss a few of the results for particular values of p and q.

F2,2(u,∇u) was first introduced by Tikhonov [29]. This functional is strictly convex. Using

results from the calculus of variations, we can say that there exists a unique minimizer. We can

also find the minimizer by solving the corresponding Euler-Lagrange equation,

∆u = λ( f − u).
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And, solutions to this equation are stationary solutions to the diffusion equation given by

ut = ∆u − λ( f − u).

In image denoising, we find the minimizer of F2,2(u,∇u), has smoothed edges around objects

(F2,2(u,∇u) is larger for functions with jump discontinuities than for those that will increase

steadily and so edge location is lost). Pixel intensity is also lost. This problem then is not suf-

ficient for images with regions of high contrast or well defined object edges.

Rudin, Osher, and Fatemi proposed, in [26], minimizing F1,2(u,∇u), also called the ROF func-

tional, to allow jump discontinuities in u∗ which makes sense in many real images. In this case,

the regularization term is the total variation,
∫
|∇u|, which does not penalize jump discontinuities.

F1,2(u,∇u) is also strictly convex and the corresponding Euler-Lagrange equation has a unique

solution and it is

∇ ·

(
∇u
|∇u|

)
= λ( f − u)

the unique minimizer. In image denoising, we see that minimizers preserve the location of object

edges, but still lose contrast (even when f is a noiseless image) and features with high curvature

are lost [28]. That is, corners get rounded.

In [6], Chan and Esedoḡlu show that minimizing the L1TV functional, F1,1, for imaging tasks

will preserve pixel intensity. However, features of high curvatures are still lost. This functional is

again convex, but this time it is not strictly convex. Thus minimizers can be found by solving the

corresponding Euler-Lagrange equation,

∇ ·

(
∇u
|∇u|

)
= λ

f − u
| f − u|

.

But, it should be noted that we cannot guarantee a unique minimizer for L1TV . For a discussion

about the discretized L1TV see also [4] and [24].

In 2007, Chartrand [8] proposed to minimize Fp,2 for 0 < p < 1. It is worth noting that the
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functionals, Fp,2, are not convex and therefore standard methods do not guarantee that we find

a global minimizer. Despite this lack of guarantee, Chartrand found success in obtaining what

appear to be local minimizers by solving the corresponding Euler-Lagrange equation iteratively by

substituting un into |∇u| and then solving for un+1 in the equation

(
−∇ ·

(
|∇un|

p−2
β ∇

)
+ λI

)
un+1 = λ f , (1.10)

where |∇u|β =
√
|∇u|2 + β2 is used instead of |∇u| to avoid division by zero. For a cartoon image or

an image with piecewise constant intensities, these solutions preserve object edges, pixel intensity,

and areas of high curvature where sharp corners occur.

This led us to ask what difference the exponent on the regularization term makes. In order

to understand how better results on noise reduction and edge preservation are obtained by only

changing the exponent in the first term, for 0 < p < 1, I consider the problem

min
u

∫
Ω

|∇u|p. (1.11)

The Euler-Lagrange equation is then the p-Laplacian equation

−∆pu ≡ ∇ ·
(
|∇u|p−1 ∇u

|∇u|

)
= 0. (1.12)

We assume that the boundary data is fixed, that is, we suppose u|∂Ω = f |∂Ω. A typical way to find

solutions to equation (1.12) is to iteratively solve the evolution equation (1.3). That is, we let an

initial guess u(0, x) = f (x) evolve over time, keeping the boundary fixed, as above, so that at any

time t, u(x, t) satisfies (1.3). The stationary solutions to (1.3) are solutions to (1.12).

Notice that when p = 2, (1.12) is Laplace’s equation and (1.3) is the heat equation. Both

equations are well studied and existence and uniqueness of solutions is well known, see [14].

Existence and uniqueness of local weak solutions for the degenerate (p > 2) case can be found
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in [13] for the parabolic equation, (1.3). In fact, a Barenblatt solution is given for the problem

u ∈ Cloc(0,T ; L2
loc(R

N)) ∩ Lp
loc(0,T ; W1,p

loc (RN)), p > 2

ut = ∇ · (|∇u|p−2∇u) in RN × (0,T ) (1.13)

by

B(x, t) := t−N/λ

1 − γp

(
|x|
t1/λ

) p
p−1


p−1
p−2

+

, t > 0,

γp := λ−
1

p−1
p − 2

p
, λ = N(p − 2) + p. (1.14)

Further, uniqueness is also established for any nonnegative solution defined on RN × (0,T ) in the

following sense.

Theorem 1.1. (See [13] Thm 6.1) Given two nonnegative weak solutions, u, v of (1.13), if

lim
t↘0

(u(·, t) − v(·, t)) = 0, in the sense of L1
loc(R

N),

then u ≡ v in RN × (0,T ).

In [18], an equivalence connecting radially symmetric solutions of the porous medium equa-

tion,

ut = ∆(um/m) (1.15)

and those of the p-Laplacian evolution equation is given. More clearly, Iagar, Sánchez, and

Vázquez give the following theorem.

Theorem 1.2. (See [18]) Let 0 < m < 1. Given u : Rn → R, ū : Rn̄ → R. Then u is a radially

symmetric solution to (1.15) if and only if ū is a solution to (1.3) where ū is given by

i.) for 0 < n < 2,

ūr̄(r̄, t) = Kr
2n−2
m+1 u(r, t),K :=

(
(mn − n + 2)2

m(m + 1)2

) 1
m−1

, (1.16)
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where

p = m + 1, n̄ =
(n − 2)(m + 1)

n − mn − 2

and r̄ = r(mn−m+2)/(m+1) or

ii.) for n > 2,

ūr̄(r̄, t) = Kr
2

m+1 u(r, t),K :=
(

(2m)2

m(m + 1)2

) 1
m−1

, (1.17)

where

p = m + 1, n̄ =
(n − 2)(m + 1)

2m

and r̄ = r2m/(m+1).

Using this result, we can find a Barenblatt solution to the porous medium equation (1.15) and

then use it to find a solution to the p-Laplacian evolution equation (1.3) for 1 < p < 2. Note that

the dimension of the domain space of the solution to (1.15) is different than that of the solution to

(1.3).

Iagar and Sánchez give a similar result for 0 < p < 1 (1 < m < 0) in [17], but for the related

equation

ut =
1

p − 1
∇ ·

(
|∇u|p−2∇u

)
, (1.18)

which they called the very fast p-Laplacian evolution equation. Their result is

Theorem 1.3. (See [17]) For 0 < p < 1 and m = p − 1, the radially symmetric solutions u :

Rn × R → R≥0 and ū : Rn̄ × R → R of (1.15) and (1.18) respectively are related through the

transformation

ūr̄(r̄, t) = Kr
2n−2

p u(r, t),

where

K =

(
(pn − 2n + 2)2

p2

) 1
p−2

, n̄ =
p(n − 2)

2n − pn − 2
, r̄ = r

pn−2n+2
p ,

and n ∈ (0, 2).
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We now find a self-similar radially symmetric solution to (1.15) with −1 < m < 0 and use the

theorem to find a self-similar radially symmetric solution to (1.18) with 0 < p < 1.

That is, we seek u in the form,

u(x, t) = Mu(Lx,Tt). (1.19)

In particular, we want u of the form

u(x, t) = tnβv(xtβ). (1.20)

We find the constant β that makes all this work by first plugging this into (1.15). This gives

nβtnβ−1v(xtβ) + βtnβ−1xtβ · ∇v(xtβ) =
1
m

tmnβ+2β∆(vm)(xtβ). (1.21)

Then β must satisfy nβ − 1 = mnβ + 2β. Letting y = xtβ, we can rewrite this as

nβv(y) + β∇v(y) · y =
1
m

∆(vm)(y). (1.22)

Now, since we are seeking a radial solution, we can assume v(y) = w(|y|) for some function w :

R→ R and we get (letting r = |y|)

nβw + βrw′ =
1
m

(
(wm)′′ +

n − 1
r

(wm)′
)
. (1.23)

After multiplying through by rn−1, we have

nrn−1βw + βrnw′ =
1
m

(rn−1(wm)′′ + (n − 1)rn−2(wm)′)

⇒ (βrnw)′ =
1
m

(
(wm)′rn−1

)′
.
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Integrating, gives

(βrnw) =
1
m

(wm)′rn−1 + a, (1.24)

for some constant, a. Since we are seeking any solution that is radially symmetric, we find the

solution corresponding to a = 0. And now we solve

βrnw =
1
m

(wm)′rn−1. (1.25)

That is,

(wm)′ = mβrw.

We then compute (wm−1)′ by

(wm−1)′ = (m − 1)wm−2w′ =
m − 1
mw

(mwm−1w′) =
m − 1
mw

(wm)′. (1.26)

Plugging mβrw in for (wm)′ gives

(wm−1)′ =
m − 1
mw

(wm)′ = (m − 1)βr. (1.27)

Again, we integrate to get

wm−1 = (m − 1)
β

2
r2 + b, (1.28)

for some constant b. Recall that u(x, t) = tnβw(|xtβ|). So undoing all the substitutions, gives our

solution:

u(x, t) = tnβ

(
β(m − 1)

2
|x|2t2β + b

)1/(m−1)

, (1.29)

where

β =
1

n − mn − 2
. (1.30)

Using the theorem and the solution above, we integrate with respect to r̄, but first, we need to
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convert from r to r̄ and n to n̄. We have

u(r, t) = tnβ

(
β(p − 2)

2
r2t2β + b

)1/(p−2)

, (1.31)

So,

u(r̄, t) = t
n̄−p

p(p−1)

(
(2 − p)(2n̄ − pn̄ − p)

4p(p − 1)
r̄

2n̄−pn̄−p
1−p t

2n̄−pn̄−p
p(p−1) + b

)1/(p−2)

. (1.32)

Using the theorem, we have

ūr̄(r̄, t) = Kr
2n−2

p u(r, t). (1.33)

That is,

ūr̄(r̄, t) = Kr̄
n̄−1
1−p t

n̄−p
p(p−1)

(
(2 − p)(2n̄ − pn̄ − p)

4p(p − 1)
r̄

2n̄−pn̄−p
1−p t

2n̄−pn̄−p
p(p−1) + b

)1/(p−2)

, (1.34)

where K =

(
4(1 − p)2

(2n̄ − pn̄ − p)2

) 1
p−2

. (1.35)

Finally, to get our solutions, we integrate

ū(r̄, t) = Kt
n̄−p

p(p−1)

∫ r̄

a
x

n̄−1
1−p

(
(2 − p)(2n̄ − pn̄ − p)

4p(p − 1)
x

2n̄−pn̄−p
1−p t

2n̄−pn̄−p
p(p−1) + b

)1/(p−2)

dx. (1.36)

Thus, we have a solution to the very fast p-Laplacian (1.18) for 0 < p < 1.

The case for p = 1 is addressed in [16] and [25]. In [25], we show that there is a connection

between the local median value property for a function u : R2 → R and viscosity solutions to the

1-Laplacian equation.

Definition 1.1. We say that a function u satisfies the local median value property if

u(x) = median
∂Br(x)

{ u(s) } for x ∈ Ω and r ≤ R(x), where R(x) > 0 . (1.37)
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We define viscosity solutions of the equation

−∆1u ≡ |Du|∇ ·
(

Du
|Du|

)
= 0 (1.38)

using the definition Juutinen, et. al. give in [19].

Definition 1.2. The continuous function ū : Ω → R is a viscosity supersolution of (1.38) if and

only if

1. ū . ∞, and

2. whenever x0 ∈ Ω and ϕ ∈ C2(Ω) satisfies


ū(x0) = ϕ(x0),

ū(x) > ϕ(x) for x , x0,

∇ϕ(x0) , 0

(1.39)

ϕ also satisfies −∆1ϕ(x0) ≥ 0.

The continuous function u is a viscosity subsolution of (1.38) if and only if −ū is a viscosity super-

solution of (1.38). And, u is 1-harmonic in the viscosity sense if u is both a viscosity subsolution

and a viscosity supersolution of (1.38).

Note: Our definition of a 1-harmonic function differs from the usual definition, in that, we

include the coefficient, |Du|. Since we only consider points x0 ∈ Ω so that |Dϕ(x0)| , 0, we see

that this definition is equivalent to the usual definition. Notice, if u is a viscosity supersolution

according to our definition, then we have

−|Dϕ(x0)|div
(

Dϕ(x0)
|Dϕ(x0)|

)
≥ 0.
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Since |Dϕ(x0)| , 0, we can divide it out to get

−div
(

Dϕ(x0)
|Dϕ(x0)|

)
≥ 0.

which gives us that u is a viscosity supersolution in the usual sense. Conversely, if u is a viscosity

supersolution in the usual sense, then multiplying by |Dϕ| in the inequality above does not change

the direction of the inequality. Thus, u is a viscosity supersolution in the sense of our definition.

Similarly, u is a viscosity subsolution according to our definition if and only if u is a viscosity

subsolution in the usual sense. Thus, a function is 1-Harmonic according to our definition if and

only if u satisfies the usual definition of 1-Harmonic, in the viscosity sense.

Now, I can state our main theorem in [25].

Theorem 1.4. A function u satisfying the local medium value property, (1.37), is 1-harmonic in

the viscosity sense.

1.2 Outline of This Work

In this work, we explore the relationship between Equations (1.2) and (1.3). In Chapter 2, we find

and characterize the set of minimizers for (1.2) and a β-regularized version of (1.2). We show that

minimizers are the set of step functions. We also show that this set is convex and neither open nor

closed.

To discuss (1.3), we recognize that the singularity poses a difficulty in solving (1.3). We know

that in the case of functions defined on 1-dimensional domains, if we want u′(x) , 0, we are

looking for functions that are monotone. Though monotonicity for functions fromR toR is familiar

in even the most elementary courses in mathematics, there are a variety of definitions in the case of

functions from Rn to R. In Chapter 3 we review the definitions found in the literature and suggest

a new definition (with its variants) some of which are useful in discussing classical solutions to

(1.3). We give examples and discuss the relationship between these definitions and characterize

functions that are monotone according to our new definition.
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In Chapter 4, we discuss standard techniques for solving problems similar to (1.3). We discuss

the difficulties in using these techniques. We discuss the differences between stationary solutions

of (1.3) and minimizers of (1.2), in particular, we recognize that a function whose graph is a line is

a stationary solution to the 1-dimensional (1.3), but it is not a minimizer of (1.2). We compute the

divergence in (1.3) to write the equation as the sum of well-known curvature expressions. We then

use this geometric understanding to find classical stationary solutions that satisfy certain mono-

tonicity properties. We then use these solutions to discuss some differences between stationary

solutions to (1.3) and minimizers of (1.2).

In Chapter 5, we write a discrete formulation for (1.9). We introduce finite hyperplane traversal

(ht) algorithms that find (local) minimizers for L1 pTV for all λ ≥ 0 and for all 0 < p ≤ 1. For

the algorithms solving the problems when λ > 0, we also show convergence of these algorithms

to minimizers for p = 1 and local minimizers for 0 < p < 1, in only finitely many iterations.

We discuss time trials that suggest that the computational complexity for the L1TV algorithm is

o(aN + M) a signal of length N with M initial flat places in our data. Finally, we show that this is

indeed true for binary signals.

In Chapter 6, we show examples denoising synthetic signals using our L1TV and L1 pTV (for

0 < p < 1) ht algorithms. We verify that the results in denoising are indeed the results that we

expect to get when denoising using L1TV and L1 pTV for 0 < p < 1. We also show that using

our L1TV hyperplane traversal algorithm, we can easily detect scales in signals without the need

to choose the particular λ for which we would solve L1TV .

Finally, in Chapter 7, we summarize the findings of this work. We also discuss open ended

questions related to this work.
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CHAPTER TWO

CHARACTERIZING λ = 0 SOLUTIONS

In this chapter, we discuss the more general problem

min
u∈Bn(Ω)

∫
Ω

|∇u|pβ dx, for 0 < p < 1, (2.1)

where

Bn(Ω) = {u ∈ BV(Ω) : Hn−1(JΩ(u)) < ∞} (2.2)

and

JΩ(u) = {x ∈ Ω|u is discontinuous at x} (2.3)

is the set of discontinuities of u. We define |∇u|β as

|∇u|β = ((∇u)2 + β2)1/2, for β > 0. (2.4)

Notice that the β = 0 case is the one in which we are particularly interested. We begin by rec-

ognizing that this functional is nonconvex. This tells us that we cannot expect to find a unique

minimizer. In fact, we may have local as well as global minimizers. Indeed, our first two results

give us that the set of minimizers is the set of step functions, verifying that we do not have a unique

global minimizer [7].
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2.1 Minimizers

Lemma 2.1. Given Ω ⊂ R, u : Ω → R, 0 < p < 1, u ∈ B1(Ω), that is, u has only finitely many

jumps, then u is equal to a step function a.e. if and only if u is a minimizer of

min
u∈B1(Ω)

∫
Ω

|u′|pβ dx (2.5)

Proof. Since |u′| ≥ 0, we have that
∫

Ω
|u′|pβ dx =

∫
Ω

(
|u′|2 + β2

)p/2
dx ≥ |Ω|βp. Let m ∈ Z+ and

define

ũ =

m∑
i=1

αiχΩi a.e. in Ω,

a step function, where αi ∈ R and Ωi are intervals (ai, ai+1) such that
⋃m

i=1 Ωi = Ω. We claim that

minu

∫
Ω
|u′|pβ dx = |Ω|βp. It suffices to show that

∫
Ω
|ũ′|pβ dx = |Ω|βp. Indeed, let uh be defined by

uh(x) =


1
h (ũ(ai) − ũ(ai − h)) (x − ai) + ũ(ai) if x ∈ (ai − h, ai)

ũ(x) otherwise

, ∀i = 1, . . . ,m.

a5a2 a4a1

uh

u

a3

Figure 2.1: uh, piecewise linear approximating a step function.
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Then, uh → ũ as h→ 0. Using Lebesgue Dominated Convergence, we have

∫
Ω

|ũ′|pβ dx = lim
h→0

∫
Ω

∣∣∣u′h∣∣∣pβ dx = lim
h→0

m∑
i=1

∫
Ωi

∣∣∣u′h∣∣∣pβ dx

= lim
h→0

m−1∑
i=1

∫ ai

ai−h

(
1
h2

(ũ(ai) − ũ(ai − h))2 + β2
)p/2

dx +

∫ ai+1−h

ai

βp dx
 +

∫ am

am−1

βp dx

= lim
h→0

m−1∑
i=1

[
h1−p

(
(ũ(ai) − ũ(ai − h))2 + h2β2

)p/2
+ (ai+1 − h − ai)βp

]
+ (am − am−1)βp

=

m−1∑
i=1

(ai+1 − ai)βp = |Ω|βp.

Thus, ũ is a minimizer of (2.5).

Conversely, suppose u is a minimizer of (2.5). Then, we have

∫
Ω

|u′|pβ dx = |Ω|βp.

Then, ∫
Ω

(
(u′)2 + β2

)p/2
dx = |Ω|βp.

Since (u′)2 + β2 ≥ β2 and equality holds only when (u′)2 = 0 we get

|u′| = 0 a.e. in Ω ⇒ u′ = 0 a.e in Ω.

Now, since u has only finitely many, say N, jumps (or points of discontinuity), we know that u is

continuous except on a finite set. Let u be continuous on Ω̃ = Ω \ K , where |K| < ∞. We now

break Ω̃ into the intervals separated by the jumps in u: Ω̃ =
⋃N

i=1 Ω̃i. Then

u′ = 0 on Ω̃i ⇒ u = ci on Ω̃i ⇒ u =

N∑
i=1

ciχΩ̃i
on Ω̃.

Thus, u is equal to a step function a.e. in Ω. �
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We now extend the previous result to a higher dimensional result. That is, that minimizers of∫
Ω
|∇u|p dx are functions of the form

∑m
i=1 αiχΩi where Ωi ⊂ Ω ⊂ Rn.

Theorem 2.1. Given Ω ⊂ Rn, u : Ω→ R, 0 < p < 1, u ∈ Bn(Ω) then there are αi ∈ R,
⋃m

i=1 Ωi = Ω

with ∂Ωi lipschitzHn−1(∂Ωi) < ∞ so that

u =

m∑
i=1

αiχΩi a.e. in Ω (2.6)

if and only if u is a minimizer of

min
u∈Bn(Ω)

∫
Ω

|∇u|pβ dx (2.7)

Proof. First, notice that since
∫

Ωi

(
|∇u|2 + β2

)p/2
dx =

∫
Ωi
|∇u|pβ dx we have

βp|Ωi| ≤

∫
Ωi

|∇u|pβ dx ≤
∑
k,i

lim
h→0

∫
∂Ωi∩∂Ωk

∫ h

0

∣∣∣∣∣αi − αk

h

∣∣∣∣∣p dtdσ +

∫
Ωi

βp dx

=
∑
k,i

lim
h→0
Hn−1(∂Ωi ∩ ∂Ωk)h1−p|αi − αk|

p + βp|Ωi| = βp|Ωi|.

Thus, ∫
Ωi

|∇u|pβ dx = βp|Ωi|.

And, so ∫
Ω

|∇u|pβ dx =

m∑
i=1

∫
Ωi

|∇u|pβ dx = βp
m∑

i=1

|Ωi| = βp|Ω|.

Now we prove the converse. We know that min
∫

Ω
|∇u|pβ dx = βp|Ω|. Thus |∇u| = 0 a.e. which

gives us that u is flat a.e.. Thus, we can find Ωi ⊆ Ω and αi ∈ R so that u =
∑m

i=1 αiχΩi . �

Theorem 2.1 gives us that the set of minimizers is

M =

u ∈ Bn(Ω) : ∃αi ∈ R,Ωi ⊆ Ω, ∂Ωi Lipschitz ,H1(∂Ωi) < ∞ so that u =

m∑
i=1

αiχΩi

 . (2.8)

Using what we just learned aboutM, we can now show that the set is convex.
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2.2 Characteristics ofM

Lemma 2.2. The set of minimizers of (2.7) is convex.

Proof. Let u, v ∈ M, that is, ∃αi, βi,Ωi,Γi so that

u =

m1∑
i=1

αiχΩi , v =

m2∑
i=1

βiχΓi .

Then

au =

m1∑
i=1

(aαi)χΩi , bv =

m1∑
i=1

(bβi)χΓi ∈ M.

Thus

au + bv =

m1+m2∑
i=1

γiχΛi ,

where γ1, . . . , γm1 = aα1, . . . , aαm1 and γm1+1, . . . , γm1+m2 = bβ1, . . . , bβm2 and where Λ1, . . . ,Λm1 =

Ω1, . . . ,Ωm1 and Λm1+1, . . . ,Λm1+m2 = Γ1, . . . ,Γm1+m2 .

So we have that au + bv ∈ M. �

Now, we know that because we can approximate any continuous function by a step functions,

M is not a closed set. We show this more rigorously in the next two theorems. We also show that

this set is not open.

Theorem 2.2. (1-D) The set of minimizers,M, of (2.5) is neither open nor closed in B1(Ω).

Proof. First, we show that M is not closed. We do this by considering the sequence, {un} ∈ M

given by the following pattern (see Figure 2.2)

u0(x) =


0 x ∈ [0, 1

2 )

1 x ∈ [ 1
2 , 1]
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un(x) =



0 x ∈ [0, 1
2n+1 )

j
2n x ∈ [ 2 j−1

2n+1 ,
2 j+1
2n+1 ), j = 1, . . . , 2n − 1

1 x ∈ [ 2n+1−1
2n+1 , 1]

, n > 0

It is easily seen that un → x as n→ ∞, but u(x) = x is not a minimizer of (2.5) since

∫ 1

0
|u′(x)|pβ dx =

∫ 1

0

(
(u′(x))2 + β2

)p/2
dx =

∫ 1

0

(
1 + β2

)p/2
dx = (1+β2)p/2 > βp = min

u∈B1([0,1])

∫ 1

0
|u′|pβ dx.

Thus,M is not closed.

Now, we need to show thatM is not open. Suppose, to the contrary, thatM is open. Let u ∈ M

Then for every ball, Bu, centered at u, B ⊂ M. But, by the argument given in Lemma 2.1, above,

we can see that for h small, there is a uh ∈ B \M, a contradiction. Thus,M is not open. �

Theorem 2.3. (2-D) The set of minimizers of (2.7) is neither open nor closed in B2(Ω).

Proof. We first show that the set of minimizers is not open. Using the argument for 2.1, we see

that we can approximate a minimizer, u∗, by continuous functions that have the same value as u∗

on Ωi \ Nε(∂Ωi), where Nε(∂Ωi) is an ε neighborhood of the boundary of the level set Ωi. On this

ε neighborhood, we use a linear approximation to approximate the jump between two level sets in

the direction that is normal to ∂Ωi.

To show thatM is not closed, we consider the sequence of functions which are flat on concen-

tric rings, defined by (see Figure 2.3)

u0(x) =


0 0 ≤ |x| < 1

2 )

1 1
2 ≤ |x| ≤ 1
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1

1
2

u0(x)

1

1
2

u1(x)

1
4

3
4

1

1
2n

3
2n+1

2n+1−1
2n+1

un(x)

2n−1
2n

j
2n

1
2n+1

Figure 2.2: Sequence of step functions approaching a line.
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un(x) =



0 0 ≤ |x| < 1
2n+1

(
j

2n

)2 2 j−1
2n+1 ≤ |x| <

2 j+1
2n+1 , j = 1, . . . , 2n − 1

1 2n+1−1
2n+1 ≤ |x| ≤ 1]

, n > 0.

Clearly, this sequence of functions, un : R2 → R tends to u(x) = |x|2 which is not a minimizer.

Thus,M is not closed. �
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1

u0(x)

−1
2

1
2

1

u0(x)

1
4

−3
4 −1

4
1
4

3
4

1

u2(x)

3
8

15
16

1
4
1
16

−5
8 −3

8 −1
8

1
8

5
8

Figure 2.3: Sequence of functions that are flat on concentric rings and tend to u(x) = |x|2
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2.3 Minimizer Summary

In this chapter, we recognize that the functional in

min
u∈Bn(Ω)

∫
Ω

|∇u|p dx for 0 < p < 1 (2.9)

is nonconvex. So, we cannot expect a unique minimizers. With that, we found that solutions of the

minimization problem are step functions. We showed that this set is convex and neither open nor

closed. Our plan is to compare these solutions to solutions of the p-Laplacian equation (1.12).
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CHAPTER THREE

MONOTONE FUNCTIONS IN HIGHER DIMENSIONS

In exploring (1.3), we look for stationary solutions. In the case when the domain is 1-dimensional,

we see that, for u to be a stationary solution, we must have

|u′|
(

u′

|u′|

)′
= (1 − p)u′′. (3.1)

Clearly, any linear function u satisfies this condition. We know that the only strictly monotonic

stationary solutions to the 1-dimensional p-Laplacian equation are functions whose graphs are

lines. Indeed, if u is a monotone stationary solution to the 1-dimensional (1.3), then we get

0 =
(
(u′)p−2u′

)′
=

(
(u′)p−1

)′
= (p − 1)(u′)p−2u′′.

Since u′ , 0 we get u′′ = 0 thus, u(x) = ax + b for some a and b.

Notice, also. that if u : Ω ⊂ R→ R is a stationary solution to (1.3), we get

|u′|p−2u′ = c ⇒ u is strictly monotone ⇒ (u′)p−1 = c ⇒ u′ = c ⇒ u is linear.

Above, we relax notation and allow the c to change throughout. This tells us that if u is a stationary

solution to (1.3) then it is the affine function u(x) = ax+b. The next question is whether we can see

similar results for functions with higher dimensional domains. But, we need a notion of monotone

in higher dimensions. In this chapter, we take a detour to explore different definitions for monotone

in higher dimensions and introduce our own.
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3.1 Definitions and Examples

In [21], Lebesgue notes that on any interval in R a monotonic function f attains its maximum

and minimum at the endpoints of this interval. This is the motivation he uses to define monotonic

functions on an open bounded domain, Ω ⊂ R2. His definition requires that these functions must

attain their maximum and minimum values on the boundaries of the closed subsets of Ω. We state

the definition found in [21] below.

Definition 3.1 (Lebesgue). Let Ω be an open bounded domain. A continuous function f : Ω ⊂

R2 → R is said to be Lebesgue monotone if for every closed domain, Ω′ ⊆ Ω, f attains its

maximum, maxΩ f , and minimum, minΩ f , values on ∂Ω′.

Remark 3.1. This definition tells us that a function f is Lebesgue monotone if and only if every

level set of f extends to the boundary.

Remark 3.2. Notice also that we can extend this definition to a function f : Ω ⊂ Rn → R.

We now give a couple of examples of functions that are Lebesgue monotonic.

Example 3.1. Since an n dimensional plane, f (x) = cT x + x0, can only take on extreme values on

the boundary of any closed set in its domain, we know that it is Lebesgue Monotone.

Example 3.2. Let Ω = R(x, L) be the square of side length L, centered at a point x ∈ Rn, for some

L > 0. Any nD function whose level sets are lines is Lebesgue monotone. That is, any function

of the form f (x, y) = f (y) is Lebesgue monotone. Even a function that is not monotone when

projected to its one dimensional domain is Lebesgue monotone, for example f (x, y) = x3 − x (see

Figure 3.1). Because the function is constant in the y direction, we see that on the boundary of any

closed subset of Ω, f must take on all the same values as it takes in the interior. Of course, the

choice of Ω is somewhat arbitrary here (it need only be bounded).

We now move on to another definition given in [23]. Here Mostow, gives the following defini-

tion for monotone functions.
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Figure 3.1: An example of a function that is Lebesgue monotone even though projecting to its 1D
domain is not monotone.

Definition 3.2 (Mostow). Let Ω be an open set in a locally connected topological space and let

f be a continuous function on Ω. The function f is called Mostow monotone on Ω if for every

connected open subset U ⊂ Ω with U , U,

sup
x∈U

f (x) ≤ sup
y∈∂U

f (y) and inf
x∈U

f (x) ≥ inf
y∈∂U

f (y).

We see that if Ω = R2 then we can choose a closed disk, Dr = D(0, r) centered at the origin

with radius r so that U = R2 \ Dr. On ∂U = ∂Dr a function, f , that is Mostow monotone must

obtain both its maximum and its minimum. But, we can let r ↘ 0. In doing this, we see that the

maximum and minimum of f can be arbitrarily close. This tells us that if f is Mostow Monotone,

then it must be a constant function. In [23], Mostow states that one can adjust this definition by

requiring the function to take on its maximum or minimum on ∂U only for relatively compact open

sets.

Example 3.3. It is not true that Lebesgue monotone functions are Mostow monotone (even if

we follow the suggestion in [23] to adjust the definition of Mostow monotone). To see this, we

consider a function f : Ω ⊂ R2 → R that is affine and has its gradient oriented along the domain
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as in Figure 3.2. Here f will have supremum and infimum that are not attained on the boundary of

the open set U.

∂U

U

Ω

∇ f (x)

Figure 3.2: An example of a function that is Lebesgue monotone, but not Mostow monotone

Remark 3.3. Notice, if Ω ⊂ R2 is a bounded domain then any continuous, Mostow monotone

function is also Lebesgue monotone. This is true whether or not we are adjusting the definition as

suggested in [23].

Before giving the next definition, we give some notation for clarity. Let Ω ⊆ R2 be an open

domain, B(x, r) be the closed ball of radius r around the point x ∈ Ω, and S (x, r) be the boundary

of the ball, B(x, r). We say a function is L1
loc(Ω) if

∫
U
|u| dx < ∞ for every bounded set U ⊂ Ω. For

comparison, we write the following definition for a less general function than what can be found

in [31].

Definition 3.3 (Vodopyanov, Goldstein). We say an L1
loc function, f : Ω → R is Vodopyanov

Goldstein Monotone at a point x ∈ Ω if there exists 0 < r(x) ≤ dist(x, ∂Ω) so that for almost all

r ∈ [0, r(x)], the set

f −1 ( f (B(x, r)) ∩ [R \ f (S (x, r))]) ∩ B(x, r)
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has measure zero. A function is then said to be Vodopyanov-Goldstein monotone on a domain, Ω

if it is Vodopyanov Goldstein monotone at each point x ∈ Ω.

Example 3.4. If we remove the continuity requirement for both Lebesgue and Mostow monotone

functions we can create a function that is Mostow monotone but not Vodopyanov-Goldstein mono-

tone. For the function in Figure 3.3, we see that any closed and bounded set must attain both the

maximum and minimum of f on its boundary, but if we take a ball, B that contains the set { f = 0},

we see that f (S ) = {−1, 1}. So, f −1( f (B∩R \ f (S ))) ∩ B does not have measure zero. That is, f is

not Vodopyanov-Goldstein monotone.

1

−1

Figure 3.3: An example of a function satisfying all but continuity criteria for Mostow Monotone
and is not Vodopyanov-Goldstein monotone.

Example 3.5. Now, a function can be Vodopyhanov-Goldstein monotone, but not Lebesgue mono-

tone. An example of such a function is one in which f attains a minimum along a set, M, that

is long and narrow relative to the set Ω (see Figure 3.4). In this case, the boundary of any ball,

B(x, r) ⊂ Ω, that is centered along this set must intersect the set, M thus attaining both its max-

imum and minimum on the boundary of the ball, but the function will not reach its minimum on
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the boundary of a closed set Ω′ such as the one in Figure 3.4.

Ω′

x

Ω

B(x, r)

Figure 3.4: The level sets of an example function that is Vodopyhanov-Goldstein monotone but
not Lebesgue monotone.

The next theorem shows that, for continuous functions, Lebesgue monotone functions are

Vodopyanov-Goldstein monotone.

Theorem 3.1. Let Ω ⊂ R2 be a bounded domain and let f : Ω → R be continuous. Then f is

Vodopyanov-Goldstein monotone function if f is Lebesgue monotone.

Proof. Suppose f is Lebesgue monotone, then we know that for all closed sets Ω′ ⊂ Ω, f attains

its local extrema on ∂Ω′. In particular, if we let x ∈ Ω, we have that f attains its local extrema on

the boundary of B(x, r) for any r > 0. Let M and m be such that

M ≡ sup
y∈B(x,r)

f (y) and m ≡ inf
y∈B(x,r)

f (y).

Then we know that f (B(x, r)) = (m,M) and f (S (x, r)) = [m,M]. So

R \ f (S (x, r)) = (−∞,m) ∪ (M,∞)

⇒ f (B(x, r)) ∩ [(−∞,m) ∪ (M,∞)] = ∅.

Thus,

f −1 ( f (B(x, r)) ∩ [(−∞,m) ∪ (M,∞)]) = ∅.
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So, the measure of the set

B(x, r) ∩ f −1 ( f (B(x, r)) ∩ [(−∞,m) ∪ (M,∞)])

is zero. Thus, f is Vodopyanov Goldstein monotone at x. Since x was chosen arbitrarily, f is

Vodopyanov Goldstein monotone. �

In [22], Manfredi gives a definition for weakly monotone functions.

Definition 3.4 (Manfredi). Let Ω be an open set in Rn and f : Ω → R be a function in W1,p
loc (Ω).

We say that u is weakly monotone if for every relatively compact subdomain Ω′ ⊂ Ω and for every

pair of constants m ≤ M such that

(m − f )+ ∈ W1,p
0 (Ω′) and ( f − M)+ ∈ W1,p

0 (Ω′),

we have that

m ≤ f (x) ≤ M for a.e. x ∈ Ω′.

Manfredi also gives the following example of a function that is weakly monotone, but not

continuous (in this case at the origin).

Example 3.6 (Manfredi). Write z = reiθ for z ∈ R2. Define u by

f (z) =



θ for 0 ≤ θ ≤ π/2,

π/2 for π/2 ≤ θ ≤ π,

3π/2 − θ for π ≤ θ ≤ 3π/2,

0 for 3π/2 ≤ θ ≤ 2π.

Because this function is not continuous, it does not satisfy the definition of Lebesgue or Mostow

montone. We expect that all the above types of monotone functions should be weakly monotone.

30



Theorem 3.2. Let Ω ⊂ R2 be a bounded domain and u : Ω → R, if u is Lebesgue monotone, then

u is weakly monotone.

Proof. Let Ω′ ⊂ Ω, then by Definition 3.1, u is continuous and u attains its maximum and minimum

on ∂Ω′. Let m,M be a pair so that

(m − u)+, (u − M)+ ∈ W1,p
0 (Ω′). (3.2)

Since u is continuous so are (m − u)+ and (u − M)+. Thus, (3.2) gives us that

m ≤ u ≤ M on ∂Ω′.

Thus, m ≤ minx∈Ω′ u(x) ≤ u ≤ maxx∈Ω′ u(x) ≤ M. Thus, u is weakly monotone. �

Remark 3.4. Using Theorem 3.2 and Remark 3.3, we see that a function that is Mostow Monotone

is also Weakly Monotone.

3.2 Normal Monotone, Cone Monotone, and K Monotone

In this section, we introduce a new definition of monotonicity which we call Cone monotone. We

will discuss some variants of this new definition that we call Normal monotone and K monotone.

We also characterize K monotone functions.

3.2.1 Cone Monotone

Motivated by the notion of monotone operators, we give a more general definition of monotonicity

for functions in 2 dimensions. But first, we define the partial ordering, ≤K on R2.

Definition 3.5. Given a convex cone, K ⊂ R2 and two points x, y ∈ R2, we say that

x ≤K y if y − x ∈ K. (3.3)
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Definition 3.6. We say a function f : Ω ⊆ R2 → R is cone monotone if at each x ∈ Ω there exists

a cone, K(x), so that

f (x) ≤ f (y) whenever x ≤K(x) y. (3.4)

We say a function is K monotone if the the function is cone monotone with a fixed cone K.

Characterization of Cone Monotone

Here we first notice that a function that is K monotone cannot have any local extrema. This is

stated more precisely in the following

Theorem 3.3. Assume K is a convex cone with non-empty interior. If f is K monotone then there

is no compact connected set M so that f (M) is a local extremum.

Proof. Suppose to the contrary. That is, suppose that f (M) is a local minimum and suppose f is

K monotone. Then we have for every point x ∈ ∂M and every y ∈ Bε(x) \ M, that f (x) < f (y) (see

Figure 3.5).

Pick x ∈ ∂M so that the set {y ∈ M ∪ Bε(x)|y ≤K x} = ∅, that is, we pick a point on the

boundary so that the negative cone, −K ≡ {−x|x ∈ K} does not intersect M near x. We know that if

ỹ ∈ Bε(x) \ M and ỹ − x ∈ −K then x − ỹ ∈ K so f (x) ≥ f (ỹ). Thus, we have a contradiction. �

Remark 3.5. Theorem 3.3 and Remark 3.1 give us that a continuous K monotone function is also

Lebesgue monotone.

For the following discussion, we work in the graph space, Rn+1 of a K monotone function

f : Rn → R. Assume a fixed closed, convex cone, K with non-empty interior. Set

K = K × (−∞, 0] ⊂ Rn+1

K = −K × [0,∞) ⊂ Rn+1.

Let x denote the vector (x1, x2, ..., xn). We can translate these sections up to the graph of f so that
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M

x

−K
Bε(x)

K

ỹ
y

Figure 3.5: Cone monotone functions have no local extrema.
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it touches at the point (x, f (x)). In doing this we see that we have (see Figure 3.6)

K + (x, f (x)) ⊂ {(x, xn+1)|xn+1 ≤ f (x)}

K + (x, f (x)) ⊂ {(x, xn+1)|xn+1 ≥ f (x)} . (3.5)

K + (x, f (x))

f

K + (x, f (x))

Figure 3.6: Example of K + (x, f (x)) and K+(x, f (x)).

We can do this for each point (x, f (x)) on the graph of f . Thus, the boundary of the epigraph

and the boundary of the epograph are the same where we touch ∂epi f with a translated K and K.

So, we can take the union of all such points to get

cl(epi f ) =
⋃
x∈Rn

K + (x, f (x))

cl(epo f ) =
⋃
x∈Rn

K + (x, f (x)). (3.6)
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Care needs to be taken in the case when f has a jump discontinuity at x. Since for example, for an

upper semicontinuous function epi f does not contain points along the vertical section, {(x, r)|r ≤

f (x)}, below the point (x, f (x)). Let

E =
⋃
x∈Rn

K + (x, f (x)). (3.7)

Using a limiting argument we notice that indeed this vertical section is contained in E. If (x, r) ∈

{(x, r)|r ≤ f (x)}, then we can find a sequence of points, {xk} ⊂ R
n so that xk → x. Thus, for k large

enough, |(xk, r) − (x, r)| is small. Thus, cl(E) = cl(epi f ). A similar argument can be used to give

the second equation in (3.6) for f lower semicontinuous. Using these two results, we get that (3.6)

holds for any function f .

x̂

x̂

Figure 3.7: Rotating the graph of f so that the line segment from y to x̂ becomes vertical

Picking x̂ ∈ K so that Bδ(x̂) ⊂ K and rotating so that x̂ becomes vertical (see Figure 3.7),

the piece of ∂epi f in any Bδ(y), y ∈ epi f will be a Lipschitz graph with Lipschitz constant no

more than
( √
||x̂||2 + δ2

)
/δ. This implies that µ(∂epi f) < ∞ in any ball, that is, for y ∈ ∂epi,

µ(∂epi f ∩ B(y,R)) < ∞ for any R.

Theorem 3.4. If f is K monotone and bounded, and K has non-empty interior then f ∈ BV.

Proof. First, the slicing theorem from [20] gives us that

∫ ∞

−∞

(∂epo f )t dt < µ(∂epo f ), (3.8)
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where (∂epo f )t = ∂{x| f (x) ≥ t}. So we have that

∫ ∞

−∞

(∂epo f )t dt < ∞. (3.9)

Using the coarea formula for BV functions from [15], we get that (3.9) implies that f ∈ BV . �

Examples of Cone Monotone Functions

We now consider some examples of K monotone functions.

Suppose K is a ray so that K has empty interior. Then for f to be K monotone all we need is for

f monotone on all lines parallel to K, that is monotone in the positive direction of K. Therefore, f

need not even be measurable.

Example 3.7. Let f (·, y) = rand(y), where rand(y) assigns a particular random number to each

value y. This function need not be measurable, but is K monotone with K =

α
 0

1

 |α > 0

.

Figure 3.8: An example of a K monotone function with K having nonempty interior.
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Example 3.8. An example of a K monotone function with the cone, K having nonempty interior

is a function that oscillates, but is sloped upward (see Figure 3.8). More specifically, the function

f (x, y) = sin(x) + x + y is K monotone. We can see this by noticing that f is increasing in the cone

K = {(v1, v2)|v1 > 0, v2 > 0}.

Remark 3.6. Notice in this example that f has oscillatory behavior. Yet, f is still cone monotone.

Notice also that if an oscillating function is tipped enough the result is K monotone. The more

tipped the more oscillations possible and still be able to maintain K monotonicity.

Example 3.9. Some cone monotone functions are monotone in no other sense. An example of

a function, f : R2 → R, that is Cone monotone, but not Vodopyanov Goldstein monotone is a

paraboloid. At each point x, that is not the vertex of the paraboloid, we find the normal to the level

set { f = f (x)}. We see the half space determined by this normal is a cone in which f increases

from f (x). At the vertex of the paraboloid, we see that all of R2 is the cone in which f increases.

Example 3.10. Not all Vodopyanov-Goldstein Monotone functions are cone monotone. An ex-

ample of a function that is Vodopyanov-Goldstein Monotone, but is not cone monotone can be

constructed with inspiration from Example 3.5. Level sets of this function are drawn in Figure 3.9.

Here we see that the darkest blue level (minimum) set turns too much to be Cone monotone. We

see this at the point y. At this point, there is no cone so that all points inside the cone have function

value larger than f (y) since any cone will cross the dark blue level set at another point.

Example 3.11. We can create a function, f that is Lebesgue Monotone, but is not Cone monotone.

In this case, we need a level set that turns too much, but the level sets extend to the boundary of

Ω. We see such a function in Figure 3.10. Let dark blue represent a minimum. Then at the point y,

there is no cone that so that every point in the cone has function value larger than f (y) since every

cone will cross the dark blue level set.

Now if the domain has dimension higher than 2 and K is convex and has empty interior, but

is not just a ray, then we can look at slices of the domain (see Figure 3.11). We can see that on
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Ω

x

B(x, r)

y

Figure 3.9: An example of a function that is Vodopyanov-Goldstein monotone, but is not Cone
monotone.

y

Figure 3.10: An example of a function that is Lebesgue monotone, but is not Cone monotone.
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each slice of the domain, the function still satisfies Theorems 3.3 and 3.4. But, we also see that

the behavior of the function from slice to slice is independent. This is the same behavior as we

see when the function is defined on a 2-dimensional domain and K is a ray. That is, from line to

line, the function behavior is independent (see Example 3.7). We can also see an example of the

extended cones for a K monotone function where K is a ray, in Figure 3.12.

Figure 3.11: Cones with empty interior in a 3D domain that are not just rays.

K + (x, f (x))

K + (x, f (x))

Figure 3.12: The extended cones are shown pinching the graphs of the functions, shown in blue.
The key point is that the blue curve in each leaf of the foliation is independent of every other graph.
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If K is a closed half space then f has level sets that are hyperplanes parallel to ∂K and f is one

dimensional monotone.

Construction of K monotone functions

Recall from (3.6) that if f is K monotone, we have

cl(epi f ) =
⋃
x∈Rn

(x, f (x)) + K

cl(epo f ) =
⋃
x∈Rn

(x, f (x)) + K (3.10)

We can also construct a K monotone function by taking arbitrary unions of the sets (x, xn+1)+K.

By construction the boundary of this set is then the graph of the epigraph (and of the epograph) of

a K monotone function.

Bounds on TV Norm

In this section, we find a bound on the total variation of K monotone functions. To do this we use

the idea of a tipped graph introduced in Subsection 3.2.1.

Suppose f < C on Rn. Then f
∣∣∣B(0,R)⊂Rn has a graph that is contained in B

(
0,
√

R2 + C2
)
⊂ Rn+1.

Assuming that the tipped Lipschitz constant is L
(
≤

√
||x||2+δ2

δ

)
, we get that the amount of ∂epi f

∣∣∣
f |B(0,R)

in B
(
0,
√

R2 + C2
)

is bounded above by α(n)
(√

R2 + C2
)n √

1 + L2, where α(n) is the volume of

the n dimensional unit ball.

Using the coarea formula discussed above, we get an upper bound on the total variation of a

function that is K monotone as follows.

TVB(0,R)( f ) =

∫
B(0,R)

|∇u| dx ≤ µ(∂epi( f (B(,R))) ≤ α(n)
(√

R2 + C2
)n √

1 + L2. (3.11)
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3.2.2 Normal Monotone

Motivated by the nondecreasing (or nonincreasing) behavior of monotone functions with domain

in R, we introduce a specific case of cone monotone. We consider a notion of monotonicity for

functions whose domain is in Ω ⊂ R2 by requiring that a monotone function be nondecreasing (or

nonincreasing) in a direction normal to the level sets of the function.

First, we introduce a few definitions.

Definition 3.7. We say that a vector v is tangent to a set X at a point x ∈ X if there is a sequence

{xk} ⊂ X with xk → x and a sequence {tk} ⊂ R with tk ↘ 0 so that

lim
k→∞

xk − x
tk

= v. (3.12)

The set of all tangents to the set X at the point x ∈ X is the tangent cone and denote it by TX(x).

Definition 3.8. We say that a vector n(x) is normal to a set X at a point x ∈ X if for every vector

v ∈ TX(x) we have that n(x) · v ≤ 0.

Definition 3.9. We say that a function f : R2 → R is (strictly) Normal monotone if for every c ∈ R

and every x on the boundary of the level set { f = c} the 1-dimensional functions γ 7→ f (x + γn(x))

are (strictly) monotone for every vector, n(x), normal to the level set { f = c} at x.

Remark 3.7. The definition for normal monotone requires that the function be monotone along

the entire intersection of a one dimensional line and the the domain of f. In the case of cone

monotone, we require only monotonicity in the direction of the positive cone while in the case of

K monotone, the fact that we can look forwards and backwards to get non-decreasing and non-

increasing behavior follows from the invariance of K, not the definition of cone monotone.

Remark 3.8. A smooth function that is normal monotone is cone monotone for any cone valued

function K(x) ⊂ N(x) ∀x.

We now explore this definition with a few examples.
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Example 3.12. One can easily verify that a function whose graph is a non-horizontal plane is

strictly normal monotone. This is desirable since a 1D function whose graph is a line is strictly

monotone (assuming it is not constant).

Example 3.13. A parabola is not monotone in 1D so neither should a paraboloid be normal mono-

tone. One can easily verify this to be the case.

Example 3.14. If we extend a nonmonotone 1D function to 2D, we should get a function that is

not normal monotone. An example of such a function is the function f (x, y) = x3 − x. Notice, this

function is Lebesgue monotone, but neither K nor Normal monotone.

Example 3.15. In Figure 3.13, we show a function whose level sets are very oscillatory so that it

is not normal monotone, while still being K monotone.

Ω

K

Figure 3.13: An example of a function that is K monotone, but not Normal monotone.

Example 3.16. In Figure 3.14, we see that if Ω is not convex, then we can construct a function that

is not K monotone, but is Normal monotone. In this example, the function increases in a counter

clockwise direction. This function is Normal monotone. We can see that it is not K monotone since

at the point x any direction pointing to the north and west of the level line is a direction of ascent.

But, at the point y, these directions are exactly the directions of descent. So the only cone of ascent
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at both x and y must be along the line parallel to their level curves. But, we see that at other points,

such as at z and w, we find the directions of ascent to be along the line containing these two points

which does not coincide with the directions of ascent for x and y. Thus, this function cannot be K

monotone.

z
x

w

Ω

y

Figure 3.14: An example of a function that is not K monotone, but is Normal monotone.

The next theorem tells us that a normal monotone function is also Lebesgue monotone.

Theorem 3.5. Let Ω ⊂ R2 be a bounded domain and let f : Ω → R be a continuous, normal

monotone function then f is also Lebesgue monotone.

Proof. We prove the contrapositive. Suppose f is not Lebesgue Monotone. Then there exists a set

Ω′ so that

inf
x∈Ω′

f (x) < inf
x∈∂Ω′

f (x).

We want to show that f is not normal monotone. Let us then define the nonempty set M ⊂ (Ω′)◦

to be the set where f attains a local minimum, at every point in M. That is,

M =

{
x ∈ Ω′| f (x) = inf

x∈Ω′
f (x)

}
.

Let (x0, y0) ∈ ∂M and let n(x0, y0) be a normal at (x0, y0) to M. We know then that γ 7→ f ((x0, y0) +

γn(x0, y0)) is not monotone since f has a local minimum on M. Thus f is not normal monotone. �
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Remark 3.9. This theorem gives us that a function that is normal monotone is also weakly mono-

tone.

3.3 Monotone Summary

In this chapter we explored current and new definitions of monotone. For continuous functions, we

compared several definitions of monotonicity, in higher dimensions. How these sets of functions

are related is represented in the following Venn diagram.

Vodopyanov Goldstein

Cone

Normal

Lebesgue

Ex. 3.9

Ex. 3.10

Ex. 3.11

Ex. 3.16

Ex. 3.15
K

Ex. 3.14

Ex. 3.5

Ex. 3.1

Figure 3.15: Types of monotonicity in higher dimensions and how they compare for a continuous
function.

We also showed how to construct K monotone functions. We show that bounded K monotone

functions are BV and we find a bound on the total variation of these functions.
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CHAPTER FOUR

STATIONARY SOLUTIONS OF THE p-LAPLACIAN

4.1 The p-Laplacian and Its Difficulties When 0 < p < 1

A common approach to finding minimizers of (2.1), with β = 0,

min
u∈Bn(Ω)

∫
Ω

|∇u|p dx for 0 < p < 1, (4.1)

is to find solutions to the Euler-Lagrange equation. The idea is that we find stationary solutions

when its variation is zero. The solutions to the Euler-Lagrange equation are precisely those points

where the variation of the functional is zero. Here, we consider this approach and we compute the

Euler-Lagrange equation of ∫
Ω

L(∇u) dx ≡
∫

Ω

|∇u|p dx. (4.2)

So, for L(z) = |z|p, we get that the Euler-Lagrange equation is

0 = −∇ · Lz(z). (4.3)

That is,

0 = −∇ ·
(
|∇u|p−2∇u

)
≡ ∆pu, (4.4)

the p-Laplacian. The difficulty in finding minimizers of (4.1) with this method is that (4.1) is

nonconvex and so the results from the Calculus of Variations do not guarantee that solutions to

(4.4) are minimizers of (2.1) (see [11, 12, 14]). With that in mind, we still proceed to find solutions
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to (4.4) as they are still stationary solutions to (4.1).

To solve this equation, we can seek stationary solutions to the p-Laplacian evolution equation

ut = ∇ ·
(
|∇u|p−2∇u

)
. (4.5)

Remark 4.1. We call (4.5) the p-Laplacian evolution equation, in the case 0 < p < 1, without the

factor 1
p−1 as in [17].

We consider three types of solutions: viscosity, weak, and classical solutions. First, we define

classical solutions.

Definition 4.1. We say u is a classical solution to the p-Laplacian equation (4.4) if u ∈ C2(Ω) and

u satisfies (4.4).

In Section 4.3, we find families of classical solutions so we will save the discussion until then.

Viscosity solutions.

Definition 4.2. [10] We say that u : Ω → (−∞,∞] is a viscosity supersolution to the p-Laplacian

equation (4.4) if

i u is lower semicontinuous,

ii u . ∞, and

iii whenever x0 ∈ Ω, ϕ ∈ C2(Ω) are such that u(x0) = ϕ(x0), u(x) > ϕ(x) for x , x0 and

∇ϕ(x0) , 0 we have ∆pϕ(x0) ≥ 0.

If instead of i. and iii., we have

i′ u is upper semicontinuous

iii′ whenever x0 ∈ Ω, ϕ ∈ C2(Ω) are such that u(x0) = ϕ(x0), u(x) < ϕ(x) for x , x0 and

∇ϕ(x0) , 0 we have ∆pϕ(x0) ≤ 0.,
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we call u a viscosity subsolution. And if both iii and iii′ hold, then we call u a viscosity solution.

Here we consider functions ϕ ∈ C2(Ω) that touch u at a point x0 and are everywhere else less

than (or greater than) u. These functions also have a nonzero gradient at x0. If all of these functions

are then sub-(super-)solutions to (4.4), we say that u is a viscosity sub-(super-)solution of (4.4).

Notice that if we consider u : R → R to be an upper semicontinuous step function, then there

are no points, x0 and no functions ϕ so that ϕ(x0) = u(x0), |∇ϕ(x0)| , 0 and ϕ stays below u every-

where else. In Figure 4.1, we see that if ϕ touches u at a point and is below u in a neighborhood

of this point, ϕ′ = 0 at that point. So any upper semicontinuous step function u is a viscosity

u

ϕ

Figure 4.1: Upper semicontinuous step functions are viscosity solutions to (4.4)

subsolution to any PDE. A similar argument says that any lower semicontinuous step function is a

viscosity supersolution to any PDE.

Notice that if we change the function u : R → R to be upper semicontinuous and piecewise

linear as in Figure 4.2, u is still a viscosity subsolution since at any point x0, if

ϕ ∈ C2(R), ϕ(x0) = u(x0), and ϕ′(x0) , 0. (4.6)
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then (say u′(x0) > 0)

∆pϕ(x0) =
(
|ϕ′(x0)|p−1ϕ′(x0)

)′
=

(
(ϕ′(x0))p)′ = p(ϕ′(x0))p−1ϕ′′(x0) ≤ 0 (4.7)

Again, we can use a similar argument for lower semicontinuous u that are piecewise linear to say

u

ϕ

x0

Figure 4.2: ϕ is a function satisfying ϕ(x0) = u(x0), ϕ(x) < u(x) if x , x0 and ∆pϕ(x0) < 0

they are super solutions of (4.4).

Now, if we make u continuous, we can find a function that is a subsolution, but is not a super-

solution. Consider u = −|x|. We can find a function ϕ ∈ C2(R) so that ϕ(0) = u(0), ϕ(x) > u(x)

for x , 0 and ϕ′(0) , 0, but ∆pϕ(0) < 0 (see Figure 4.3). Notice that in a neighborhood of x0, u is

concave and therefore u′′(x0) < 0.

Notice if u is continuous but has any point, x0, of nondifferentiability then u is not a viscosity

solution because we can touch u at x0 with a C2 function, ϕ that curves toward u so that ϕ′′ has the

wrong sign as we did in Figure 4.3).

Now, we can try to create a pathological function u that is continuous and differentiable ev-
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ϕ

u

Figure 4.3: u = −|x| is not a viscosity solution of (4.4)

erywhere, but not twice differentiable anywhere. This function can then possibly be a viscosity

solution to (4.4). But, ignoring any pathological examples, if we consider a continuous function u

that has any point x0 where u′(x0) , 0 and u′′(x0) > 0, we can then find a ϕ ∈ C2 with ϕ(x0) = u(x0)

and ϕ < u(x) for x , x0 but has ϕ′′ > 0 (see Figure 4.4). This tells us that for u to be a viscosity

Figure 4.4: u is not a viscosity solution of (4.4) if at any point u′′ exists and is not zero.
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solution, wherever u′′ exists, it must be zero. That is, for u to be a viscosity solution, it must be

linear wherever u′′ exists. So any viscosity solutions u : R → R of (4.4) that are not pathological,

must be linear.

For functions u : R2 → R we recognize that because we do not have a maximum principle, it

does not make sense to talk about viscosity solutions. More exploration into obtaining a maximum

principle is necessary to proceed in this discussion, but that is not the goal of this work.

Weak solutions.

In the literature, we see energy methods used to discuss uniqueness of weak solutions to initial

value problems (see [14, 13]). Below we discuss the difficulties of such methods with this equation,

but first, we define weak solutions.

Definition 4.3. We say u is a weak solution to the p-Laplacian equation (4.4) if u ∈ W1,p(Ω) and u

satisfies ∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 dx = 0, ∀ϕ ∈ C∞0 (Ω), (4.8)

where we write ∇u and mean distributional derivative ∇u = ( ∂u
∂x1
, ..., ∂u

∂xn
) with all components p-

summable.

We now attempt an energy method to explore the uniqueness of solutions to the initial value

problem 
ut = ∆pu(x), (x, t) ∈ Ω × (0,∞)

u(x, 0) = u0(x), x ∈ Ω.
(4.9)

Let u, ũ both be solutions to (1.3) and let w = u − ũ. And, set

e(t) ≡
∫

Ω

w2 dx. (4.10)
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Then we can differentiate with respect to t to get

e′(t) =

∫
Ω

2wtw dx. (4.11)

Now, if w is also a solution to ∆pu = 0 with initial value w(x, 0) = 0, then we can write

e′(t) = 2
∫

Ω

w∇ ·
(
|∇w|p−2∇w

)
dx = −2

∫
Ω

|∇w|p dx ≤ 0. (4.12)

And we would be able to conclude that e(t) ≤ e(0) = 0 so w = 0, but because the p-Laplacian has

the extra coefficient |∇u|p−2, we cannot follow the steps in (4.12). So we are not able to use energy

methods.

Because p < 1, we are unable to get regularity results using the standard techniques (again,

see [14, 13]). We can see this because as |∇u| gets closer to 0, the coefficient |∇u|p−2 tends toward

infinity. To deal with such singularities, it is typical to consider finding bounds on the weak form

of the equation. We consider

∣∣∣∣∣∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 dx
∣∣∣∣∣ ≤ ∫

Ω

|∇u|p−1|∇ϕ| dx ≤ C
∫

Ω

|∇u|p−1 dx, (4.13)

where C = ||ϕ||∞. Notice, we cannot find an upper bound on this integral since the exponent p − 1

is negative. So, the integral may tend upward to infinity.

Because solutions will blow up whenever the domain contains a point where |∇u| = 0, we are

unable to get a maximum principle and therefore we are unable to get a Harnack inequality that

tells us that the values of u on a domain are comparable (see Chapter VII of [13]). So, in this work,

we take a more geometric approach to find classical solutions.
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4.2 Decomposition and Geometric Interpretation

In an attempt to find solutions to (4.4) we sought understanding of the geometry of ∆pu. In this

section, we describe the connection between ∆pu and curvature. We also explore the effects of

some example function in the evolution given by (4.5).

4.2.1 Curvature

We can see the relationship of the p-Laplacian to curvature by breaking it into two terms. We now

rewrite (4.4) as

0 = ∆pu ≡ ∇ ·
(
|∇u|p−1 ∇u

|∇u|

)
= |∇u|p−1∇ ·

(
∇u
|∇u|

)
+
∇u
|∇u|
∇|∇u|p−1

= |∇u|p−1∇ ·

(
∇u
|∇u|

)
+ (p − 1)|∇u|p−2∇(|∇u|) · ∇u.

Factoring out |∇u|p−1 and using the computation in Equation (A.39), we get

0 = |∇u|p−1
[
∇ ·

(
∇u
|∇u|

)
+

p − 1
|∇u|

∇u
|∇u|

T

D2u
∇u
|∇u|

]
. (4.14)

Curvature of level sets.

The first term is the curvature of the level sets, call this curvature κ`s. Indeed, we know that the

unit normal to a level set is given by

N =
∇u
|∇u|

.

We find the curvature of the level set by finding how these unit normals diverge as we trace along

the level set. That is, have

κ`s = ∇ · N = ∇ ·
∇u
|∇u|

.

Thus, we conclude that the first term is κ`s.
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Curvature in the direction of the gradient.

The second term is related to the curvature of u in the direction of ∇u, call this curvature κg. To

verify, we compute this curvature. We know that the curvature along some curve measures how

the unit tangent T changes as we trace along that curve. Let α0 ∈ R
n and let us define, as in figure

4.5, the line, α(t) in Rn passing through α0 parallel to the gradient of u, the curve, β(t), in the graph

space of u, and the unit tangent, T (t) along this curve,

α(t) =
∇u(α0)
|∇u(α0)| t + α0, (4.15)

β(t) = (α(t), u(α(t))), (4.16)

T (t) =
β′(t)
|β′(t)| . (4.17)

To find the curvature of β(t), we differentiate (4.17):

(x, y, u(x, y))

α(t) =
∇u(α0)
|∇u(α0)| t + α0

∇u(α0)
|∇u(α0)|α0

(α0, u(α0))

β(t) = (α(t), u(α(t)))

Figure 4.5: Curvature in the direction of the gradient.
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T ′(t) =
β′′(t)|β′(t)| − β′(t)(|β′(t)|)′

|β′(t)|2
. (4.18)

We want to find the rate at which the tangent vector changes, at the point (α0, u(α0)), so we seek

T ′(0)
|β′(0)| (we divide by |β′(t)| to remove the change due to the speed of the parameterization). To

compute this, we differentiate equations (4.15) and (4.16),

α′(t) =
∇u(α0)
|∇u(α0)| ,

β′(t) = (α′(t),∇u(α(t)) · α′(t))

=
(
∇u(α0)
|∇u(α0)| ,∇u(α(t)) · ∇u(α0)

|∇u(α0)|

)
,

Thus,

|β′(t)| =
1

|∇u(α0)|

(
|∇u(α0)|2 + (∇u(α(t)) · ∇u(α0))2

)1/2
(4.19)

Differentiating (4.19) gives

(|β′(t)|)′ =
1

|∇u(α0)|
∇u(α(t)) · ∇u(α0)D2u(α(t))∇u(α0)

(|∇u(α0)|2 + (∇u(α(t)) · ∇u(α0))2)1/2

Finally, we also compute the second derivative of β to get

β′′(t) =

(
0,
∇u(α0)
|∇u(α0)|

T

D2u(α(t))
∇u(α0)
|∇u(α0)|

)
.

Evaluating each of the above at t = 0 gives

β′(0) =
(
∇u(α0)
|∇u(α0)| , |∇u(α0)|

)
,

|β′(0)| =
(
1 + |∇u(α0)|2

)1/2

(|β′(0)|)′ =
D2u(α0)∇u(α0)
(1+|∇u(α0)|2)1/2β

′′(t) =

(
0,
∇u(α0)
|∇u(α0)|

T

D2u(α0)
∇u(α0)
|∇u(α0)|

)
.
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Putting these into (4.18), we get

T ′(0) =
1

(1 + |∇u(α0)|2)3/2

∇u(α0)
|∇u(α0)|

T

D2u(α0)
∇u(α0)
|∇u(α0)|

(−∇u(α0), 1) .

The norm of this vector is

|T ′(0)| =
1

(1 + |∇u(α0)|2)
∇u(α0)
|∇u(α0)|

T

D2u(α0)
∇u(α0)
|∇u(α0)|

.

So, we have the curvature:

κg =
|T ′(0)|
|β′(0)|

=
1

(1 + |∇u(α0)|2)3/2

∇u(α0)
|∇u(α0)|

T

D2u(α0)
∇u(α0)
|∇u(α0)|

.

Thus, we see that the second term is a multiple of κg. It should be noted that the coefficients of

both terms depend on ∇u. We can now say that equation (4.14) describes motion by curvature.

Rewriting (4.14) in terms of κg and κ`s gives

ut = |∇u|p−1κ`s + (p − 1)|∇u|p−2
(
1 + |∇u|2

)3/2
κg. (4.20)

Notice that if u∗ is a stationary solution to (4.20), then we can write

κ`s

κg
=

(1 − p)|∇u∗|p−2(1 + |∇u∗|2)3/2

|∇u∗|p−1 =
(1 + p)(1 + |∇u∗|2)3/2

|∇u∗|
. (4.21)

This tells us that κ`s is much larger than κg. Indeed we have

κ`s

κg
∼


(1 + p)|∇u∗|2 as |∇u∗| → ∞

1+p
|∇u∗ | as |∇u∗| → 0

(4.22)
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4.2.2 Curvature Computation Examples

We can see that, for certain functions, the terms of (4.14) have opposite signs while for other

functions, these terms will have the same sign. I now explore examples to understand when there

is competition between these terms. In the second term, there is a coefficient that also competes

with the rest of the term. That is, the coefficient, 1
|∇u|2 could be large when ∇uT D2u∇u is small.

Example 4.1. As a first example, we consider the radial function u0(x, y) = e−x2/σ2−y2/σ2
= e−r2/σ2

.

We find that

∆pu0 =

(
2r
σ2 e−r2/σ2

)p−2 (
(p − 1)

(
2r2

σ2 − 1
)
− 1

)
= −

1
σ2

(
2r
σ2 e−r2/σ2

)p−2 [
2(1 − p)r2 + σ2 p

]
.

We see that this is negative everywhere away from the origin. This function is not a stationary

solution and will begin to flatten in the evolution. It flattens everywhere because ut < 0, that means

that at the first iteration, u(x) decreases.

Now, we consider an example where the level sets are straight lines, thus curvature of level sets

κ`s = 0. We are interested in how the second term involving κg contributes to the evolution. We see

that steepening happens where the function is already steepest.

Example 4.2. Next, we consider the function

u(x, y) = arctan(x).

With this function, we never have |∇u| = 0. Indeed, we see that

∇u =


1

1+x2

0

 , |∇u| =
1

1 + x2 .
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Computing the hessian, we find that

D2u =

 −
2x

(1+x2)2 0

0 0

 .
We then put these into the left hand side of (4.14) to get

∆pu = (1 + x2)1−p(1 + x2)−1∇ ·

 1

0

 + (p − 1)(1 + x2)2−p

 1

0


T 

−2x
(1+x2)2 0

0 0


 1

0


= (p − 1)(1 + x2)2−p −2x

(1 + x2)2 = 2(1 − p)x(1 + x2)−p.

We see that this tells us that for x > 0, ut = ∆pu > 0 and for x < 0, ut < 0. This means that u

steepens at the origin and flattens everywhere else. A small step produces the function (see Figure

4.6)

u(x, y) = u0(x, y) + δ∆pu(x, y) = arctan(x) + 2δ(1 − p)x(1 + x2)−p,

where δ > 0 is a small number.

In the curvature computations above, we see that we can get competition between terms when

both curvatures are positive or both are negative. As a simple example, we consider one where the

curvature, κ`s , 0 is constant on each level set. that is, we consider a function whose level sets are

circles.

Example 4.3. We consider the paraboloid

u0(x, y) = x2 + y2

For now, let’s assume (x, y) , (0, 0). We compute the first term, κ`s:

|∇u|p−1∇ ·

(
∇u
|∇u|

)
= 2p−1(x2 + y2)(p−2)/2.
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(a.) (b.)

(c.) (d.)

Figure 4.6: (a.) u0 = arctan(x) (blue) and u = u0 + δ∆pu(x, y) (red), (b.) A level curve, at level 1,
for each of u0 (blue) and u0 +δ∆pu0 (red), (c.) level curves of u0, and (d.) level curves of u0 +δ∆pu0
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Now, the second term from above is

(p − 1)|∇u|p−2 ∇u
|∇u|

T

D2u
∇u
|∇u|

= 2p−1(p − 1)(x2 + y2)(p−2)/2

Putting these together, we rewrite (4.14) as

ut = 2p−1 p(x2 + y2)(p−2)/2

Everywhere away from the origin, this is positive, but it blows up at the origin. To try to understand

how the function u changes if we allow a small step according to ut, we compute

u(x, y) = u0(x, y) + δ∆pu(x, y) = x2 + y2 + 2p−1δp(x2 + y2)(p−2)/2,

where δ > 0 is small. Figure 4.7 shows us the blow up at the origin, but it also shows us that at

r = 1, the function does not change while everywhere else u0 + ∆pu0 > u0.

Now we consider the case when |∇u| = 0. We try a β regularization. As in Chapter 2, we define

|∇u|β ≡
√
∇u · ∇u + β2, for β small.

Using |∇u|β, we define

∆p,βu ≡ ∇ ·
(
|∇u|p−2

β ∇u
)

= (p − 2)|∇u|p−3
β ∇uT D2u

∇u
|∇u|β

+ |∇u|p−2
β ∆u.

Replacing ∆p with ∆p,β in Example 4.3 we compute ∆p,βu. For u0 = x2 + y2, we have

|∇u|β =
(
4x2 + 4y2 + β2

)1/2
.
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(a.) (b.)

(c.) (d.)

Figure 4.7: (a.) u0 = x2 + y2 (blue) and u = u0 + δ∆pu(x, y) (red), (b.) A level curve, at level 2, for
each of u0 (blue) and u0 + δ∆pu0 (red), (c.) level curves of u0, and (d.) level curves of u0 + δ∆pu0
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And, we have

∆p,βu = (p − 2)
(
4x2 + 4y2 + β2

)(p−3)/2
(

8x2+8y2

(4x2+4y2+β2)1/2

)
+ 4

(
4x2 + 4y2 + β2

)(p−2)/2

= (p − 2)
(
4x2 + 4y2 + β2

)(p−4)/2 (
8x2 + 8y2

)
+ 4

(
4x2 + 4y2 + β2

)(p−2)/2

=
(
4x2 + 4y2 + β2

)(p−4)/2 (
8px2 + 8py2 + 4β2

)
.

At the point (0, 0), we have ∆p,βu(0, 0, ) = 4βp−2 → ∞ as β↘ 0. So, we still have blowup at (0, 0).

We now consider a more interesting function where both curvature terms are nonzero.

Example 4.4. We consider the function u(x, y) = arctan(x) + y2. We begin computing as before.

Notice that |∇u| , 0.

∇u =


1

1+x2

2y

 , |∇u| =
(

1
(1 + x2)2 + 4y2

)1/2

, D2u =


−2x

(1+x2)2 0

0 2

 .
We now put these into Equation (4.14). The first term is

|∇u|∇ ·
(
∇u
|∇u|

)
= ((1 + x2)−2 + 4y2)(p−4)/2

(
−2x((1+x2)−2+4y2)

(1+x2)2 + 2x
(1+x2)4 + 2((1 + x2)−2 + 4y2) − 8y2

)
The second term is

(p − 1)
(
(1 + x2)−2 + 4y2

)(p−4)/2
(
−2x

(1 + x2)4 + 8y2
)
.

Putting these together gives

∆pu = ((1+x2)−2+4y2)(p−4)/2
(
−2x((1 + x2)−2 + 4y2)

(1 + x2)2 +
2x(2 − p)
(1 + x2)4 + 2((1 + x2)−2 + 4y2) − 8(p − 2)y2

)

We, again, want to see the effects on u. We look at u + δ∆pu. Notice, in Figure 4.8, that after this

first step, the evolution introduces a point where |∇u| = 0. Notice also that , like the paraboloid,

we see u0 + δ∆pu0 > u0.

Here we see that the first term involving κ`s seems to win when the terms compete.
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(a.) (b.)

(c.) (d.)

Figure 4.8: (a.) u0 = arctan(x) + y2 (blue) and u = u0 + δ∆pu(x, y) (red), (b.) A level curve, at
level 1, for each of u0 (blue) and u0 + δ∆pu0 (red), (c.) level curves of u0, and (d.) level curves of
u0 + δ∆pu0
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It seems that where u is steep, Equation 4.14 will steepen u. This leads us to conjecture that

if a function is monotone, it will remain monotone in the evolution. We see this is the case for

functions defined on 1-dimensional domains.

4.3 Classical Solutions

In this section, we find families of classical stationary solutions to (4.5). Here it is worth noting

that if u is a minimizer for (2.1) then u is a step function, thus u < C2(Ω) and is therefore not a

classical solution of (4.4).

For a function to be a stationary solution we need that u ∈ C2(Ω) and ∆pu = 0. That is, we

need

|∇u|∇ ·
(
∇u
|∇u|

)
=

1 − p
|∇u|2

∇uT D2u∇u

4.3.1 1-dimensional classical solutions

In the 1-D case, this is the same as

|u′|
(

u′

|u′|

)′
= (1 − p)u′′ (4.23)

If |u′| , 0, then u must be monotone and so u′
|u′ | = c. So, u′′ must be zero, telling us that as long as u

is monotone, it cannot have any curvature. So, any linear function u satisfies this condition. Thus,

no polynomial function with degree higher than 1 will satisfy (4.23). Indeed, if u is a solution to

(4.23) with boundary conditions u(a) = A, u(b) = B, we get

|u′|p−2u′ = c ⇒ u is strictly monotone ⇒ (u′)p−1 = c ⇒ u′ = c

⇒ u(x) =
B − A
b − a

(x − a) + A. (4.24)

Above, we relax notation and allow the c to change throughout. Further, Lemma 4.1 tells us that

these functions are not stable stationary solutions to (4.5). Notice that, even when Ω ⊂ R, we do
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not get that a linear function is a minimizer of (2.1).

Lemma 4.1. u given in Equation (4.24) is an unstable stationary solution to the problem


ut =

(
|u′|p−2u′

)′
u(a) = A u(b) = B.

(4.25)

In particular, ũ is a maximizer of
∫ b

a
|u′(x)|p dx over all strictly monotonic C2 functions.

Proof. Without loss of generality, let us assume that B−A
b−a > 0. Let u(x) = ũ(x) + v(x) for v ∈

C2((a, b)) chosen so that u′ > 0, v(x) , 0 for some x ∈ (a, b), and v(a) = v(b) = 0. Our goal is

to show that, in the evolution, u moves away from ũ. That is, if u(x) > ũ(x), then ut(x) > 0 and if

u(x) < ũ(x), then ut(x) < 0. First, we compute ut

ut =
(
|u′|p−2u′

)′
=

(
(u′)p−1

)′
=

((B − A
b − a

+ v′
)p−1)′

= (p − 1)
(B − A

b − a
+ v′

)p−2

v′′.

We now proceed by contradiction. That is, we assume ũ is a stable stationary solution and we seek

a contradiction. Since ũ is stable, we know that if u < ũ then ut > 0 and if u > ũ then ut < 0. That

is,

v(x) < 0 (i.e. u(x) < ũ(x)) ⇒ v′′(x) < 0 (i.e. ut > 0)

and

v(x) > 0 (i.e. u(x) > ũ(x)) ⇒ v′′(x) > 0 (i.e. ut < 0). (4.26)

Now, (4.26) is equivalent to

u(x) < ũ(x) ⇒ u′′(x) < 0

and

u(x) > ũ(x) ⇒ u′′(x) > 0. (4.27)
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Let,

x1 = max{x : u(y) = ũ(y) ∀y ∈ [a, x]} (4.28)

and let

x2 ∈ (x1, b] be such that u(x2) = ũ(x2) and u(x) < ũ(x) for all x ∈ (x1, x2). (4.29)

If x2 exists, then we use that ũ is a line and the Mean Value Theorem from Calculus to say that

∃c ∈ (x1, x2) such that u′(c) =
ũ(x2) − ũ(x1)

x2 − x1
=

B − A
b − a

= ũ′(c).

But, since u′′(x) < 0 for all x ∈ (x1, x2), u′(x) < ũ′(x) for all x ∈ (x1, x2). But, c ∈ (x1, x2) gives us

that

ũ′(c) = u′(c) < u′(x1) ≤ ũ′(x1).

But this cannot be. So, x2 cannot exist.

Let

x3 ∈ (x1, b] be such that u(x3) = ũ(x3) and u(x) > ũ(x) for all x ∈ (x1, x3). (4.30)

If x3 exists, we again, can use the fact that ũ is a line and the Mean Value Theorem, to say that

∃c ∈ (a, b) such that u′(c) =
ũ(x3) − ũ(x1)

x3 − x1
=

B − A
b − a

= ũ′(c).

But, since u′′(x) > 0 for all x ∈ (x1, x3), u′(x) > ũ′(x) for all x ∈ (x1, x3), but c ∈ (x1, x2). So, we

have that

ũ′(c) = u′(c) > u′(x1) ≥ ũ′(x1).

This cannot be. So, x3 cannot exist. But, this means that v ≡ 0 on [a, b] which is a contradiction.

Thus, ũ cannot be stable. �
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In the above, we don’t allow |u′| = 0. But, we can consider a similar equation using a β

regularization, 
ut = (|u′|p−2

β u′)′ (x, t) ∈ [0, 1] × [0,∞)

u(a) = A, u(b) = B

(4.31)

where |u′|β = (|u′|2 + β2)1/2 for some β > 0. If u is a stationary solution to (4.31), then

0 = (|u′|p−2
β u′)′ ⇒ |u′|p−2

β u′ = c ⇒ u′ = c|u′|2−p
β ⇒ u′ = c ⇒ u is linear.

Again, in the above, we let c change from step to step. The only difference we find in this is that u′

can be zero in the β regularized equation. This means we can allow the boundary conditions with

A = B whereas in the previous case (β = 0), we cannot.

4.3.2 Higher dimensional classical solutions

To find stationary solutions with higher dimensional domain, I begin by considering what happens

when one of the two curvatures discussed in Section 4.2 is zero. We consider strictly Normal

monotone functions, u ∈ C2(Ω), so that |∇u(x)| , 0 for x in some open bounded set Ω.

Notice that if ∇ ·
(
∇u
|∇u|

)
= 0, the level sets of u are minimal surfaces (see [14, 27]). This means

that for u : R2 → R, the level sets of u are lines. We saw above that u : R → R is a monotone

stationary solution to the 1-dimensional p-Laplacian if and only if the graph of u is a line. This

result doesn’t extend to higher dimensions because, even though it is easy to verify that an affine

function is a stationary solution to (1.3), there are other functions whose level sets are lines.

We saw above in Example 4.3 that not a paraboloid is not a stationary solution, so we check

to see if there exists a radial stationary solution. We begin by considering a function, u = u(r),

with domain Ω ⊂ R2 so that u is strictly Normal monotone on Ω and so that u′ is nonzero in Ω and

u′(r) > 0. Converting (1.3) to polar coordinates (see Appendix A), we get that u must satisfy the
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ordinary differential equation
1
r

+
p − 1
u′(r)

u′′(r) = 0. (4.32)

Rearranging this equation, we get that u must satisfy

u′(r)
r

+ (p − 1)u′′(r) = 0. (4.33)

Thus, u(r) = arm + b, for some constants a, b ∈ R and for m =
2−p
1−p (See Figure 4.9). That is,

u(x, y) = a(x2 + y2)(2−p)/(1−p) + b. (4.34)

Notice that if u′(r) < 0, we get a similar result. Notice that the gradient of u points away from the

Figure 4.9: Radial solution, u(r) = rm for the p-Laplacian where p = .4.

origin. We also see that as long as we choose Ω so that the convex hull of Ω does not include the
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origin, these functions are strictly Normal monotone.

Inspired by finding a radial solution, we consider looking for a polar solution. That is, we find

a family of functions of the form u = u(θ) 0 < θ < π. In this case, we find, using Equation (A.23)

∇r,θu =

 ur

1
r uθ

 =

 0

1
r u′(θ)

 (4.35)

⇒
∇r,θu
|∇r,θu|

=

 0

1

 ⇒ ∇r,θ ·

(
∇r,θu
|∇r,θu|

)
= 0. (4.36)

Thus, u must satisfy

∇r,θuT D2
r,θu∇r,θu = 0 ⇒ u′′(θ) = 0. (4.37)

That is, u(θ) = aθ + b for some constants a, b ∈ R.

Now, we look to extend this to higher dimensions. We consider a function u : Rn → R in

n-dimensional spherical coordinates (r, θ1, θ2, ...θn−1) so that u = u(r). Then we compute ∇ ·
(
∇u
|∇u|

)
for u′(r) > 0.

∇ ·

(
∇u
|∇u|

)
=

1
h1h2 · · · hn

∂

∂r
(h2h3 · · · hn) =

n − 1
r

, (4.38)

where hi are the scale factors computed in Equation (A.25). Thus,

n − 1
r

+
p − 1
u′(r)

u′′(r) = 0 ⇒ u(r) = crm1 , (4.39)

where m1 =
n−p
1−p .

First, we begin by finding the azimuthal solution, u = u(θn−1). We compute ∇ ·
(
∇u
|∇u|

)
for

u′(θn−1) > 0 to get

∇ ·

(
∇u
|∇u|

)
=

1
h1h2 · · · hn

∂

∂θn−1
(h1h2h3 · · · hn−1) = 0. (4.40)

Thus,

u′′(θn−1) = 0 ⇒ u(θn−1) = aθn−1 + b. (4.41)
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We have already seen an example of such a function in Chapter 3. We show this example again in

Figure 4.10. As we said in Example 3.16, the function in Figure 4.10 is Normal monotone.

Figure 4.10: An azimuthal stationary solution to the p-Laplacian evolution equation.

If u = u(θ j), 1 ≥ j < n − 1, we have

∇ ·

(
∇u
|∇u|

)
=

1
h1 · · · hn

∂

∂θ j

(
h1 · · · h j−1h j+1 · · · hn

)
=

1
rn−1 sinn−2 θ1 · · · sin θn−2

∂

∂θ j

(
rn−2 sinn−3 θ1 · · · sinn− j−1 θ j−1 sinn− j−1 θ j · · · sin θn−2

)
=

1
r sin θ1 · · · sin θ j−1 sinn− j−1 θ j

((n − j − 1) sinn− j−2 θ j cos θ j) =
(n − j − 1) cot θ j

r sin θ1 · · · sin θ j−1

=
n − j − 1

h j
cot θ j. (4.42)

The second term of (4.14) for this u is

p − 1
|∇rθ1...θn−1u|3

(
∇rθ1...θn−1u

)T Hrθ1...θn−1u∇rθ1...θn−1u =
p − 1

h ju′(θ j)
u′′(θ j). (4.43)

Thus, u satisfies
n − j − 1

p − 1
cot θ ju′(θ j) + u′′(θ j) = 0. (4.44)

We solve this equation to get

u(θ j) = c
∫ θ j

c0

sinm j θ dθ, (4.45)

where m j =
n− j−1
1−p and c, c0 are arbitrary constants. Notice that these solutions are also strictly
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Normal monotone as long as the domain Ω does not include the polar axis associated to θ j.

We now consider an even more general setting. We consider the orthogonal coordinate system

(q1, q2, . . . , qn). We assume u = u(qi) for some 1 ≤ i ≤ n. In this case, we write the terms of (4.14)

after converting to this orthogonal coordinate system. The first term is

∇q1...qn ·

(
∇q1...qnu
|∇q1...qn |

)
=

1
Πn

j=1h j

∂

∂qi

(
Π j,ih j

)
. (4.46)

The second term is

p − 1
|∇q1...qnu|3

(
∇q1...qnu

)T
Hq1...qn(u)∇q1...qnu =

p − 1
hiu′(qi)

u′′(qi). (4.47)

Putting these together, we see that for there to be a solution of the form u = u(qi), u must satisfy

1
Πn

j=1h j

∂

∂qi

(
Π j,ih j

)
+

p − 1
hiu′(qi)

u′′(qi) = 0. (4.48)

But this is not possible if we cannot remove the dependence on qk, k , i in Πn
j=1h j. If this depen-

dence does not exist or if we can eliminate it then we can write the solution as

u(qi) = c
∫ qi

c0

exp
(

1
1 − p

A(q)
)

dq, (4.49)

where A(qi) is any antiderivative of 1
H
∂H
∂qi dqi for H = Π j,ih j and c, c0 are arbitrary constants.

Remark 4.2. It’s worth noting that other than the spherical coordinate system, the other common

orthogonal coordinate systems (i.e., parabolic, paraboloidal, elliptic,...) do not give us any new

solutions of the form u = u(ui).

Notice that (4.4) is nonlinear so it is unlikely that if v and w are two solutions to (4.4) that

u = v + w would be also. We verify that this is not the case for two solutions from above. Let

w(r) = cr
2−p
1−p and v(θ) = aθ + b. We will show that u = w + v is not a solution ot (4.4). First we
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compute the gradient of u

∇u =

 c 2−p
1−pr1/(1−p)

a
r

 ⇒ |∇u| =
c2

(
2 − p
1 − p

)2

r2/(1−p) +
a2

r2

1/2

. (4.50)

So,

∇ ·

(
∇u
|∇u|

)
=

1
r

 ∂∂r

c2 − p
1 − p

r
2−p
1−p

c2
(
2 − p
1 − p

)2

r2/(1−p) +
a2

r2

−1/2


+
∂

∂θ

a
r

c2
(
2 − p
1 − p

)2

r2/(1−p) +
a2

r2

−1/2
= c

(
2 − p
1 − p

)2

r1/(1−p)
c2

(
2−p
1−p

)2
r2/(1−p) + a2

1−pr
2p−1
1−p(

c2
(

2−p
1−p

)2
r2/(1−p) + a2

r2

)3/2 . (4.51)

The hessian is

D2u =

 c
(

2−p
(1−p)2

)
r2/(1−p) 0

0 0

 . (4.52)

So,

∇uT D2u∇u = c3
(
2 − p
1 − p

)3 1
1 − p

r
2+p
1−p . (4.53)

Putting these together gives

∆pu =
a2c

(
2−p
1−p

)2 1
1−pr

3p−1
1−p(

c2
(

2−p
1−p

)2
r2/(1−p) + a2

r2

)3/2 (4.54)

which is nonzero (except, of course, when a = 0). Thus, u is not a solution. This tells us that the

set of stationary solutions is nonconvex.

4.4 Stationary Solution Summary

In this chapter, we looked for stationary solutions to the p-Laplacian evolution equations which

is the Euler-Lagrange equation for
∫

Ω
|∇u|p. Even though the functional is nonconvex we still
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search for stationary solutions of its Euler-Lagrange equation to compare with the minimizers of

p-variation. We know that solutions to the p-Laplacian cannot be step functions, but seek out other

stationary solutions.

We addressed the issues that occur because the p-Laplacian, ∆pu = 0 for 0 < p < 1, is

singular. We also recognize that since classical solutions require a function to be C2, none of our

classical solutions are step functions, that is, none are minimizers to the p-variation problem. To

find classical solutions, we break this equation into the sum of two curvature expressions, κ`s and

κg:

0 = |∇u|p−1κ`s + (p − 1)|∇u|p−2
(
1 + |∇u|2

)3/2
κg. (4.55)

Using the curvature interpretation of this equation, we seek out solutions that are classical solutions

to the p-Laplacian for 0 < p < 1. We found families of classical solutions. In particular, we have

the following families of stationary solutions

• Affine family: For x ∈ Rn, u(x) = a · x + b, where a ∈ Rn, b ∈ R are constants.

And in n dimensional spherical coordinates (r, θ1, . . . , θn−1)

• Radial family: u(r) = arm + b, where m =
n−p
1−p ,

• Polar family: u(θ j) = a
∫ θ j

b
cscm j θ dθ, where m j =

n− j−1
p−1 , where 1 ≤ j ≤ n − 2 and

• Azimuthal family: u(θn−1) = aθn−1 + b.

We also found that similar techniques, to those we employed here, to find classical stationary

solutions cannot work in the most common orthogonal coordinate systems.

We would still like to find or show no maximum principle can be obtained for the p-Laplacian

and the corresponding evolution equation. With this, we would be able to give a more complete

discussion of viscosity solutions as they relate to these equations.

In 1-dimensional examples, we have seen that monotone functions stay monotone in the evo-

lution given by the p-Laplacian evolution equation. We conjecture that a similar result is true
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about Normal monotone functions in higher dimensions. We would like to determine the notions

of monotonicity in higher dimensions for which this is true. That is, we would like to determine

for which notion(s) of monotonicity will a function remain monotone in the evolution.
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CHAPTER FIVE

ALGORITHMS FOR 1-DIMENSIONAL L1 pTV MINIMIZATION

In this chapter, we introduce a discrete formulation for L1 pTV , that is, the q = 1 case of (1.4):

min
u∈Bn(Ω)

∫
Ω

|∇u|p dx + λ

∫
Ω

| f − u| dx, for 0 < p ≤ 1. (5.1)

We introduce algorithms that find minimizers for (5.1) for the cases p = 1, p < 1, and λ =

0. We give a more efficient version of the L1TV algorithm (that is, for the p = 1) that gives

solutions for all λ thereby giving us a fast algorithm to compute scale signatures for 1-dimensional

signals. This version of our algorithm not only finds all solutions, but it finds them all with only the

computational cost of solving the problem for one value of λ because it picks up the solutions for

each λ at each of the iterations. We generalize the more efficient algorithm to find local minimizers

for L1 pTV , p ≤ 1.

5.1 Discrete L1 pTV

In this section, I give a discrete formulation for (5.1). I then discuss the motivations behind the

cases p = 1, p < 1, and λ = 0.
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5.1.1 Discretization

To write a discrete formulation of (5.1) we begin with the idea of computing (5.1) for functions

u : Ω ⊂ R→ R that are piecewise linear. We can then define the minimum (with Ω = (a, b)) to be

min
u∈F

∫ b

a
|u′|p + λ| f − u| dx ≡ min

u∈F

m−1∑
i=1

∣∣∣∣∣ui+1 − ui

xi+1 − xi

∣∣∣∣∣p (xi+1 − xi) +
λ

2

m∑
i=1

| fi − ui|(xi+1 − xi−1)


= min

u∈F

m−1∑
i=1

|ui+1 − ui|
p (xi+1 − xi)1−p +

λ

2

m∑
i=1

| fi − ui|(xi+1 − xi)

 , (5.2)

where λ > 0, a = x1 < x2 < . . . < xm = b is a fixed partition of Ω and

F =

u : Ω→ R : u ∈ C(Ω), u =

m∑
i=0

Liχ[xi,xi+1], where Li are linear, u(xi) = βi, u(xi+1) = βi+1

 .
Here, we use that on each piece, u is linear so we replace in the interval (xi, xi+1), u′ with the slope

of u on this interval:

u′ =
ui+1 − ui

xi+1 − xi
. (5.3)

The x dependence in the fidelity term depends on the length of the partition intervals. Instead of

using xi+1 − xi, we use the distance from the midpoints of (xi−1, xi) and (xi, xi+1). We choose this

because the partition is not necessarily regular.

5.2 L1TV in 1-Dimension

In this section, we discuss the discrete version of L1TV:

min
∫

Ω

|∇u| + λ| f − u| dx. (5.4)

We introduce algorithms that find minimizers of the discrete problem. In [30], the authors show

that L1TV is useful in picking out scale information from data. So, we use these algorithms to find

scale information for 1-dimensional signals. We also prove that our algorithm will indeed find the
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minimizer of the discretized problem. Inspired by a part of this proof, we create a new version of

this algorithm which is more efficient and solves the discretized problem for all λ > 0 with the

computational cost of solving only the λ = 0 problem.

5.2.1 Discrete Formulation of L1TV

Using the formulation in Equation (5.2) on a fixed regular partition, we define the discrete L1TV

formulation as follows. Since p = 1, we no longer have an x dependence in the first sum. It makes

sense to remove the x dependence in the second sum because the partition is regular and fixed.

Thus, we get

G(u1, u2, . . . , um) =

m−1∑
i=1

|ui+1 − ui| + λ

m∑
i=1

| fi − ui|, (5.5)

where u1 = α, um = β are the boundary values and f = ( f1, . . . , fm) is the given data.

Notice that F is nonsmooth at any point in in the following two sets

Su := {u = (u1, . . . , um) : ui = ui+1, for some i = 1...m} (5.6)

and

S f := {u = (u1, u2, . . . , um) : ui = fi, for some i = 1, ...,m}. (5.7)

5.2.2 Properties of the Discrete of L1TV Function

Here, we show some properties of G to show that it indeed has minimizers. Notice that, to show G

has a minimizer, it suffices to show that G is convex, bounded below, and coercive. We begin with

this result in the following lemma.

Lemma 5.1. G is bounded below, convex, and coercive in that as |u| → ∞ G → ∞.

Proof. G is bounded below by zero. To show G is convex, we let 0 ≤ σ ≤ 1 and we show that
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G(σu + (1 − σ)ũ) ≤ σG(u) + (1 − σ)G(ũ). Indeed

G(σu + (1 − σ)ũ) =
∑

(i, j)∈E |σui + (1 − σ)ũi − (σu j + (1 − σ)ũ j)| + λ
∑

i | fi − (σui + (1 − σ)ũi)|

=
∑

(i, j)∈E |σ(ui − u j) + (1 − σ)(ũi − ũ j)| + λ
∑

i |σ( fi − ui) + (1 − σ)( fiũi)|

≤ σ
(∑

(i, j)∈E |ui − u j| + λ
∑

i | fi − ui|
)

+ (1 − σ)
(∑

(i, j)∈E |ũi − ũ j| + λ
∑

i |( fi − ũi)|
)

= σG(u) + (1 − σ)G(ũ)

Finally, we notice that G(u) ≥ λ
∑

i(|ui − fi|) ≥ λ
∑

i(|ui| − | fi|) → ∞ as |u| → ∞. Thus, G is

coercive. �

Now that we know G has a minimizer, we give the set of minimizers a name.

Definition 5.1. We define the set of global minimizers,Mλ for G, noting that this set depends on

the value λ > 0,

Mλ := arg min
u

G.

We now follow up with some properties of Mλ. The following lemma follows from Lemma

5.1.

Lemma 5.2. Mλ is bounded.

Proof. This result follows from the coercivity of G. For otherwise, ifMλ was unbounded, then for

any α large, we could find a direction d and a point u so that u + αd ∈ Mλ which contradicts the

coercivity condition. �

Lemma 5.3. Mλ is convex.

Proof. Let u∗, v∗ ∈ Mλ then G (u∗) ≤ G(u) for all u ∈ Rm and G (v∗) ≤ G(u) for all u ∈ Rm. Using

convexity of G, we have, for 0 ≤ η ≤ 1,

G (ηu∗ + (1 − η)v∗) ≤ ηG (u∗) + (1 − η)v∗ ≤ ηG(u) + (1 − η)G(u) = G(u), for all u ∈ Rm.
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Thus, ηu∗ + (1 − η)v∗ ∈ Mλ. �

We also know that, using Lemma 5.1, that no algorithm will get stuck at a local minimizer

because G has no local minimizers..

Lemma 5.4. If u is a local minimizer of G, then u ∈ Mλ. That is, if u is a local minimizer, it is also

a global minimizer.

We now define the finite set in which we will find our minimizer.

Definition 5.2. Let G : Rm → R be defined as in (5.5). Let Y be the set of points of intersections

of at least m hyperplanes of the form {ui = fi} and/or {ui = ui+1}.

We now proceed to show Y is finite and a minimizer of G is indeed in Y .

Lemma 5.5. Let E = {(i, j)|ui, u j are neighbors} |Y | ≤ (|E|+m)!
(|E|)!(m)! < ∞.

Proof. First note that the number of hyperplanes of the form {ui = u j : (i, j) ∈ E} is |E|. The number

of hyperplanes of the form {ui = fi} is m. Using the definition of Y , we can count all the possible

intersections of m of these hyperplanes is

 |E| + m

m

. That is |Y | ≤

 |E| + m

m

 =
(|E|+m)!
(|E|)!(m)! . (Here,

the first is an inequality because we may have hyperplanes that are everywhere the same.) �

Remark 5.1. In the 1-dimensional case |E| = m − 1 so this is |Y | ≤ (2m−1)!
(m−1)!m! .

Lemma 5.6. There is a minimizer of G, call it x∗, in Y.

Proof. Let û be a minimizer of G and û < Y . Suppose first that ∇G(û) exists. Then ∇G(û) =

0. But then because G is affine at points where it is differentiable, G is constant in the whole

region containing û up to and including the bounding hyperplanes where G is nonsmooth. By the

coercivity condition, this region must be bounded. So, there is a point, x∗, on the boundary of this

region that is in Y such that G(x∗) = G(û) where G is given in (5.5).

Second, suppose that û ∈ H where H is the intersection of ` < m hyperplanes where G is

nonsmooth, then we consider the function G̃ which is G restricted toH . Then ∇G̃(û) exists and is
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zero. We can then use the same argument above to get that the set of minimizers includes a point

in Y . �

5.2.3 Hyperplane Traversal Algorithm for L1TV

We now propose an algorithm that minimizes G (see (5.5)). Figure 5.1 shows the level lines of a

Figure 5.1: Level lines for the function G(u1, u2) = |u2 − u1| + |u1| + |1 − u2|, showing the affine
nature of the discrete formulation for L1TV

simple example of G with λ = 1, f = (0, 0, 1, 1) and u0, u3 fixed. We see the hyperplanes (lines)

where G is nonsmooth and the affine nature of G off these hyperplanes. We make use of this affine

structure and that the hyperplanes contain the minimizer of G to formulate the hyperplane traversal

(ht) algorithm. In the ht algorithm, we do a finite line search in an α-descent direction (Definition

5.3) d(k) by stepping to the closest point in Su ∪ S f . We then recompute the α-descent direction in

the lower dimensional space to which we just stepped, and continue. Notice that at each iteration
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we step to a lower dimensional space which makes the computations easier the further we progress.

First, before giving the formal algorithm, we introduce some notation.

Let the coordinate directions, ei be defined as usual, that is

ei = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is located in the ith position.

Definition 5.3. We define an α direction to be a vector v so that

v =
∑

i

αiei,

where ei is the ith coordinate direction and αi ∈ {−1, 0, 1}. We say that v is an α descent direction

for G at the point u if v is an α direction and G(u + γ̃v) < G(u) for all 0 < γ̃ < γ, for some γ.

Algorithm 5.1. (L1TV)
Given f = ( f1, . . . , fm);
Set u(0) = (u(0)

1 , . . . , u(0)
m ) = ( f1, . . . fm);

Evaluate G0 = G(u(0)
1 , . . . , u(0)

m );
Set k ← 0;
do

Compute d(k) using Algorithm 5.2
αk ← arg minα

{
G(u(k) + αd(k)) : u(k) + αd(k) ∈ Su ∪ S f

}
;

u(k+1) ← u(k) + αkd(k);
k ← k + 1;

until d(k) , 0

Table 5.1: L1TV algorithm

As I stated above, motivating this algorithm is the structure of the function G. There are a finite

number of nonparallel hyperplanes on which G is nonsmooth and everywhere else G is affine. We

exploit the fact that a minimizer will be on the intersection of at least m of these hyperplanes. The

algorithm uses iterative line searches to step between intersections of these hyperplanes eventually

reaching the minimizer.

In words, the algorithm works as follows: Start at the point u = f . Check coordinate directions
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Algorithm 5.2. (Descent)
Given u1, . . . , um;
i = 1;
Evaluate G0 = G(u(0));
Set k ← 0;
while i ≤ m

lmax = arg max
{
l : u(k)

h = u(k)
i , ∀i ≤ h ≤ i + l

}
;

v =
∑i+lmax

l=i el;
G1 = G

(
u(k) + (u(k)

i−1 − u(k)
i )v

)
;

G2 = G
(
u(k) + (u(k)

i+lmax+1 − u(k)
i+lmax

)v
)
;

if G1 < G
d(k) ← d(k) + sign(u(k)

i−1 − u(k)
i )v;

elseif G2 < G
d(k) ← d(k) + sign(u(k)

i+lmax+1 − u(k)
i+lmax

)v;
else

d(k) ← 0;
end
i← i + lmax + 1;

end

Table 5.2: α Descent algorithm

and their opposites for descent. Sum all coordinate descent directions to get an α descent direction.

Do a finite line search in the α descent direction to step to a hyperplane in Su or S f . At step k, if

the algorithm steps to a point in S f , repeat the above, if the algorithm steps to a point in Su, project

the algorithm to R`k , the space that is isomorphic to the intersections of the hyperplanes of the form

{u(k)
i = u(k)

j } and repeat.

5.2.4 ht Algorithm Minimizes L1TV , Proof

Using Lemmas 5.1, 5.5, and 5.6, we know that G has a minimizer in the finite set Y . Below we

show that this algorithm finds a minimizer after finitely many iterations. To prove this, we show

that if there is a descent direction at a point u, then there exists also an α-descent direction. We also

show that whenever there is an α-descent direction, the particular α-descent direction of Algorithm

5.1 exists also and at each of the iterations the algorithm gives strict descent. Next, we show that
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the algorithm takes only finitely many steps to get from one point in Y to the next, keeping the

algorithm finite. Finally, we show that since Algorithm 5.1 starts at u(0) = f , the α directions

chosen by the algorithm are indeed α-descent directions.

Wherever descent exists, α-descent exists also.

In [9], the authors define the generalized gradient and generalized derivative which we use to

discuss descent directions for G.

Definition 5.4. We define the generalized gradient of a locally Lipschitz function g at a point u to

be

∂g(x) = co
{
lim
i→∞
∇g(xi) : xi → x,∇g(xi) exists

}
. (5.8)

We define the generalized derivative, g◦(u; v), of a function g at a point u in the direction v to be

g◦(u; v) ≡ lim sup
y→u,t↘0

g(y + tv) − g(y)
t

, (5.9)

where y ∈ Rm and t > 0.

We also take from [9] the following proposition

Proposition 5.1. Let g : X → R be Lipschitz near u. Then for every v ∈ X, we have

f ◦(x; v) = max{〈ζ, v〉 : ζ ∈ ∂ f (x)}. (5.10)

Because in a neighborhood of each point u ∈ Rm, there are only finitely many ∇g(y), the above

reduce to

∂g(u) = co {∇g(u1), . . . ,∇g(u`)} =

α1∇g(u1) + . . . + α`∇g(u`)|αi ≥ 0, i = 1...`,
∑̀

i

αi = 1

 .
(5.11)
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and

g◦(u; v) = max
(α1,...,α`)

α1∇g(u1) · v + . . . + α`∇g(u`) · v|αi ≥ 0, i = 1...`,
∑̀

i

αi = 1

 .
Let K(u) be the cone of descent directions for G at u. We now prove a more general statement

about functions that are continuous and piecewise affine.

Lemma 5.7. Let g : Rn → R be a continuous, piecewise affine (with finitely many pieces) function

that is smooth on convex domains. If g◦(u; v) < 0 then v is a descent direction.

Proof. Let u be a point so that ∇g(u) does not exist. This means that u is on a section of the

boundary of ` domains where g is smooth. Because the domains where g is smooth are convex,

we can choose points, u1, . . . , u`, one in each of these domains, so that g is linear along the line

segments connecting u and ui and the using Definition 5.4 we have that if g◦(u; v) < 0 then ∇g(ui) ·

v < 0 for i = 1, ..., `. For otherwise if for some j, ∇g(u j) · v ≥ 0 then we could choose αi = 0 for

i , j and α j = 1 and g◦(u; v) ≥ 0. Let t0 > 0 be small enough so that g is linear along the line u + tv

for 0 < t ≤ t0. Then, we know that

g(ui) − g(u) = g(ui + tv) − g(u + tv).

and so

g(u + tv) − g(u) = g(ui + tv) − g(ui) = t∇g(ui) · v < 0.

Thus, v is a descent direction. �

We recall that G divides Rm into domains where G is linear in the interior of these domains and

G is nonsmooth on the boundary of these domains. Notice if R is one such domain, ∂R is contained

in the union of hyperplanes of the form {ui = u j} and/or {ui = fi} for some i, j.

Using Lemma 5.7, we prove in the next few lemmas that if at a point u on the boundary of one

of these regions there is a descent direction for G, then there is also an α-descent direction that

points in the lower dimensional space to which we have stepped.
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Lemma 5.8. As above, let K(u) be the cone of descent directions for G at u.

a. v ∈ K(u) if and only if G◦(u; v) ≤ 0.

b. If v ∈ ∂K(u) then G(u + tv) = G(u) for all t > 0 small enough.

Proof.

a. First note that using Lemma 5.7 and since G is piecewise affine with finitely many pieces,

we get

G◦(u; v) < 0⇒ v ∈ K(u).

So we need only show that

v ∈ K(u)⇒ G◦(u; v) < 0.

Let v ∈ K(u). Then G(u + tv)−G(u) < 0 for all t > 0 small enough. We also know that since

G is convex we have that G(u) −G(u − tv) < 0 for any t > 0. Suppose that at u, ui , u j for

some i, j and uk , fk for some k, then we choose ε > 0 small enough so that for all ũ ∈ Bε(u),

ũi , ũ j and ũk , fk. Let y ∈ Bε(u). Let R be a region as described above We now break this

argument into cases:

Case 1: Suppose u, u + tv, y, y + tv ∈ ∂R . We know then that G is continuous and affine in

Bε(u) ∩ ∂R. So we know that G(y + tv) −G(y) < 0.

Case 2: Suppose u, u+tv ∈ ∂R, but that y < ∂R. Since G is affine in Bε(u)∩R, G(y+tv)−G(y) <

0.

Case 3: Suppose u, y ∈ ∂R, but u + tv, y + tv < ∂R, then using that G is affine in R, we see

that G(y + tv) −G(y) < 0.

In each of the above cases, we see then that G◦(u; v) < 0.
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Case 1: u, u + tv, y, y + tv ∈ ∂R
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Case 2: u, u + tv ∈ ∂R but y < ∂R.

u
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Case 3: u, y ∈ ∂R but u + tv, y + tv < ∂R
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ε

y
u + tv
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Case 4: u ∈ ∂R but y, u + tv, y + tv < ∂R

R

u

u + tv

Case 5: u ∈ R \ ∂R

Figure 5.2: 1D examples for the cases of Lemma 5.8
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Case 4: Suppose u ∈ ∂R, but u + tv, y < ∂R. Then by convexity of G and that G is affine on

Bε(u) ∩ R, using case 3, we know that

G(y + tv) −G(y) = G(u) −G(u − tv) < 0. (5.12)

Case 5: Finally, suppose u ∈ R \ ∂R, then G is smooth at u so G◦(u; v) = ∇G(u) · v < 0.

b. Let v ∈ ∂K(u) then we can construct a sequence {vk} ⊆ K(u) so that for vk → v. Then there is

a k0 large enough so that for all k ≥ k0, ||v−vk|| < ε for some ε > 0. But G(u+ tvk)−G(u) < 0

for all k since vk ∈ K(u). G continuous gives us that G(u + tv) −G(u) < ε for all ε > 0. Thus

G(u + tv) −G(u) ≤ 0. But if G(u + tv) −G(u) < 0 then, by continuity, v ∈ K(u). So, we have

G(u + tv) −G(u) = 0

�

Whenever α-descent exists, the α-direction of Algorithm 5.1 exists also.

Definition 5.5. Let P ⊂ Rm. We define

π : P → Rm̃ by π(u) = ũ,

to be the projection map that removes redundancy in u, where m̃ ≤ m. That is, if {ui = u j} is active

at u, then the ith or jth (whichever is larger) component is removed from u to get ũ and if {ui = fi}

is active at u, then the ith component of u is removed to get ũ.

Note, this projection is invertible.

Example 5.1. For example, let P ⊂ R4 be the 2-dimensional subset given by

P = {(u1, u2, u3, u4)|u2 = u1 and u4 = f4}. (5.13)
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We define π : P → R2 by

π(u1, u1, u3, f4) = (u1, u3). (5.14)

If we pick any point in R2, we can find its inverse projection in P by

π−1(u1, u2) = (u1, u1, u2, f4). (5.15)

Lemma 5.9. Let u ∈ ∂R where R is one of the regions described above. Let K(u) , ∅. Then

N(u) ∩ K(u) ∩ ∂R has an α descent direction, where N(u) is some neighborhood of u.

Proof. We know that ∂R is contained in the union and intersection of some hyperplanes of the

form {ui = u j} and/or {ui = fi} for some i, j. By looking in N(u) ∩ K(u) ∩ ∂R we can restrict G to

points in the lower dimensional space, P, defined by the active hyperplanes at u. Let

G̃ : Rm̃ → R

be defined by G̃(ũ) = G(u), where π−1(ũ) = u.

Then we see that ∇G̃(ũ) exists. Since G is affine in R we have that K(ũ) = {v : 〈v,∇G(u)〉 < 0}

which is a half space and therefore contains an α direction, ṽ. We then have that v = π−1(ṽ) is an α

descent direction in P. �

Using the proof above, the following result holds immediately.

Scholium 5.1. v is an α descent direction at u⇔ π(v) is an α descent direction at π(u).

Remark 5.2. The above lemma gives us that if at u(k) there is a descent direction for G then there

is also an α descent direction for G at u(k).

Lemma 5.10. If at ũ ∈ R` an α descent direction, ṽ, exists then there exists an α descent direction

of the form

ˆ̃v =
∑

αiẽi, (5.16)
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where αi ∈ {−1, 0, 1}, ẽi are coordinate directions, and αiẽi are descent directions whenever αi , 0.

Proof. We can let ṽ =
∑`

i=1 αiẽi where αi ∈ {−1, 0, 1} and ẽi are coordinate directions. Since G̃ is

linear on R`

G(ũ + tṽ) = G

ũ + t
∑̀
i=1

αiẽi

 = G

∑̀
i=1

(ηiũ + tαiẽi)


= G

∑̀
i=1

ηi

(
ũ +

t
ηi
αiẽi

) =
∑̀
i=1

ηiG
(
ũ +

t
ηi
αiẽi

)
, (5.17)

where
∑`

i=1 ηi = 1. Now, since ṽ is a descent direction, some of the terms, G
(
ũ + t

ηi
αiẽi

)
< G(ũ).

For otherwise, if G
(
ũ + t

ηi
αiẽi

)
≥ G(ũ), we would have

G(ũ + tṽ) =
∑̀
i=1

ηiG
(
ũ +

t
ηi
αiẽi

)
≥

∑̀
i=1

ηiG(ũ) = G(ũ). (5.18)

Let I = {i : G
(
ũ + t

ηi
αiẽi

)
< G(ũ)}. Now, we know that G(ũ + tṽ) < G(ũ) for all t > 0 small

enough. Thus, G(ũ + t̃αiẽi) < G(ũ) for t̃ > 0 small enough and i ∈ I. So, αiẽi is a descent direction

whenever i ∈ I. So, we can create ˆ̃v, by choosing α̂ in the following way

α̂i =


αi whenever i ∈ I

0 otherwise
. (5.19)

Then

ˆ̃v =
∑̀
j=1

α̂iẽi. (5.20)

Then

G(ũ) > G(ũ + t ˆ̃v) = G(ũ) + t
s∑

j=1

G(αi j ẽi) (5.21)

�

88



Algorithm 5.1 takes only finitely many steps to get back to Y

Lemma 5.11. Only finitely many steps of the algorithm are needed to get from one point in Y to

another.

Proof. Suppose u(k) < Y , then k > 0 since u(0) = f ∈ Y . Therefore ∇G(u(k)) does not exist because

the algorithm always steps to a point where G is nonsmooth. Therefore u(k) ∈ H , where H is

an ` < m dimensional hyperplane formed from intersections of some of the ` − 1 hyperplanes of

the form {ui = u j : (i, j) ∈ E} and or {ui = fi}. Note that ` > 1 since the algorithm stops when

` = 1. If u(k) is not a minimizer there exists a descent direction for G at u(k). Then there exists an

α descent direction in H . The algorithm takes the step in this direction to get u(k+1) which lies on

a hyperplane whose dimension is smaller than `. We can continue this process at most ` times to

land at a point u(k′) ∈ Y . �

Algorithm 5.1 Convergence Theorem

Combining the above lemmas, we have that G has a minimizer in the finite set Y , that Algorithm

5.1 takes only finitely many steps to get from a point in Y back to another point in Y , if at u(k) G has

a descent direction, then the α-descent direction of the algorithm exists also. Finally, we showed

that the α-directions found by Algorithm (5.2) are indeed α-descent directions. One key piece to

this next theorem is to show that our idea of stepping to lower dimensional spaces does give strict

descent.

Theorem 5.1. Algorithm 5.1 converges to a minimum and is finite.

α-directions found in Algorithm 5.1 give strict descent.

Recall that in Algorithm 5.1, we step to hyperplanes where G is nonsmooth and then work within

this lower dimensional space defined by the hyperplanes to which we have previously stepped. We

use clusters to algorithmically define our lower dimensional space. Here we define the notion of a

cluster.
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Definition 5.6. Let C(k) =
{
c1 = 1 < c2 < . . . < cqk ≤ m : u(k)

ci−1 , u(k)
ci

}
be the set of indices so that

u(k)
j = u(k)

ci for all ci ≤ j ≤ ci+1 − 1. Then we define a cluster, C(k)
i , to be the set of indices j so that

u(k)
j has the same value as u(k)

ci , that is,

C(k)
i := { j : for all ci ≤ j ≤ ci+1 − 1} .

Notice, that a cluster will have size |C(k)
i | = ci+1 − ci (the last cluster will have size m − cqk + 1) and∑q

i=1 |C
(k)
i | = m. We will say that u(k)

j is in a cluster Ci and mean j ∈ Ci.

Definition 5.7. If u(k) =
(
u(k)

1 , . . . u
(k)
m

)
∈ Rm is obtained by k iterations of Algorithm 5.1, we let

α(k)
i =


−1 if −

∑c j+1−1
j=ci

e j is a descent direction for G at u(k)

1 if
∑c j+1−1

j=ci
e j is a descent direction for G at u(k)

0 otherwise

for 1 ≤ i ≤ m. For fixed boundary conditions, we set α(k)
1 , α

(k)
m = 0.

The next two lemmas show that our clusters only get larger in Algorithm 5.1 and that we find

descent when no point, u(k)
j in cluster Ci will move independently of the cluster. This means that

we never go back to the higher dimensional space, that is, the algorithm continues to step to lower

and lower dimensional spaces. Actually, these two lemmas are for a more general algorithm, that

is, for an algorithm that finds minimizers of L1 pTV for 0 < p ≤ 1. The first of these two lemmas

gives us this result for iteration 1 of Algorithm 5.1 and the second lemma gives the result for all

other iterations. Both algorithms are proved by looking at the various neighborhood cases that are

possible at each point ui to show that if ui is in a cluster, Ci, it won’t break away from the cluster

in next steps. And then we determine which λ values give us descent when moving a cluster Ci.
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Clusters need not break up for descent (iteration 1).

Lemma 5.12. For 0 < p ≤ 1, let us define

Gp(u) ≡
m∑

i=0

|ui+1 − ui|
p + λ

m+1∑
i=0

| fi − ui|. (5.22)

Let η` ≡ |uci−1 − uci | and ηr ≡ |uci+1 − uci+1−1|. Then the following statements hold.

1. If there exists a cluster Ci with {uci−1 > uci and uci+1−1 > uci+1} and

0 < λ <
η

p
` − (η` − αη)p + η

p
r − (ηr + αη)p

η|Ci|
(5.23)

then a descent direction for Gp, at the point u = f , is

ci+1−1∑
j=ci

e j when ηr < η` and −

ci+1−1∑
j=ci

e j when ηr > η`. (5.24)

2. If there exists a cluster Ci with {uci−1 < uci and uci+1−1 < uci+1} and

0 < λ <
η

p
` − (η` + αη)p + η

p
r − (ηr − αη)p

η|Ci|
(5.25)

then a descent direction for Gp, at the point u = f , is

ci+1−1∑
j=ci

e j when ηr > η` and −

ci+1−1∑
j=ci

e j when ηr < η`. (5.26)

3. If there exists a cluster Ci with {uci−1 < uci and uci+1−1 < uci+1} and

0 < λ <
η

p
` − (η` − αη)p + η

p
r − (ηr − αη)p

η|Ci|
(5.27)
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then a descent direction for Gp, at the point u = f , is

ci+1−1∑
j=ci

e j. (5.28)

4. If there exists a cluster Ci with {uci−1 < uci and uci+1−1 < uci+1} and

0 < λ <
η

p
` − (η` + αη)p + η

p
r − (ηr + αη)p

η|Ci|
(5.29)

then a descent direction for Gp, at the point u = f , is

−

ci+1−1∑
j=ci

e j. (5.30)

Notice, for p = 1, in cases 1 and 2, the condition for λ is 0 < λ < 0. Since there is no such λ, we

see that our L1TV algorithm will not find descent in these cases. The condition for λ for p = 1 in

cases 3 and 4 is

0 < λ <
2
|Ci|

. (5.31)

Proof. (of Lemma 5.12) We begin this proof by showing that if we start with u = f , to get descent,

we need not break up clusters. We break this into 2 cases. We assume for these cases that 1 < ci <

m, that is uci is not a point on the boundary of Ω. We prove this by considering whether or not

G(u + ηαei) −G(u) = |ui + ηα − ui−1|
p + |ui + ηα − ui+1|

p + λ|ui + ηα − fi|

−|ui − ui−1|
p + |ui − ui+1|

p + λ|ui − fi| < 0. (5.32)

Case 1: Suppose uci−1 = uci = uci+1. We assume that η > 0 is small and compute

G(u + ηαei) −G(u) = 2ηp + λη > 0, ∀η > 0. (5.33)
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Thus, in this case, no descent exists. That is, a data point in the middle of a cluster will not move in

the first iteration. We can also see that for each point we move from the inside of a cluster causes

u(0)
ci−1 = fci−1 u(0)

ci = fci u(0)
ci+1 = fci+1

Figure 5.3: Case1: u(0)
ci is a point in the middle of a cluster.

an increase in the fidelity term and we also see that the variation term will not decrease. Thus, we

see that no descent is found by moving any points from inside the cluster in a direction different

than the rest of cluster.

Case 2: Suppose uci−1 = uci < uci+1 (See Figure 5.4) We assume that 0 < η is at most ηr ≡ |uci+1−uci |

and compute

G(u + ηαei) −G(u) = ηp + (ηr − αη)p − η
p
r + λη

= ηp(1 − ap + (a − α)p) + λη where a =
ηr

η
≥ 1 (5.34)

Notice that if α = −1, we have G(u + ηαei) − G(u) = 1 − ap + (a + 1)p + λη > 0. Now if α = 1,

we have G(u + ηαei) −G(u) = 1 − ap + (a − 1)p + λη. This is also positive since ap − 1 = (a − 1)p

when a = 1 and the left-hand side is increasing faster than the right-hand side for a > 1. Thus, in

u(0)
ci+1 = fci+1

u(0)
ci−1 = fci−1 u(0)

ci = fci

u(0)
ci−1 = fci−1

u(0)
ci+1 = fci+1u(0)

ci = fci

u(0)
ci−1 = fci−1

u(0)
ci = fci u(0)

ci+1 = fci+1

u(0)
ci+1 = fci+1

u(0)
ci−1 = fci−1 u(0)

ci = fci

Figure 5.4: Case2: u(0)
ci is a point on the end of a cluster (four cases).

93



this case, no descent exists. That is, a data point on the end of a cluster will not move in the first

iteration. Notice the other cases for uci−1 = uci , uci+1 or uci+1 = uci , uci−1 have the same result

and are proved similarly.

Notice that if we moved several points at the end together away from the rest of the cluster, we

will see the same result in the variation term, but will multiply the fidelity term by the number of

points we move. So, clusters will not break apart in the first iteration of our algorithm. Next we

show that when clusters move together in the first iteration we find descent when λ satisfies the

conditions stated in the lemma. We show this by considering whether or not

G

u + ηα

ci+1−1∑
j=ci

e j

 −G(u) = |uci + ηα − uci−1|
p + |uci+1−1 + ηα − uci+1 |

p + λ

ci+1−1∑
j=ci

|u j + ηα − f j|

− |uci − uci−1|
p + |uci+1−1 − uci+1 |

p + λ

ci+1−1∑
j=ci

|u j − f j| < 0. (5.35)

We break this step into four cases. Let ηr ≡ |uci+1 − uci+1−1| and η` ≡ |uci − uci−1|. We also assume

η ≤ min{ηr, η`}.

Case 1 Suppose uci−1 > uci = . . . = uci+1−1 > uci+1 . We compute

u(0)
j = f j

. . .

u(0)
ci+1 = fci+1

u(0)
ci+1−1 = fci+1−1

. . .

u(0)
ci−1 = fci−1

u(0)
ci = fci

Figure 5.5: Case 1: Ci(u
(0)
i ) has left neighbor above and right neighbor below.

G

u + αη

ci+1−1∑
j=ci

e j

 −G(u) = (η` − αη)p − η
p
` + (ηr + αη)p − η

p
r + λ|Ci|η. (5.36)
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We see that for this case, we find descent when

0 < λ <
η

p
` − (η` − αη)p + η

p
r − (ηr + αη)p

η|Ci|
. (5.37)

That is, descent is found, with this λ, by moving the cluster up when ηr < η` and down when

ηr > η`. (For p = 1, this condition is 0 < λ < 0, so descent does not exist.)

Case 2: Suppose uci−1 < uci = . . . = uci+1−1 < uci+1 . If we use a similar argument to that of Case 1,

we see that for this case, we find descent when

λ <
η

p
` − (η` + αη)p + η

p
r − (ηr − αη)p

η|Ci|
. (5.38)

That is, descent is found, with this λ, by moving the cluster up when ηr > η` and down when

ηr < η`. (For p = 1, this condition is 0 < λ < 0, so descent does not exist.)

Case 3: Suppose uci = . . . = uci+1−1 < uci−1, uci+1 . We compute

u(0)
ci−1 = fci−1

. . . . . .

u(0)
ci+1 = fci+1

u(0)
ci = fci u(0)

j = f j u(0)
ci+1−1 = fci+1−1

Figure 5.6: Case 3: Ci(u
(0)
i ) has both neighbors above.

G

u + αη

ci+1−1∑
j=ci

e j

 −G(u) = (η` − αη)p − η
p
` + (ηr − αη)p − η

p
r + λ|Ci|η. (5.39)

We see that for this case, we find descent by moving the cluster up when

λ <
η

p
` − (η` − η)p + η

p
r − (ηr − η)p

η|Ci|
. (5.40)

(For p = 1, this condition is 0 < λ < 2/|Ci|.)
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Case 4: Suppose uci = . . . = uci+1−1 > uci−1, uci+1 . Again, this case is similar to Case 3. So a similar

argument gives us that moving the cluster down gives descent when

λ <
η

p
` − (η` − η)p + η

p
r − (ηr − η)p

η|Ci|
. (5.41)

(For p = 1, this condition is 0 < λ < 2/|Ci|.)

Finally, in the case that we choose the free boundary option (letting boundaries move), we show

that if uci is on the boundary, we find descent when λ satisfies the conditions stated in the lemma.

We prove this for the left endpoint of the data since the argument for the right endpoint is similar.

We break this into two cases.

Case 1: u1 = u2. In this case, we assume η > 0 is small and we compute

G(u + ηαei) −G(u) = ηp + λη > 0. (5.42)

Thus we will not find descent by moving this endpoint without its neighbors.

Case 2: u1 = . . . = uc2−1 < uc2 . In this case, we assume 0 < η ≤ ηr = (uc2 − uc2−1) and we compute

G(u + ηαei) −G(u) = |C1|λη + (ηr − αη)p − ηp
r . (5.43)

Thus, we find descent by moving the endpoint up whenever λ < η
p
r −(ηr−η)p

η|C1 |
=

η
p
r

η|C1 |
(For p = 1, this

condition is 0 < λ < 1/|C1|.)

Clusters need not break up for descent (iteration k).

For this lemma, we need to define some notation.

Definition 5.8. We define qg, ql, qe to be the number of elements u(k)
j , in the cluster that are greater
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than, less than, and equal to (respectively) the corresponding f j:

qg =
∣∣∣∣{u(k)

j ∈ C
(
u(k)

i

)
: u(k)

j > f j

}∣∣∣∣ ,
ql =

∣∣∣∣{u(k)
j ∈ C

(
u(k)

i

)
: u(k)

j < f j

}∣∣∣∣ ,
and

qe =
∣∣∣∣{u(k)

j ∈ C
(
u(k)

i

)
: u(k)

j = f j

}∣∣∣∣ .
Lemma 5.13. For 0 < p ≤ 1, let G be as in (5.22) Let qg, qe, and q` be defined as above. Let

η` ≡ |uci−1 − uci | and ηr ≡ |uci+1 − uci+1−1|. And if u(k) is a point obtained using a ht algorithm. Then

the following statements hold.

1. If there exists a cluster Ci with {uci−1 > uci = uci+1−1 > uci+1} and

0 < λ <
η

p
` − (η` − αη)p + η

p
r − (ηr + αη)p

η((qg − q`)α + qe)
(5.44)

then a descent direction for Gp, at the point u(k), is

ci+1−1∑
j=ci

e j when ηr < η` and −

ci+1−1∑
j=ci

e j when ηr > η`. (5.45)

2. If there exists a cluster Ci with {uci−1 < uci = uci+1−1 < uci+1} and

0 < λ <
η

p
` − (η` + αη)p + η

p
r − (ηr − αη)p

η((qg − q`)α + qe)
(5.46)

then a descent direction for Gp, at the point u(k), is

ci+1−1∑
j=ci

e j when ηr > η` and −

ci+1−1∑
j=ci

e j when ηr < η`. (5.47)
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3. If there exists a cluster Ci with {uci−1 > uci and uci = uci+1−1 < uci+1} and

0 < λ <
η

p
` − (η` − η)p + η

p
r − (ηr − η)p

η(qg − q` + qe)
(5.48)

then a descent direction for Gp, at the point u(k), is

ci+1−1∑
j=ci

e j. (5.49)

4. If there exists a cluster Ci with {uci−1 < uci and uci = uci+1−1 > uci+1} and

0 < λ <
η

p
` − (η` − η)p + η

p
r − (ηr − η)p

η(−qg + q` + qe)
(5.50)

then a descent direction for Gp, at the point u(k), is

−

ci+1−1∑
j=ci

e j. (5.51)

Again, for p = 1, in cases 1 and 2, the condition for λ is 0 < λ < 0. So our L1TV algorithm will

not find descent in these cases. The condition for λ for p = 1 in case 3 is

0 < λ <
2

qg − q` + qe
. (5.52)

And for case 4, with p = 1, the condition for λ is

0 < λ <
2

−qg + q` + qe
. (5.53)

Proof. (of Lemma 5.13) We begin, again, by showing, to get descent, we need not break up clus-

ters. Again for ease of notation, we write u instead of u(k). We break this into two cases.

Case 1: uci−1 = uci = uci+1. We assume η > 0 is small. We compute
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fci

u(k)
ci+1u(k)

ciu(k)
ci−1

u(k)
ci+1u(k)

ci = fciu(k)
ci−1

fci

u(k)
ci+1u(k)

ciu(k)
ci−1

Figure 5.7: Case 1: u(k)
ci is a point in the middle of a cluster (3 possible cases).

G(u + ηαei) −G(u) = 2ηp + λη((qg − q`)α + qe). (5.54)

Here we treat uci as a cluster of size one by moving it alone. So only one of qg, qe, q` is one, while

the others are zero. Notice that if qe = 1, there is no descent. Notice also that λ > 2ηp−1 gives

descent by moving uci toward fci , but this would be undoing what we did in a previous step. That is,

in the previous step, we could have moved uci to this cluster by itself in which case moving it back

by itself is undoing a step that gave us descent and so it would give us ascent. The other possible

case would have been if we moved uci with a cluster to this position. In this case, we know from

Lemma 5.12 that to move it by itself away would be a step that gives ascent. So, we will not find

descent breaking up this cluster.

Case 2: uci−1 = uci , uci+1 or uci+1 = uci , uci−1. We will prove one of these cases, namely uci−1 =

uci < uci+1, because the four cases are similar in argument. We assume that η ≤ min{ηr, | fci − uci |}

and we compute

G(u + ηαei) −G(u) = (ηr − ηα)p − ηp
r + ηp + λη((qg − q`)α + qe). (5.55)
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u(k)
ci = f (k)

ci u(k)
ci = f (k)

ciu(k)
ci−1u(k)

ci+1

u(k)
ci−1 u(k)

ci+1

fci

u(k)
ci

fci

u(k)
ci+1

u(k)
ci−1u(k)

ci+1

u(k)
ciu(k)

ci−1

u(k)
ci−1

u(k)
ci u(k)

ci+1 u(k)
ci

fci

u(k)
ci−1

fci

u(k)
ci+1

u(k)
ci = f (k)

ci u(k)
ci+1 u(k)

ci−1 u(k)
ci = f (k)

ci

u(k)
ci−1 u(k)

ci+1

Figure 5.8: Case 2: u(k)
ci is a point on the end of a cluster (8 possible cases).

100



Notice, we get descent if

λ <
η

p
r − η

p − (ηr − ηα)p

η((qg − q`)α + qe)
= ηp−1 ap − 1 − (a − α)p

(qg − q`)α + qe
< 0 (5.56)

or

λ >
−η

p
r + ηp + (ηr − ηα)p

η((qg − q`)α + qe)
= ηp−1 ap − 1 − (a − α)p

(qg − q`)α + qe
(5.57)

But, notice that this second inequality is taking us back toward fi which is again, undoing a previous

step. The first inequality says λ < 0. Thus, we do not find descent in this case either. So, we know

that the algorithm will not break up clusters.

Now we consider moving the full cluster together. We will show that we find descent when λ

satisfies the conditions stated in the lemma. We break this step into four cases. Let ηr ≡ |uci+1 −

uci+1−1| and η` ≡ |uci − uci−1|. We also assume η ≤ min{ηr, η`}.

Case 1: Suppose uci−1 > uci = . . . = uci+1−1 > uci+1 . We compute

u(k)
ci−1

. . . . . .

u(k)
ci u(k)

j

u(k)
ci+1−1

u(k)
ci+1

Figure 5.9: Case 1: Ci(u
(k)
i ) has left neighbor above and right neighbor below.

G

u + αη

ci+1−1∑
j=ci

e j

 −G(u) = (η` − αη)p − η
p
` + (ηr + αη)p − η

p
r + λ((qg − q`)α + qe)η. (5.58)
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We see that for this case, we find descent when

λ <
η

p
` − (η` − αη)p + η

p
r − (ηr + αη)p

η((qg − q`)α + qe)
. (5.59)

As in the last lemma, we find descent, with this λ, by moving the cluster up when ηr > η` and down

when ηr < η`. (As we saw in the last lemma, for p = 1, this condition is 0 < λ < 0, so descent

does not exist.)

Case 2: Suppose uci−1 < uci = . . . = uci+1−1 < uci+1 . If we use a similar argument to that of Case 1,

we see that for this case, we find descent when

λ <
η

p
` − (η` + αη)p + η

p
r − (ηr − αη)p

η((qg − q`)α + qe)
. (5.60)

That is, descent is found, with this λ, by moving the cluster up when ηr < η` and down when

ηr > η`. (For p = 1 descent does not exist.)

Case 3: Suppose uci = . . . = uci+1−1 < uci−1, uci+1 . We compute

u(k)
ci+1

. . . . . .

u(k)
ci−1

u(k)
ci u(k)

j u(k)
ci+1−1

Figure 5.10: Case 3: Ci(u
(k)
i ) has both neighbors above.

G

u + αη

ci+1−1∑
j=ci

e j

 −G(u) = (η` − αη)p − η
p
` + (ηr − αη)p − η

p
r + λ((qg − q`)α + qe)η. (5.61)

We see that for this case, we find descent by moving the cluster up when

λ <
η

p
` − (η` − η)p + η

p
r − (ηr − η)p

η(qg − q` + qe)
. (5.62)
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(For p = 1, this condition is 0 < λ < 2/(qg − q` + qe).)

Case 4: Suppose uci = . . . = uci+1−1 > uci−1, uci+1 . Again, this case is similar to Case 3. So a similar

argument gives us that moving the cluster down gives descent when

λ <
η

p
` − (η` − η)p + η

p
r − (ηr − η)p

η(−qg + q` + qe)
. (5.63)

(For p = 1, this condition is 0 < λ < 2/(−qg + q` + qe).) �

Using the proof of Lemmas 5.12 and 5.13, we see that for every cluster C(k)
i , we get C(k)

i ⊆

C(k+1)
i . That is, no point will leave a cluster and at each iteration the algorithm will reduce the

problem to minimizing a lower dimensional problem. �

5.2.5 More Efficient L1TV Algorithm

In this section we will introduce a more efficient algorithm for the case when p = 1. In the proof

of Lemmas 5.12 and 5.13, we found conditions on λ for which descent occurs. Here we use those

conditions to formulate a new algorithm that does not need to compute G values. Recall, we found

that descent occurs, in the p = 1 case, only when clusters are lower than both neighbors or higher

than both neighbors. We restate the conditions here. In the case when Ci is lower than its neighbors,

we find descent in moving the cluster up when

0 < λ <
2

qg − q` + qe
. (5.64)

For such clusters, we call Q = qg − q` + qe the effective cluster size. In the case when Ci is higher

than its neighbors, we find descent in moving the cluster down when

0 < λ <
2

−qg + q` + qe
. (5.65)

For these clusters, we call Q = −qg + q` + qe the effective cluster size.
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Remark 5.3. For Ci on the boundary of our data, we use the results from Lemmas 5.12 and 5.13

to say the effective cluster size is twice the effective cluster size of an interior cluster. We see that

this makes sense since moving the cluster only affects the variation based on one neighbor instead

of two and so it takes a smaller λ to move it.

We also recognize that the value of G does not change when a cluster moves between its highest

neighbor and its lowest neighbor. So, if instead of moving clusters up and down in parallel, we

move up (down) all clusters with the appropriate effective cluster size for the given λ first. These

clusters will move up (down) to meet another cluster, stopping at Su or to meet an f value, stopping

at S f . Since some clusters will join with others, we recompute effective cluster sizes for all clusters

that changed and then move down (up) all clusters with the appropriate effective cluster size for

the given λ.

For this version of the algorithm, we are still stepping in an α-descent direction to points in Su

and/or S f . We are not breaking up clusters as before, but we are now stepping through effective

cluster sizes to make the algorithm more efficient. As long as the effective cluster size does not

decrease, we know that the convergence given in Subsection 5.2.3 still holds. In fact, we can easily

show that effective cluster size does not decrease.

Lemma 5.14. The effective cluster size (ECS) for any cluster at any iteration given by

Qup = qg − q` + qe or Qdwn = −qg + q` + qe, (5.66)

will never decrease, here Qup is the ECS for a cluster intended to move up and Qdwn is the ECS for

a cluster intended to move down.

Proof. We will prove this lemma is true for an up cluster Ci. The argument for a down cluster is

similar. We recall Definition 5.8.

For this proof, we will say that u j in Ci contributes to qg if u j > f j, to q` if u j < f j, and to qe if

u j = f j. Notice that
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• if u j in Ci contributes to qg and Ci moves up to form the new cluster C′i , then u′j in C′i

contributes to q′g since u′j > u j > f j,

• if u j in Ci contributes to qe and Ci moves up to form the new cluster C′i then u′j in C′i con-

tributes to q′g since u′j > u j = f j, and

• if u j in Ci contributes to q` and Ci moves up to form the new cluster C′i , then u′j in C′i

contributes to either q′e or q′` since a cluster will stop at the closest of its neighbors or corre-

sponding f values so f j ≥ u′j > u j.

This all tells us that when Ci moves up, q` can only change by decreasing, qg can only change by

increasing, and qe can change by either increasing or decreasing.

Now, we consider the effective cluster size for three cases for the newly formed cluster C′i .

A |C′i | = |Ci|, the actual cluster size does not change. This happens when Ci moves up to meet

an f value,

B C′i is lower than both of its neighbors, and

C C′i is a cluster that is higher than both of its neighbors.

We don’t consider the case when one of the neighbors of C′i is below and the other above the

cluster, since moving this cluster will not give descent in G.

In case A, since both neighboring clusters, Ci−1 and Ci+1 are still above Ci, the effective cluster

size is given by Qup in (5.66). Using the argument above we see that the new effective cluster size

increases since at least one u j in Ci that contributes to q` will move up to u′j that contributes to qe

thus Qup will increase.

In case B, Ci will move up to join with at least one of its neighboring clusters Ci−1 and Ci+1.

Now, let Qi−1,Qi+1 denote the effective cluster sizes of Ci−1,Ci+1, respectively and Q′i be the con-

tribution from Ci after its move. From the above argument, we know that Q′i = q′g − q′` + q′e ≥

qg − q` + qe = Qi.
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If Ci moves up to join with Ci−1, the new effective cluster size is just the sum of the contributions

from both clusters, that is, Q = Qi−1 + Q′i . If Ci moves up to join with Ci+1, the new effective cluster

size is Q = Q′i + Qi+1. And if Ci moves up to join with both Ci−1 and Ci+1, the new effective cluster

size is Q = Qi−1 + Q′i + Qi+1. In these three cases, if Qi−1,Qi+1 > 0 then the effective cluster size

does not decrease.

Notice that case C can only happen if Ci moves up to meet both of its neighbors (for otherwise,

at least one will still be above C′i ). So, the new effective cluster size is Q = Qi−1 + Q′i + Qi+1. Also,

for this case, the new cluster that is formed is a down cluster, that is Q is computed using Qdwn

in (5.66). Since Ci was below clusters Ci−1 and Ci+1 before the move, we know that Ci−1 and Ci+1

were down clusters before Ci moved up. So, since we are incrementing on the ECS, we know that

Qi−1,Qi+1 ≥ Qi. Since the newly formed cluster, C′i is a down cluster, the amount that Ci contributes

to Q is Q′i = −qg +q`+qe. Notice that Q′i is not an effective cluster size, rather it only contributes to

the new effective cluster size so it may be negative. If Q′i is negative, then we will get the smallest

value for Q. But the smallest this can be happens when u j = f j for all u j in Ci so that after the move

they contributed to qg, but then Qi = |C j| and we get Q = Qi−1 + Q′i + Qi+1 = Qi−1− |Ci|+ Qi+1 ≥ Qi.

So, we know that, in this case also, the effective cluster size never decreases.

Notice that since the algorithm starts with u = f , Qi = |Ci| > 0 for every cluster Ci thus using

the above arguments, the minimum effective cluster sizes never decrease. �

Now we give the formal algorithm. Let C(k)
1 , . . . ,C(k)

qk be the unique clusters at iteration k. Let

g(k)
i , e

(k)
i , `

(k)
i be qg, qe, and q` for cluster i at iteration k. In this algorithm we start at u(0) = f and find

the clusters. We, then, determine which clusters might move up, call them up clusters, and which

might move down, call them down clusters (ignoring those that have both a neighbor below and a

neighbor above the cluster). In the case of Algorithm 5.3, we see it is written with a preference to

move clusters up first and then down. We find the minimum effective cluster size (ECS) and move

up any up cluster, with this ECS, to its nearest neighboring cluster or f value. If no up cluster

has this ECS, I move down any down clusters, that have the same ECS, to its nearest neighboring

cluster or f value. We repeat this until the stopping condition is reached. If at any iteration the
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Algorithm 5.3. (L1TV)
Given f = ( f1, . . . , fm);
Set u(0) = (u(0)

1 , . . . , u(0)
m ) = ( f1, . . . fm);

Find C(0)
1 ,C(0)

2 , . . . ,C(0)
q0 ;

Set k ← 1;
do

Compute g(k)
i , e

(k)
i , `

(k)
i for each i = 1...q0;

U ← { j : all nbrs of C j are above C j}

D← { j : all nbrs of C j are below C j}

mincsk ← min1≤i≤qk{mini∈U{g
(k)
i − `

(k)
i + e(k)

i },mini∈D{−g(k)
i + `(k)

i + e(k)
i }};

mvcl← {i ∈ U : g(k)
i − `

(k)
i + e(k)

i = mincs};
if mvcl , ∅

for idx = 1 : |mvcl|
Move up, Cmvcl(idx) to closest of f , CI(idx)−1, and CI(idx)+1

end
else

mvcl← {i ∈ D : −g(k)
i + `(k)

i + e(k)
i = mincs};

for idx = 1 : |mvcl|
Move down, Cmvcl(idx) to closest of f , CI(idx)−1, and CI(idx)+1

end
end
k ← k + 1
Update list of clusters, [C(k)

1 , . . . ,C(k)
qk ];

if mincsk ,mincsk−1

Append list of solutions with [C1, . . . ,Cqk];
Append list of λ with 2

mincs+1 ;
end

until no descent exists.

Table 5.3: Efficient L1TV algorithm (written with an up preference)

minimum effective cluster size changed from the previous iteration, we update the list of solutions

and the λ value.

The stopping condition for this algorithm depends on the type of data and the boundary condi-

tions. In the general case for data (that is, not necessarily binary data), we stop the algorithm when

monotonicity is reached for fixed boundary data or, for free boundary data, when there is only one

cluster left (the solution is flat).

For binary data, this algorithm is greatly simplified. There is never a need to check nbrs of a
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cluster. If the data is binary, the neighbors have the opposite value of that of the cluster. That is,

if the cluster is at a height of 1, its neighbors are at a height of 0 and it is then a down cluster. For

down clusters, Ci, the effective cluster size is dependent on `i and ei whereas for an up cluster, the

effective cluster size is dependent on gi and ei. Another simplification for this algorithm when the

data is binary is that we never need to check the distance to f values corresponding to a cluster

since these will also be either 0 or 1. So, the algorithm will not have moves to heights other than the

height of cluster neighbors. Finally, the algorithm will stop when the minimum number of clusters,

minq, is reached. The value of minq depends on whether the boundaries are fixed (minq= 2) or

free (minq= 1).

In Figure 5.11, we show the value of min G vs λ for two different examples using Algorithm 5.3.

The top plot is from Example 6.2, a simple noisy signal with two jumps of differing heights. The

bottom plot is from Example 6.6, a signal composed of the sum of sines and gaussian stationary

additive noise. These plots are obtained by finding the G value after each iteration. The points in

Figure 5.11 are the points (λ,min G). Because the minimizer will be the same until λ drops below

the λcut for the next iteration and since G is linear in λ we plot the line between λk and λk+1 using

the minimizer for λk to compute G.

The greatest benefit to Algorithm 5.3, for both the general and the binary problems, is that we

are able to solve the λ = 0 problem and in the process get the solutions ∀λ > 0. That is, the

computational task of getting a solution for all λ > 0, is the same as solving only one problem. We

state this result in the next theorem.

Theorem 5.2. Algorithm 5.3 finds a solution to L1TV for every λ > 0.

Proof. Algorithm 5.3 iterates by increasing the effective clusters size, thus decreasing λ beginning

with the largest possible λ so that at least one cluster will move. Because the problem is discrete,

the effective cluster sizes are positive integers between 0 and m (the length of the signal). The

effective cluster size (and thus, λ) does not change until no cluster of this effective cluster size will

move. By the results of Subsection 5.2.4 we know that, for each λ, Algorithm 5.3 finds descent
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Figure 5.11: (λ,min G) corresponding to Exs 6.2 (top) and 6.6 (bottom)
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whenever descent exists so, at each iteration, the algorithm minimize L1TV for the current λ. And

by Lemma 5.14, we know that iterating on the effective cluster size does not skip a particular

effective cluster size that might need to be revisited later since the effective cluster size never

decreases. Thus, for each λ > 0, we find a minimizer to the corresponding L1TV problem. �

5.2.6 ht Algorithm in Higher Dimensions

It is worth noting that neither algorithm will extend to higher dimensions. The issue lies in the

neighborhood structure that occurs at higher dimensions. In higher dimensional problems, such

as imaging problems, it becomes beneficial to break up clusters when there is a data point that

has more neighbors outside of the cluster than inside. We see this occurring in images with L1TV

when parts of object edges having high curvature are rounded. We conjecture that an adjustment

to the algorithm to allow cluster break up only when the number of neighbors outside the cluster is

not less than the number inside will give similar results for higher dimensional data.

5.2.7 Time Trials for L1TV ht Algorithm

Finally, we show timing results for both the general and binary cases as well as for fixed and free

boundary conditions.

First, we start with fixed boundary conditions. We ran Algorithm 5.3 on 100 random signals of

size N. In Table 5.4 we have recorded the average number of initial clusters, the average number

of λ solutions, and the average time in seconds that it takes to perform the main loop of the ht

algorithm. The algorithm has a set up that is of order N, but then the main loop depends on the

number of initial clusters.

We then ran 100 random binary signals of length N. We recorded the average time to complete

the main loop of the ht algorithm, the average number of initial clusters, and average number of λ

solutions in Table 5.5.

Next, we looked at some time trials, but this time with free boundary conditions. We ran
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N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 5 2.61 0.0008

10 10 3.65 0.0015
20 20 5.93 0.0031
40 40 9.21 0.0061
80 80 12.62 0.0114
160 160 23.58 0.0229
320 320 39.27 0.0455
640 640 63.76 0.0941

1280 1280 135.61 0.2153
2560 2560 283.39 0.5410
5120 5120 418.02 1.4511

Table 5.4: Time Trials for Algorithm 5.3 for general random signals, of size N, with fixed boundary
conditions.

N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 2.1 1.39 0.0001

10 3.9 2 0.0002
20 7.4 2.51 0.0004
40 13.8 2.93 0.0007
80 26.9 3.47 0.0012
160 52.2 3.93 0.0020
320 104.4 4.43 0.0035
640 209.1 4.91 0.0067

1280 419.1 5.34 0.0138
2560 836.2 5.91 0.0305
5120 1677.1 6.42 0.0762

Table 5.5: Time Trials for Algorithm 5.3 for random binary signals, of size N, with fixed boundary
conditions.
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100 random signals of length N. In Figures 5.6 (general random signals) and 5.7 (binary random

signals), we recorded the average time to complete the main loop, the average number of initial

clusters, and the average number of λ solutions.

N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 5 3.26 0.0010

10 10 4.28 0.0020
20 20 5.93 0.0035
40 40 8.11 0.0063
80 80 11.15 0.0117
160 160 15.15 0.0217
320 320 20.58 0.0417
640 640 30.22 0.0857

1280 1280 41.72 0.1874
2560 2560 58.94 0.4587
5120 5120 84.78 1.2875

Table 5.6: Time Trials for Algorithm 5.3 for general random signals, of size N, with free boundary
conditions.

N Ave. # of initial clusters Ave. # of λ Solutions Ave. time in seconds
5 2.3 1.85 0.0002

10 4 2.33 0.0003
20 6.7 2.71 0.0005
40 13.8 3.19 0.0008
80 26.8 3.51 0.0012
160 53.8 4.03 0.0020
320 106.7 4.54 0.0036
640 211.4 4.87 0.0068

1280 420.8 5.36 0.0138
2560 835.8 5.85 0.0305
5120 1678.3 6.40 0.07771

Table 5.7: Time Trials for Algorithm 5.3 for random binary signals, of size N, with free boundary
conditions.

From our time trials, it appears that the computational complexity of the main loop of our ht

algorithm is of order o(M), where M is the number of initial clusters in our signal. An initial

computation of order o(N) is performed on each signal to catalogue the clusters, where N is the

length of the signal. Putting these together, we believe that the computational complexity of this
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algorithm is of order o(aN + M) signals of length N, where a is small compared to 1. We know

that for a binary signal, the cluster that moves will meet up with both its neighbors. So, after each

iteration, the number of clusters decreases by 2 for every cluster that moves. This means that there

are exactly M
2 cluster moves for any binary signal. The worst case scenario, is the binary signal

given by

u(0) = (0, 1, 0, . . .).

Here the number of initial clusters is N, the signal length. Thus, the number of cluster moves is

equal to M
2 = N

2 . In a random binary signal, we expect less than N initial clusters.

5.3 L1 pTV (p < 1) in 1-Dimension

In this section, we discuss the discrete formulation for L1 pTV ,

min
∫

Ω

|u′|p + λ| f − u| dx, for 0 < p < 1. (5.67)

In [8], Chartrand uses (5.67) to denoise cartoon (piecewise constant) images. He found that bound-

aries and pixel intensity of objects in the image are preserved even in areas of high curvature such

as corners. We use an our ht algorithm on one dimensional signals to see the same preservation in

objects.

Here we consider a regular fixed partition for Ω, x0, x1, . . . , xm, xm+1 and again, consider piece-

wise linear functions u. We use u′ = ui+1−ui
xi+1−xi

to get

min

G =

m∑
i=0

|ui+1 − ui|
p + λ

m∑
i=1

| fi − ui| : u ∈ F

 . (5.68)

Notice we can eliminate the x dependence for the same reason we were able to eliminate the x

dependence in Section 5.2. Notice also that if u is binary data, the problem is p-independent.

Thus, for binary data, this problem reduces to the L1TV problem.
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For this problem, we seek a minimizer in the set Y (Definition 5.2). Because G is concave in

the regions separated by the hyperplanes of the form {ui = ui+1}, {ui = ui−1}, or {ui = fi} (See Figure

5.12), we know that minimizers will be in Y . We use an ht algorithm similar to the above which

stays in Y to find local minimizers. The difference in the algorithm is that it is dependent on the

neighborhood structure, that is, whether the neighbors are both above, both below, or one above

and one below the cluster being moved.

Figure 5.12: Level lines of a simple example of G for p = .5 and λ = 1

5.3.1 ht Algorithm for L1 pTV

Again, we use the proof of Lemmas 5.12 and 5.13 to write an algorithm to find minimizers of

(5.68). We let C(k)
1 , . . . ,C(k)

qk be the unique clusters at iteration k. Using the lemmas, we write the

conditions on λ for a cluster to move at iteration k. We let qg, qe, and q` be as we defined them in
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Subsection 5.2.5. To move a cluster that has one neighbor above and one neighbor below, we let

ηa be the distance from the cluster to the neighbor above the cluster and ηb be the distance from

the cluster to the neighbor below the cluster. And we consider moving the cluster up a distance

η = min {ηa, { fi − ui : when fi > ui, ui ∈ Ci}}. The algorithm will find descent in this case if

0 < λ <
η

p
a − (ηa − η)p + η

p
b − (ηb + η)p

η(qg − q` + qe)
. (5.69)

Notice that since qg − q` + qe > 0, we need

0 < ηp
a − (ηa − η)p + η

p
b − (ηb + η)p. (5.70)

This happens only when ηa < ηb. Now we consider moving the cluster up a distance η =

min{ηb, {ui − fi : when fi < ui, ui ∈ Ci}. The algorithm will find descent in this case if

0 < λ <
η

p
a − (ηa + η)p + η

p
b − (ηb − η)p

η(−qg + q` + qe)
. (5.71)

Similar to the previous case, we need that ηb < ηa for this to make sense. To move a cluster that has

both neighbors above, we let η` be the distance from the cluster to its left neighbor and ηr be the

distance from the cluster to its right neighbor. And we consider moving the cluster up a distance

η = min{η`, ηr, { fi − ui : when fi > ui, ui ∈ Ci}. The algorithm will find descent in this case if

0 < λ <
η

p
r − (ηr − η)p + η

p
` − (η` − η)p

η(qg − q` + qe)
. (5.72)

Finally, To move a cluster that has both neighbors below, we let η` be the distance from the cluster

to its left neighbor and ηr be the distance from the cluster to its right neighbor. And we consider

moving the cluster up a distance η = min{η`, ηr, {ui − fi : when fi < ui, ui ∈ Ci}. The algorithm
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will find descent in this case if

0 < λ <
η

p
r − (ηr + η)p + η

p
` − (η` + η)p

η(−qg + q` + qe)
. (5.73)

Using the above information, we see that our algorithm should only check the conditions for

moving a cluster up when the closest neighbor is above the cluster. Similarly, we should only

check the condition for moving a cluster down when the closest neighbor is below the cluster.

As in Algorithm 5.3, we let gi, ei, `i be qg, qe, q` for cluster, i. In the algorithm below, we let

Qup = {gi − `i + ei : 1 ≤ i ≤ m} and Qdwn = {−gi + `i + ei : 1 ≤ i ≤ m}.

Algorithm 5.4. (L1 pTV)
Given f = ( f1, . . . , fm);
Set u(0) = (u(0)

1 , . . . , u(0)
m ) = ( f1, . . . fm);

Find C(0)
1 ,C(0)

2 , . . . ,C(0)
q0 ;

Compute Set k ← 1;
for i = 1 : m

Compute λi according to Eqs. (5.69), (5.71), (5.72), and (5.73));
end
do

Find mvcl = arg maxi{λi};
Set λ∗k ← λmvcl;
if λ∗k < 0, stop do loop
Set ηr ← |ur − u|, η` ← |u` − u|;
η← min

{
ηr, η`,min f j,u j∈Cmvcl

{
| f j − u j| : α( f j − u j) > 0

}}
;

Compute αmvcl according to 5.5 using ur, u`,Qupi ,Qdwni , ηr, η`;
Move Cmvcl the distance ηαmvcl

k ← k + 1
Update list of clusters, [C(k)

1 , . . . ,C(k)
qk ];

Compute λi for clusters that change;
if λ∗k < λ

∗
k−1

Append list of solutions with [C1, . . . ,Cqk];
Append list of λ∗ with λ∗k;

end
until no descent exists.

Table 5.8: L1 pTV algorithm
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Algorithm 5.5. (α)
Given u, ur, u`,Qup,Qdwn, ηr, η`;
if ur, u` > u

α← 1;
elseif ur > u and ηr < η`

α← 1;
elseif u` > u and η` < ηr

α← 1;
elseif η` = ηr

if u` > u or ur > r
if 0 ≤ Qup < Qdwn or Qdwn < 0 ≤ Qup

α← 1;
elseif Qup = Qdwn

α← preferred direction (up=1,down=-1);
end

end
else

α← −1;
end

Table 5.9: L1 pTV algorithm

In words, this algorithm starts at u(0) = f and finds all of the clusters. The cluster with the max-

imum λcut (according to Equations (5.69), (5.71), (5.72), and (5.73)) is moved in the appropriate

direction to the nearest neighbor or nearest fi for i ∈ {i : ui ∈ Ci}. We continue this until stopping

conditions are reached. As in the L1TV algorithm, stopping conditions depend upon the type of

boundary conditions, that is, whether they are fixed or free boundary conditions.

Notice that since the iterations of Algorithm 5.4 stay in Y (see Definition 5.2), we know that

it is also a finite ht algorithm. From Lemmas 5.12 and 5.13 we know that at each iteration, the

algorithm finds strict decent. G ≥ 0, so is bounded below. We can see that G is coercive. Indeed,

we have

G =

m∑
i=0

|ui+1 − ui|
p + λ

m∑
i=1

| fi − ui| ≤ λ

m∑
i=1

| fi − ui| ≤ λ

m∑
i=1

(|ui| − | fi|)→ ∞ as |u| → ∞. (5.74)

We do not have a convexity condition so we are only able to conclude that this algorithm finds
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local minima.

Like Algorithm 5.1, Algorithm 5.4 steps to the hyperplanes where G is nonsmooth and stays in

the lower dimensional space. So, this algorithm finds minimizers of lower and lower dimensional

problems. The clusters also only get larger, therefore because we operate on clusters rather than

the signal, the algorithm increases in efficiency as we progress through the iterations. Because we

cannot guarantee that the effective cluster size is nondecreasing, we cannot be assured that we get

a local minimizer for every λ > 0. We can also see from Figures 5.13, 5.14, 5.15, and 5.16 that

Figure 5.13: Level lines for the discretized L1 pTV , G(u1, u2), with λ = 1 and p = .1

in Y , there are local minimizers and saddle points (we marked the u2 = f2, u + 3 = f3 with black

lines to make them more visible). We can also see that as p ↗ 1, the plot looks more and more

like Figure 5.1.

Also for Algorithm 5.4, we don’t get a minimizers at the end of each iteration. This happens
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Figure 5.14: Level lines for the discretized L1 pTV , G(u1, u2), with λ = 1 and p = .5
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Figure 5.15: Level lines for the discretized L1 pTV , G(u1, u2), with λ = 1 and p = .7
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Figure 5.16: Level lines for the discretized L1 pTV , G(u1, u2), with λ = 1 and p = .9
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because the effective cluster size can increase or decrease. The iterations that end with minimizers

are those for which λ decreases in the next iteration. Notice if λ increases in the next iteration,

we are still finding descent for the current λcut value. For example, if λ(k)
cut = 10 we know that at

iteration k, we find descent whenever λ < 10. If the maximum λ that will give descent at iteration

k + 1 is larger than 10, then we know that we will find descent for λ < 10 since λ(k+1)
cut > 10.

Figures 5.17, 5.18, 5.19, and 5.20 show (λ,min G) from Algorithm 5.4 for p = .1, .4, .7, .9,

respectively on a simple signal with two flat bumps (See Example 6.2. For the case of Algorithm

5.4, since G is linear in λ, we draw these lines for each of the λcut and the corresponding minimiz-

ing solution. The points plotted are at those λ for which the lines corresponding to consecutive

iterations intersect. We also notice that as p → 1, the plot looks more and more like the plots in

Figure 5.11.

Figure 5.17: min G vs λ given by Algorithm 5.4, for p = .1
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Figure 5.18: min G vs λ given by Algorithm 5.4, for p = .4

Figure 5.19: min G vs λ given by Algorithm 5.4, for p = .7
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Figure 5.20: min G vs λ given by Algorithm 5.4, for p = .9

5.4 p-Variation, the λ = 0 case

In this section, we formulate the β = 0 version of (2.1),

min
∫

Ω

|u′|p dx, for 0 < p < 1, (5.75)

as a discrete problem. We do this by setting λ = 0 in (5.2) to get

min
u∈F ,x

G =

m∑
i=0

|ui+1 − ui|
p (xi+1 − xi)1−p : xi ≤ xi+1

 , (5.76)

where F is the set of piecewise linear continuous functions. We now introduce another hyperplane

traversal algorithm. Here we have a partition x1, . . . , xm of Ω with xi+1 > xi and x0 = a, xm+1 =

b, u0 = α, um+1 = β are fixed boundary values. Notice that G is nonsmooth (or not differentiable) at

any point (x, u) where at least one of ui = ui+1 or ui = ui−1 holds. Where G is smooth, we compute
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the gradient of G at (x, u) = (x1, . . . , xm, u1, . . . , um) to be

∇G(x, u) =



(1 − p)
(
|u1−u0 |

p

(x1−x0)p −
|u2−u1 |

p

(x2−x1)p

)
...

(1 − p)
(
|um−um−1 |

p

(xm−xm−1)p −
|um+1−um |

p

(xm+1−xm)p

)
p
(

(x1−x0)1−p

|u1−u0 |1−p sgn(u1 − u0) − (x2−x1)1−p

|u2−u1 |1−p sgn(u2 − u1)
)

...

p
(

(xm−xm−1)1−p

|um−um−1 |1−p sgn(um − um−1) − (xm+1−xm)1−p

|um+1−um |1−p sgn(um+1 − um)
)



. (5.77)

Now we give some lemmas about the function G. First, we show that G has no local minima.

That is, since G is nonconvex, if G has no local minima, all minima of G must be global minima

Lemma 5.15. If (x∗, u∗) = (x1, . . . , xm, u1, . . . , um) is not a global minimizer for G defined in Equa-

tion (5.76), then there exists a descent direction for G at (x∗, u∗).

Proof. First, we refer to Equation (5.77). We have 3 possible cases.

1. ∇G , 0 exists at (x∗, u∗):

Then (x∗, u∗) is not a minimum (local or global) and thus −∇G(x∗, u∗) is a descent direction.

2. ∇G = 0:

Then
|u1 − u0|

p

(x1 − x0)p = . . . =
|um+1 − um|

p

(xm+1 − xm)p .

⇒
|u1 − u0|

x1 − x0
= . . . =

|um+1 − um|

xm+1 − xm
. (5.78)

And
(x1 − x0)1−p

|u1 − u0|
1−p sgn(u1 − u0) = . . . =

(xm+1 − xm)1−p

|um+1 − um|
1−p sgn(um+1 − um). (5.79)

125



Using (5.78) and (5.79), we get

sgn(u1 − u0) = . . . = sgn(um+1 − um).

And, so

⇒
u1 − u0

x1 − x0
= . . . =

um+1 − um

xm+1 − xm
.

Which implies that the function defined by u(x∗) = u∗ is the line, u(x) = um+1−u0
xm+1−x0

(x − x0) + u0.

A descent direction at (x∗, u∗) is given by

v = (0, . . . , 0, 1, 0, . . . , 0) ∈ R2m,

where the 1 is in the (m + k)th position (0 < k ≤ m). That is, if ε > 0 then we need to show

that v is a descent direct, that is,

G((x∗, u∗) + εv) < G(x∗, u∗), (5.80)

for ε > 0 small enough.

First, let C be the slope of the line through the points (xi, ui), 0 ≤ i ≤ m + 1. That is,

ui+1 − ui

xi+1 − xi
= C, ∀ 0 ≤ i ≤ m + 1.

Assume also, without loss of generality that C > 0. Then ui+1−ui > 0 for each i and we have

G(x∗, u∗) =

m∑
i=0

(ui+1 − ui)p(xi+1 − xi)1−p =

m∑
i=0

(
ui+1 − ui

xi+1 − xi

)p

(xi+1 − xi) = Cp(xm+1 − x0).
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And,

G((x∗, u∗) + εv) =

k−2∑
i=0

(ui+1 − ui)p(xi+1 − xi)1−p +

(
uk + ε − uk−1

xk − xk−1

)p

(xk − xk−1) +(
uk+1 − ε − uk

xk+1 − xk

)p

(xk+1 − xk) +

m∑
k+1

(ui+1 − ui)p(xi+1 − xi)1−p

= Cp(xk−1 − x0) + Cp(xm+1 − xK+1) +

(
uk + ε − uk−1

xk − xk−1

)p

(xk − xk−1) +(
uk+1 − ε − uk

xk+1 − xk

)p

(xk+1 − xk)

= G(x∗, u∗) + Cp(xk − xk−1)
((

uk + ε − uk−1

uk − uk−1

)p

− 1
)

+Cp(xk+1 − xk)
((

uk+1 − ε − uk

uk+1 − uk

)p

− 1
)
. (5.81)

Using a Taylor expansion, centered about ε = 0, we can write this as

G((x∗, u∗) + εv) = G(x∗, u∗) + Cp

(
p
C
ε +

p(p − 1)
2C(uk − uk−1)

ε2 + O(ε3)
)

+

Cp

(
−

p
C
ε +

p(p − 1)
2C(uk+1 − uk)

ε2 + O(ε3)
)

= G(x∗, u∗) + Cp

(
p(p − 1)

2C

(
1

(uk − uk−1)
+

1
(uk+1 − uk)

)
ε2 + O(ε3)

)

Now, 0 < p < 1 gives us a negative coefficient on ε2. Thus, we can find an ε small enough

so that (5.80) holds.

3. ∇G(x∗, u∗) does not exist:

Let’s define the indexing sets

A = [2,m] ∩ Z, I = {i ∈ A : xi = xi−1} and J = { j ∈ A : u j = u j−1}.
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We can see from ∇G in equation (5.77), that if

I , ∅, J , ∅, x1 = x0, xm = xm+1, u1 = u0, um = um+1,

or some combination of these, then ∇G does not exist. For now, let us consider only the case

where I , ∅ and J , ∅. Say

|I| = l and |J| = k,

where | · | denotes cardinality.

Let

H =
⋃
i∈I

{xi = xi−1} ∪
⋃
j∈J

{u j = uu−1}

be the union of hyperplanes where ∇G does not exist. We find descent of G inH . To do this,

we consider the function, G̃,

G̃ : R2m−l−k → R defined by G̃(x̃, ũ) = G(x̂, û),

where x̃ ∈ Rm−l is the point formed from the components of x∗ whose index is not in I,

ũ ∈ Rm−k is the point formed from the components of u∗ whose index is not inJ , x̂ ∈ Rm and

û ∈ Rm are points in the union,H , of the hyperplanes that correspond to x̃ and ũ respectively.

The gradient, ∇G̃, exists and gives a descent direction in R2m−l−k. Since G|H and G̃ are

equivalent, we can construct the vector, v, in H corresponding to ∇G. We form v from ∇G

but changing the components corresponding to coordinates whose indices are in I or J so

that v points inH . That is, if i ∈ I, then xi = xi−1 and we find that ∂G
∂xi

and ∂G
∂xi−1

do not exist.

So, we replace both of these components in ∇G with ∂G̃
∂xi−1

. Similarly, if j ∈ J , we replace

the components, ∂G
∂u j

and ∂G
∂u j−1

in ∇G with ∂G̃
∂u j−1

.

Now, to deal with the cases when x1 = x0, xm = xm+1, u1 = u0, um = um+1, we replace the
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components of ∇G,
∂G
∂x1

,
∂G
∂xm

,
∂G
∂u1

,
∂G
∂um

,

with 0, respectively. We then see that −v is a descent direction for G which points inH .

�

For clarity in part (c) of the above argument, we consider the example:

Example 5.2. Let m = 5,I = {4},J = {2}, u5 = u6. Recall, x0, u0, x6, u6 are all fixed. So we write

G̃ as

G̃(x1, x2, x3, x5, u1, u3, u4) = G(x1, x2, x3, x3, x5, u1, u1, u3, u4, u6)

= |u1 − u0|
p(x1 − x0)1−p + |u3 − u2|

p(x3 − x2)1−p + |u6 − u4|
p(x5 − x3)1−p.

We construct v:

v =



∂G
∂x1

(x∗, u∗)

∂G
∂x2

(x∗, u∗)

∂G̃
∂x3

(x1, x2, x3, x5, u1, u3, u4)

∂G̃
∂x3

(x1, x2, x3, x5, u1, u3, u4)

∂G
∂x5

(x∗, u∗)

∂G̃
∂u1

(x1, x2, x3, x5, u1, u3, u4)

∂G̃
∂u1

(x1, x2, x3, x5, u1, u3, u4)

∂G
∂u3

(x∗, u∗)

∂G
∂u4

(x∗, u∗)

0


Now we characterize the set of stationary points of the function G. It turns out that the set of

stationary points are points (x, u) so that u(x) is affine.
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Lemma 5.16. Define

S = {(x, u)|∇G(x, u) = 0},

with G, defined as in Equation (5.76), and fix (x, u) = (x1, . . . , xm, u1, . . . , um), with xi+1 > xi

then (x, u) ∈ S if and only if ∃ a continuous affine function u : R → R so that u(xi) = ui and

u(a) = α, u(b) = β for real numbers α , β.

Proof. Let G be defined as in Equation (5.76).

We start by assuming the existence of the linear function u so that u(xi) = ui and we will show

that (x, u) = (x1, . . . , xm, u1, . . . , um) ∈ S. We know that, since u is linear,

u(x) − u(y)
x − y

= C,

Since C , 0, xi+1 > xi tells us that sgn(ui+1 − ui) is either always 1 or always −1. Without loss of

generality, let sgn(ui+1 − ui) = 1, ∀i. As in the definition of f , we use the notation x0 = a, xm+1 =

b, u0 = α, um+1 = β. Thus

∣∣∣∣∣ui − ui−1

xi − xi−1

∣∣∣∣∣ =

∣∣∣∣∣u(xi) − u(xi−1)
xi − xi−1

∣∣∣∣∣ = |C|,

and

(1 − p)
[∣∣∣∣∣ui − ui−1

xi − xi−1

∣∣∣∣∣p − ∣∣∣∣∣ui+1 − ui

xi+1 − xi

∣∣∣∣∣p] = (1 − p) (|C|p − |C|p) = 0,

for i = 1 . . .m. Also,

p
[∣∣∣∣∣ xi − xi−1

ui − ui−1

∣∣∣∣∣1−p

sgn(ui − ui−1) −
∣∣∣∣∣ xi+1 − xi

ui+1 − ui

∣∣∣∣∣1−p

sgn(ui+1 − ui)
]

= p
(

1
|C|1−p −

1
|C|1−p

)
= 0,

for i = 1 . . .m. Thus, by Equation (5.77), ∇G(x, u) = 0 and so (x, u) ∈ S.

Now, we assume (x, u) ∈ S. Then ∇ f (x, u) = 0. That is,

∣∣∣∣∣ui − ui−1

xi − xi−1

∣∣∣∣∣p − ∣∣∣∣∣ui+1 − ui

xi+1 − xi

∣∣∣∣∣p = 0 and
∣∣∣∣∣ xi − xi−1

ui − ui−1

∣∣∣∣∣1−p

sgn(ui − ui−1) −
∣∣∣∣∣ xi+1 − xi

ui+1 − ui

∣∣∣∣∣1−p

sgn(ui+1 − ui) = 0.
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First, notice that the terms in the equations above must be nonzero because

if
∣∣∣∣∣ui − ui−1

xi − xi−1

∣∣∣∣∣p = 0, =⇒

∣∣∣∣∣ xi − xi−1

ui − ui−1

∣∣∣∣∣1−p

sgn(ui − ui−1) is undefined.

Notice, also, that in order for equality to hold, sgn(ui+1 − ui) must always be 1 or always −1 for

otherwise, we could not add two negative or two positive real numbers and get 0. So, let us again,

without losing generality, choose sgn(ui+1 − ui) = 1, ∀i. So

|ui − ui−1|

xi − xi−1
=
|ui+1 − ui|

xi+1 − xi

That is,
ui − ui−1

xi − xi−1
=

ui+1 − ui

xi+1 − xi
∀i = 1 . . .m.

To complete the proof, we define u : R → R to be the linear function, u(x) = C(x − a) + α, where

C is defined by

C ≡
ui − ui−1

xi − xi−1
.

�

Note: There are special cases, not covered in the above statement, where u is a line, but ∇G

does not exist. These cases are when α = β or when xi+1 = xi for some i.

Notice that Lemma 5.16 gives us stationary points for (5.76) when xi < xi+1, but if we consider

allowing xi = xi+1, we can see that G = 0 whenever (x, u) is a step function. This is easily seen

because for a step function, in any interval, either xi = xi+1 or ui = ui+1. So, as we saw in Chapter

2, step functions are minimizers of G.

With this understanding of G and, again, recognizing that G is nonsmooth on the hyperplanes

where ui = ui+1, ui = ui−1, xi = xi−1, or xi = xi+1 for some 1 ≤ i ≤ m − 1, we consider an algorithm

to find minimizers of G.
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5.4.1 ht Algorithm for p-Variation

In Figures 5.22 and 5.24, we plot some level curves for simple examples of G with m = 2. In these

figures, dark blue represents the lowest values of G and crimson represents the highest values. We

see in these figures that G attains its minimizers along the hyperplanes where G is nonsmooth. This

suggests that a good algorithm for finding the minimizer of (5.76) is one that steps to a hyperplane

and in the hyperplane steps to another hyperplane always remaining on hyperplanes to which we

have stepped.

Figure 5.21: Level lines for the discretized p-variation, G(u1, u2) = |u1|
.5 + |u2 − u1|

.5 + |1 − u2|
.5.

In words Algorithm 5.6 starts with a point where ∇G exists and is nonzero. Otherwise, we take

a small step in a direction to get to a point where ∇G exists and is nonzero. From this point, we

step to the closest point where ∇G is undefined, in the direction of −∇G. The points to which we

step are those where ui = ui+1, ui = ui−1, xi = xi+1, or xi = xi+1 for some 1 ≤ i ≤ i − 1. Using
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Figure 5.22: Level lines for the discretized p-variation, G(u1, u2) = |u1|
.4 + |u2 − u1|

.4 + |1 − u2|
.4
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Figure 5.23: Level lines for the discretized p-variation, G(u1, u2) = |u1|
.7 + |u2 − u1|

.7 + |1 − u2|
.7
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Figure 5.24: Level lines for the discretized p-variation, G(u1, u2) = |u1|
.9 + |u2 − u1|

.9 + |1 − u2|
.9
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Algorithm 5.6. (p-Variation)
Choose (x(0), u(0)) = (x(0)

1 , . . . , x(0)
m , u(0)

1 , . . . , u(0)
m ) ∈ R2m so that ∇G exists and

is nonzero.;
Set n0 ← 2m;
Set G(0) ← G;
Set d(0) ← ∇G(0)(x(0), u(0));
Set k ← 0;
do

αk ← min{α : I((x(k), u(k)) + αd(k)) ∪ J((x(k), u(k)) + αd(k)) , ∅};
(x(k+1), u(k+1))← (x(k), u(k)) + αkd(k);
k ← k + 1;
nk ← nk−1 − |I(x(k), u(k)) ∪ J(x(k), u(k))|;
Reformulate G(k−1) to get G(k);
Set d(k) ← ∇G(k);

until nk = 0

this information, we can reformulate the problem to a lower dimensional problem. With the new

problem, we start again. It should be noted that there is a chance that in stepping to a point where

G is nonsmooth, we may also reach a saddle point so that in the reformulated problem, ∇G = 0.

In this case, we do as above and move in any direction along the hyperplane in which we stepped

(ui = ui+1 or xi = xi+1). In the reformulation step, we consider a new function G̃ whose domain

is now the intersection of the hyperplanes to which we have already stepped, but whose function

values are the same as those of G.

In this algorithm, we start away where G is smooth, so that the gradient of G exits. But, we still

step to the hyperplanes where G is nonsmooth, looking for solutions where in Y . Since we stay in

Y and we find descent at each iteration, we find minu∈Y G. Recall that |Y | < ∞ so this algorithm is

also finite.

5.5 Algorithms Summary

In this chapter we reformulated the functional

min
∫

Ω

|∇u|p + λ| f − u| dx (5.82)
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into a discrete function. We recognize the structure of this function, more specifically that the

function is nonsmooth on hyperplanes of the form {ui = u j} and {ui = fi}, where u = (u1, . . . , um)

and f = ( f1, . . . , fm). We then use this structure to formulate what we call hyperplane traversal al-

gorithms to quickly, and in finitely many iterations, find minimizers for L1TV and local minimizers

for L1 pTV for all λ > 0. The most remarkable thing about our L1TV algorithm is that it solves the

minimization problem with the computational cost of only solving the λ = 0 problem since it finds

all other λ solutions along the way. In this chapter, we proved that our L1TV ht algorithms are

finite and converge to a minimizer. We also discuss the convergence and finiteness of our L1 pTV

ht algorithm to a local minimizer. Finally, we introduce an ht algorithm to solve the p-variation

minimization problem.

We ran some time trials that seem to indicate that Algorithm 5.3 is of order o(aN + m), where

N is the signal length and M is the number of initial clusters. Our time tends to deviate from this

estimate for large N, but we suspect this is due to memory usage with in Matlab.
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CHAPTER SIX

DENOISING AND SCALE SIGNATURES FOR 1-DIMENSIONAL
SIGNALS

In this chapter we show the results of denoising 1-dimensional signals using both Algorithm 5.3

for L1TV and Algorithm 5.4 for L1 pTV . We compare results from our Hyperplane Traversal (ht)

algorithms to the expected results discussed in [4, 24, 6] for denoising with L1TV and in [8] for

denoising using L1 pTV . Inspired by the results of [30] we use L1TV signatures using Algorithm

5.3 to find scales in 1-dimensional signals.

6.1 Denoising

In the next two subsections, we will denoise synthetic signals using our ht algorithms to show that

our algorithms produce expected results based on the analysis of [4, 6, 24, 8].

6.1.1 L1TV Examples

We begin our denoising examples using our Algorithm 5.3 on several test signals.

Example 6.1. (Stationary Gaussian noise) First, we observe that Algorithm 5.3 removes stationary

Gaussian noise for large λ (small scales). See Figure 6.1. We can see that the noise is removed,

but there is a change in signal intensity.

Example 6.2. (Simple denoising) Here, we consider a simple example of a noisy signal (See

Figure 6.2. Using L1TV , we expect to lose small scales in the data first. In this example it looks
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Figure 6.1: Denoising, using Alg 5.3 for L1TV , a signal of stationary Gaussian noise. Blue: ground
truth.
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like the noise is of a scale close to 1 or 2 data points. We look at the L1TV minimizers given by

our algorithm for λcut <
2
s . We choose λ to be the values 2

3 ,
1
4 , and 1

5 . For λ = 2
3 , scales of size 3 are

removed and we see that the noise is mostly gone, with some effects still present. For λ = 1
4 , we

see that scales of size 8 are removed and almost all effects of the noise are gone. We do lose small

scales if we set λ to be too small as can be seen when λ = 1
5 , we lose the small gap between the

two bumps. This gap has scale 10. We also see that intensities at the jump discontinuities are not

completely preserved as is expected with L1TV [6, 30]. We also see that for scale 5, the result is

rather close to recovering the original signal.

In Figure 6.3 we show the effects of denoising the same signal with more noise. We see similar

results are obtained even in this higher noise case. We see that we remove most noise as λ ↘ 0

just before losing the small scale (size 10) feature. But, we see that the effects of noise in the flat

regions are still more visible, than the lower noise example, just before we lose this gap between

the two bumps. Also, at jump discontinuities there is even less preservation of signal intensity due.

It is more clear with higher noise that there is some intensity loss as well.

In these two examples, using Algorithm 5.3, we were able to recover the original signal in the

condition that we would expect using L1TV . In comparing to the known results for L1TV , we

observe the same loss of small scale objects in the signal by decreasing λ.

Example 6.3. (Denoising a sinusoidal signal) In this example, we consider a sinusoidal signal with

additive Gaussian noise (see Figure 6.4). We use Algorithm 5.3 to denoise this signal using a free

boundary conditions (allowing the boundaries to move). As λ ↘ 0 (scale↗ ∞) we observe that

the small scale (noise) is removed, but at the expense of losing signal intensity. We see also that as

the boundaries move, we lose some of the periodicity of the signal.

Example 6.4. (Denoising a sinusoidal signal with fixed boundaries) As in Example 6.3, we con-

sider a sinusoidal signal with additive Gaussian noise, but in this example we fix the boundaries.

Notice (see Figure 6.5) that with fixed boundaries, we see better preservation of the periodicity

even for larger scales. The effects of signal intensity is the same as in Example 6.3.
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Figure 6.2: Denoising, using Alg 5.3 for L1TV , on a simple noisy signal. Blue: ground truth.

141



Figure 6.3: Denoising, using Alg 5.3 for L1TV , on a simple noisy signal with higher noise. Blue:
ground truth.
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Figure 6.4: Denoising, using Alg 5.3 for L1TV , a signal composed of noise and a single sine. Blue:
ground truth.
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Figure 6.5: Denoising, using Alg 5.3 for L1TV (with fixed boundaries), a signal composed of noise
and a single sine. Blue: ground truth.

144



Example 6.5. (Denoising) Finally, we test Algorithm 5.3 on a sinusoidal signal with three fre-

quencies and with additive Gaussian noise (see Figure 6.6). In this example, we again see for large

λ that most of the small scale noise is removed. We also see that as we decrease λ, more of the

smaller scale (higher frequency sines) features are removed. And, as in Example 6.3, the height of

the signal drops as λ↘ 0.
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Figure 6.6: Denoising, using Alg 5.3 for L1TV , a signal composed of noise and the sum of sines.
Blue: ground truth.
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6.1.2 L1 pTV Examples

In this subsection, we show our ht algorithm for L1 pTV denoising the same signals from Subsec-

tion 6.1.1. In these examples we call 2/λ scale. This does not imply that these values are scales in

our signal as they are not, in general.

Example 6.6. (Stationary Gaussian noise) First, consider a signal made of only noise. We observe

that, as expected, Algorithm 5.3 removes small scale stationary Gaussian noise for large λ with

very little change in signal intensity. See Figure 6.7.

Example 6.7. (Simple denoising) Next, we consider the signal used in Example 6.2 having two

steps close together. We used Algorithm 5.4 to denoise this signal. Notice in Figure 6.8 that the

small scale noise is removed at scale= 5 and this happened before losing the gap between the

two steps. Here, we see that the signal is denoised without losing corners and signal intensity as

expected using L1 pTV [8].

As in Subsection 6.1.1, we added more noise to this simple signal. In Figure 6.9 we see that the

result when λ = 2/5 (scale= 5) is a denoised signal that almost exactly matches the original. We

also see that for λ much smaller (scale= 50) we begin to lose small scale features. As we expected,

using L1 pTV , we preserve the features of the signal better than with L1TV even with higher noise.

Example 6.8. (Denoising a sinusoidal signal) We continue with the signal given in Example 6.3

(see Figure 6.10). We use Algorithm 5.67 to denoise this signal. We see that as λ decreases, the

signal becomes blocky, but the noise is reduced before λ = 2/3.

Example 6.9. (Denoising a sinusoidal signal with fixed boundaries) As in Example 6.4, we de-

noise the noisy sinusoidal signal using fixed boundaries. We see, like we saw with L1TV that the

periodicity is preserved for more values of λ.

Example 6.10. (Denoising a signal made of the sum sines) Here we denoise the noisy sine wave

from Example 6.5 (see Figure 6.12). We see that as λ decreases, the noise is reduced quickly as we
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Figure 6.7: Denoising, using Alg 5.4 for L1 pTV , a signal of stationary Gaussian noise. Blue:
ground truth.
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Figure 6.8: Denoising, using Alg 5.4 for L1 pTV , on a simple noisy signal with higher noise. Blue:
ground truth.
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Figure 6.9: Denoising, using Alg 5.4 for L1 pTV , on a simple noisy signal with higher noise. Blue:
ground truth.
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Figure 6.10: Denoising, using Alg 5.4 for L1 pTV , a signal composed of noise and a single sine.
Blue: ground truth.
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Figure 6.11: Denoising, using Alg 5.4 for L1 pTV (with fixed boundaries), a signal composed of
noise and a single sine. Blue: ground truth.
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saw with L1 pTV . We also see that as we let λ↘ 0 smaller scale features are lost, but the height of

the signal is preserved longer.

Figure 6.12: Denoising, using Alg 5.4 for L1 pTV , a signal composed of noise and the sum of sines.
Blue: ground truth.
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6.2 Scale Signatures

In [30], the authors use L1TV signatures to find scale information in images. We now look at

several examples using L1TV signatures to show that with Algorithm 5.3 we also find scale infor-

mation in 1-dimensional signals. With our algorithm, we have the added benefit of not needing to

choose at which λ we want to use to create the signature because we have the minimizers for all

λ > 0 so we can use them all.

Example 6.11. (Simple Scale information) First we consider a simple signal with four scales,

50, 150, 500, and 1000. We compute the variation, sv(λ) and data fidelity, s f (λ), terms for all

0 < λ < 2. We find the discrete derivative (using simple forward differencing) of sv and s f to get

scale signature plots. In the scale signature plots of Figure 6.13, we see peaks corresponding to the

scales in our simple signal. As L1TV finds scales, our algorithm will also find simple scales in a

1-dimensional signal.

Example 6.12. (Single Sine Wave) In this example, we consider another simple signal, this time

of a sine wave (see Figure 6.14) with a period of 50. Because the peaks gradually disappear and

are symmetric, the variation and the fidelity do not change on every other scale size. Taking this

into account, we see that there is really only one peak in the signature near 25 which is half the

period.

Example 6.13. (Random Signal) For this example we consider a general random signal. For ran-

dom signals, we expect to find only small scales (near 1) because there are no objects or structure

in the signal. That is, since every data point of the signal is not linked to another, we expect that

the only scale in the signal to be of size 1. In Figure 6.15, we see that the scale signature plots

indicate that this is the case.

Example 6.14. (Random Binary) In this example, we consider a random binary signal. Like the

random signal in Example 6.13, we expect the scale signatures for a random binary signal to

indicate only small scale features. Figure 6.16 shows this to be the case.
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Figure 6.13: Finding scales using Alg 5.3 for a signal with 4 scales (top). Signatures are discrete
derivatives of the variation (left) and fidelity (right) terms.
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Figure 6.14: Finding scales using Alg 5.3 for a sinusoidal signal with a period of 50. Signatures
are discrete derivatives of the variation (left) and fidelity (right) terms.
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Figure 6.15: Finding scales using Alg 5.3 for a random signal. Signatures are discrete derivatives
of the variation (left) and fidelity (right) terms.
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Figure 6.16: Finding scales using Alg 5.3 for a random binary signal. Signatures are discrete
derivatives of the variation (left) and fidelity (right) terms.
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Example 6.15. (Noisy Sine Wave) In this example, we revisit the noisy sine wave of Example 6.3

(see Figure 6.17. Here we expect to see the small scales from the noise, but also something in the

signature to indicate the scale related to the period of the sine wave. In the signature corresponding

to the data fidelity term, we see a spike near 1 indicating the small scale noise. We also see

something indicating a scale near 40. In this case, the sine function we used is sin
(
π
50 x

)
. So we

expected to see an indication of a scale near 50.

Figure 6.17: Finding scales using Alg 5.3 for a noisy sinusoidal signal. Signatures are discrete
derivatives of the variation (left) and fidelity (right) terms.
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6.3 Examples Summary

In this chapter we showed several examples that give the expected results for both L1TV and

L1 pTV . We were able to denoise signals using our ht algorithms for L1TV and L1 pTV That is, for

L1TV , we see that we can eliminate small scale noise by decreasing λ and finding minimizers. We

see that there is a loss of signal height as λ ↘ 0 as is discussed in [6, 24, 4]. We see that steps are

preserved when denoising using L1 pTV as expected from [8]. We also showed that our algorithm

for L1TV will give signatures that pick out the scales in 1-dimensional data as suggested in [30].
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CHAPTER SEVEN

Conclusion

In this work, we studied problems of the form

min
∫

Ω

|∇u|p + λ| f − u| dx, for 0 < p ≤ 1. (7.1)

We considered the L1TV (p = 1), L1 pTV (0 < p < 1), and p-variation (λ = 0 and 0 < p < 1)

cases. Our goals were to find and understand minimizers for each of the cases.

We began by looking at the p-variation case. In this case, we showed that the set of minimizers

is the convex set of step functions whose jump set has finite area. We also showed that this set

is neither open nor closed. Because the functional
∫

Ω
|∇u|p for p < 1 is nonconvex we are not

guaranteed to find minimizers by finding solutions to the Euler-Lagrange equation. Still, we know

that stationary points for
∫

Ω
|∇u|p are stationary solutions to the corresponding Euler-Lagrange

equation, i.e. the p-Laplacian equation,

0 = ∇ ·
(
|∇u|p−2∇u

)
= |∇u|p−1

(
∇ ·

(
∇u
|∇u|

)
+

p − 1
|∇u|

∇u
|∇u|

T

D2u
∇u
|∇u|

)
. (7.2)

and its parabolic counterpart. Because of the singularity when 0 < p ≤ 1, there are difficulties

in finding weak and viscosity solutions when 0 < p < 1. We do not discuss viscosity solutions

when the domain has higher dimension than 1 because there still needs to be a discussion about

a maximum principle first. Because we are unable to get a bound, using an energy estimate, on

the derivatives, we do not consider weak solution techniques either. To avoid the singularity, we
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introduce and characterize the class of Normal Monotone functions whose domains are in Rn,

where n ≥ 2. We use the curvature interpretation of the right-hand side of Equation (7.2) to

find classical stationary solutions that are Normal Monotone. We found the following families of

classical stationary solutions.

• Affine family: For x ∈ Rn, u(x) = a · x + b, where a ∈ Rn, b ∈ R are constants.

And in n dimensional spherical coordinates (r, θ1, . . . , θn−1)

• Radial family: u(r) = arm + b, where m =
n−p
1−p ,

• Polar family: u(θ j) = a
∫ θ j

b
cscm j θ dθ, where m j =

n− j−1
p−1 , where 1 ≤ j ≤ n− 2 and 0 < θ j < π

and

• Azimuthal family: u(θn−1) = aθn−1 + b where 0 < θn−1 ≤
π
2 .

In each of the cases for (7.1) that we studied, we formulated a discretization, G, for the problem.

We noticed that this discrete function has a nice structure in that it is smooth in convex regions of

its domain and is nonsmooth on hyperplanes. Inspired by this structure, we introduced the finite

Hyperplane Traversal (ht) algorithms. We recognize that G has (local) minimizers in the set of

intersections of m − 1 of these hyperplanes. Exploiting this, the ht algorithms step to points on the

hyperplanes and then remain in these hyperplanes, thus reducing the dimension of the problem and

increasing the efficiency as the algorithm progresses.

For the L1TV problem, our ht algorithm finds a global minimizer for every λ > 0 with the

same computational cost of solving the problem for λ = 0 by picking up these minimizers at each

iteration along the way. Using time trials to estimate the computational cost, we estimate that our

algorithm is of order o(aN + M) for a signal of length N, having M initial clusters, and where

0 < a � 1. In the binary case, we show that the algorithm is of order o(N) + o(M) and in the worst

case is of order o(N). We also tested our algorithm on some test cases to show that the results match

up with those we expect for L1TV . That is, we see that we can use an L1TV signature to pick out
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scales from the data. In signal denoising, we see that for low noise and the right λ (λ < 2/r), small

scales are preserved [30, 6, 1, 2, 3].

For L1 pTV , we also introduce an efficient ht algorithm similar to the algorithm for L1TV . The

difference between this algorithm and the L1TV is that we are not guaranteed to find a global

minimizer. Instead, we find local minimizers. The algorithm finds a set of local minimizers for all

λ > 0, again, with the same computational cost of only solving one problem, the λ = 0 problem.

We used this algorithm on some test signals for denoising to verify that we see same results as in

[8].

Still there are many problems left to consider. In the case of algorithms, it would be nice to

extend the idea of ht algorithms to higher dimensions. We discussed in this work the reason the

current algorithms do not extend, but it seems that the structure of the function G should give

algorithms that are computationally fast. In studying the p-Laplacian evolution equation, we still

desire to find paths through the evolution from an initial function to a stationary solution. A more

in depth study of weak and viscosity solutions is also needed. One should be able to prove a

maximum principle or that it does not exist. There is also much to be explored using the notion of

cone monotonicity in finding minimizers of the p-variation problem and stationary solutions to the

p-Laplacian evolution equation.
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APPENDIX ONE

CALCULUS OF ORTHOGONAL COORDINATE SYSTEMS

A.1 Gradients

In this section we give general formulas for the gradient. Given any orthogonal coordinate system

(q1, q2, . . . , qn) in Rn we compute basis vectors ê1, ê2, . . . , ên. We begin with a position vector in Rn

p = x1e1 + . . . + xnen. (A.1)

To find êi, we find how the position changes as qi changes, that is

êi =

∂p
∂qi

|
∂p
∂qi |

=

∑n
j=1

∂x j

∂qi ei(∑n
j=1

(
∂x j

∂qi

)2
)1/2 . (A.2)

Notice that if {ê1, ê2, . . . , ên} is an orthonormal basis, we must have that êi · êj = 0 whenever i , j

and êi · êi = 1. By constructions, we can see that |êi| = 1. In order for êi · êj = 0, we require that

n∑
k=1

∂xk

∂qi ·
∂xk

∂q j = 0. (A.3)

Next we compute scale factors h1, h2 . . . hn by recognizing that the distance between two points

is preserved no matter the coordinate system in which we are working. So, we consider an in-
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finitesimal distance ds between two points. Using the pythagorean theorem, we can write

ds2 = dx2
1 + dx2

2 + . . . + dx2
n. (A.4)

Using the chain rule we write dx1, . . . , dxn in terms of dq1, . . . , dqn as

dx1 =
∂x1

∂q1 dq1 +
∂x1

∂q2 dq2 + . . . +
∂x1

∂dn (A.5)

dx2 =
∂x2

∂q1 dq1 +
∂x2

∂q2 dq2 + . . . +
∂x2

∂dn (A.6)

... (A.7)

dxn =
∂xn

∂q1 dq1 +
∂xn

∂q2 dq2 + . . . +
∂xn

∂dn (A.8)

(A.9)

Putting these into the above equation gives

ds2 =

 n∑
i=1

∂x1

∂qi dqi

2

+

 n∑
i=1

∂x2

∂qi dqi

2

+ . . . +

 n∑
i=1

∂xn

∂qi dqi

2

(A.10)

=

n∑
i=1

(
∂xi

∂q2

)2 (
dq1

)2
+

n∑
i=1

(
∂xi

∂q2

)2 (
dq2

)2
+ . . . +

n∑
i=1

(
∂xi

∂qn

)2

(dqn)2 (A.11)

≡ h2
1

(
dq1

)2
+ h2

2

(
dq2

)2
+ . . . + hn (dqn)2 . (A.12)

Note: The mixed terms with dqidq j will cancel since the coefficient of dqidq j is
∑n

k=1
∂xk
∂qi ·

∂xk
∂q j which,

by the orthogonal condition (A.3), is zero.

We call the coefficients h1, h2, . . . , hn the scale factors because for a point to move an infinites-

imal distance in the qi direction, the distance ds = h1dqi rather than dqi. This leads us to the

gradient in a general orthogonal coordinate system,

∇q1q2...qn f =

n∑
j=1

1
h j

∂ f
∂q j ê j, (A.13)
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where

h j =

 n∑
i=1

(
∂xi

∂q j

)21/2

. (A.14)

We write ∇q1q2...qn to indicate that the gradient is in the (q1, q2, . . . , qn) coordinate system.

For polar coordinates, we use the following change of variables from rectangular coordinates

compute the scale factors h1, h2.

x = r cos θ (A.15)

y = r sin θ. (A.16)

dx = cos θdr − r sin θdθ (A.17)

dy = sin θdr + r cos θdθ. (A.18)

Putting these into the above equation gives

ds2 = (cos θdr − r sin θdθ)2 + (sin θdr + r cos θdθ)2 (A.19)

=
(
cos2 θ + sin2 θ

)
(dr)2 + (−2r cos θ sin θ + 2r cos θ sin θ) (A.20)

+r2
(
cos2 θ + sin2 θ

)
(dθ)2 (A.21)

= (dr)2 + r2 (dθ)2 . (A.22)

This gives us the scale factors h1 = 1, h2 = r. Thus, the gradient in polar coordinates is

∇r,θ =


∂
∂r

1
r
∂
∂θ

 or ∇r,θ f =

 fr

1
r fθ

 . (A.23)
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For n-dimensional spherical coordinates (r, θ1, θ2, . . . , θn−1), we use the change of variables

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3

... (A.24)

xn−1 = r sin θ1 . . . sin θn−2 cos θn−1

xn = r sin θ1 . . . sin θn−2 sin θn−1

For ease of notation, let S i ≡ sin θi and Ci ≡ cos θi. With these, we compute h1, . . . , hn as

h1 =
(
C2

1 + S 2
1C2

2 + S 2
1S 2

2C2
2 + . . . + S 2

1 · · · S
2
n−2C

2
n−1 + S 2

1 · · · S
2
n−2S 2

n−1

)1/2
= 1.

h2 =
(
−rS 2

1 + rC2
1C2

2 + rC2
1S 2

2C2
2 + . . . + rC2

1 · · · S
2
n−1C

2
n−1 + rC2

1 · · · S
2
n−1S 2

n−1

)1/2

= r. (A.25)

h3 =
(
−rS 2

1S 2
2 + rS 2

1S 2
2C2

2 + r . . . + S 2
1C2

2 · · · S
2
n−2C

2
n−1 + rS 2

1C2
2 · · · S

2
n−1S 2

n−1

)1/2

= r sin θ1.

... (A.26)

hk =
(
−rS 2

1S 2
2 · · · S k−1 + rS 2

1S 2
2S 2

2 · · · S
2
k−2C

2
k−1

+ . . . + rS 2
1 · · · S

2
k−2S 2

k−1 · · · S
2
n−2C

2
n−1 + rS 2

1 · · · S
2
k−2C

2
k−1 · · · S

2
n−2C

2
n−1

+S 2
1S 2

2 · · · S
2
k−2C

2
k−1 · · · S

2
n−2S 2

n−1

)1/2
= r sin θ1 · · · sin θk−2.

167



We then get that ∇rθ1θ2...θn−1 f is given by

∇rθ1θ2...θn−1 f =



fr

1
r fθ1

1
r sin θ1

fθ2

1
r sin θ1 sin θ2

fθ3

1
r sin θ1 sin θ2 sin θ3

fθ4

...

1
r sin θ1··· sin θn−2

fθn−1



. (A.27)

A.2 Hessians

We now use that the Hessian of a function f in any orthogonal coordinate system (q1, . . . , qn) is

computed as the outer product of ∇q1...qn and ∇q1...qn f . That is,

D2
q1q2...qn( f ) =

(
∇q1q2...qn

) (
∇q1q2...qn f

)T
=

 n∑
j=1

h j
∂

∂q j ê j


 n∑

j=1

h j
∂ f
∂q j ê j


T

(A.28)

=


h1

∂
∂q1

...

hn
∂
∂qn


(

h1
∂ f
∂q1 . . . hn

∂ f
∂qn

)
(A.29)

=



h1
∂
∂q1

(
h1

∂ f
∂q1

)
. . . h1

∂
∂q1

(
hi

∂ f
∂qi

)
. . . h1

∂
∂q1

(
hn

∂ f
∂qn

)
...

. . .
...

hi
∂
∂qi

(
h1

∂ f
∂q1

)
hi

∂
∂qi

(
hi

∂ f
∂qi

)
hi

∂
∂qi

(
hn

∂ f
∂qn

)
...

. . .
...

hn
∂
∂qn

(
h1

∂ f
∂q1

)
. . . hn

∂
∂qn

(
hi

∂ f
∂qi

)
. . . hn

∂
∂qn

(
hn

∂ f
∂qn

)


. (A.30)
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In polar coordinates, we get

D2
rθ( f ) =

 frr
∂
∂r

(
1
r fθ

)
1
r fθr 1

r2 fθθ

 . (A.31)

In n-dimensional spherical coordinates we get

D2
rθ1...θn−1

( f ) =

(A.32)

∂2 f
∂r2 . . . ∂

∂r

(
rΠ

j−2
k=1 sin θk

∂ f
∂θ j

)
. . . ∂

∂r

(
rΠn−2

k=1 sin θk
∂ f
∂θn−1

)
...

. . .
...

rΠi−2
k=1 sin θk

∂
∂θi

(
∂ f
∂r

) (
rΠi−2

k=1 sin θk

)2 ∂2 f
∂(θi)2 rΠi−2

k=1 sin θk
∂
∂θi

(
rΠn−2

k=1 sin θk
∂ f
∂θn−1

)
...

. . .
...

rΠn−2
k=1 sin θk

∂2 f
∂rθn−1

. . . . . .
(
rΠn−2

k=1 sin θn−1

)2 ∂2 f
(∂θn−1)2


. (A.33)

A.3 Divergence

In [5] the divergence of F = (F1, . . . , Fn) in any orthogonal coordinate system (q1, . . . , qn) is given

by

∇q1...qn · F =
1

h1 · · · hn

(
∂

∂q1
(h2 · · · hnF1) + . . . +

∂

∂qn
(h1 · · · hn−1Fn)

)
(A.34)

In polar coordinates, this is

∇r,θ · F =
1
r

(
∂

∂r
(rF1) +

∂

∂θ
(F2)

)
. (A.35)

In n-dimensional spherical coordinates the divergence is

∇rθ1...θn · F =

∂
∂r

(
rn−1 sinn−2 θ1 . . . sin θn−2F1

)
+ . . . + ∂

∂θn

(
rn−2 sinn−3 θ1 . . . sin θn−3Fn

)
rn−1Πn−2

i=1 sinn−i−1 θi
(A.36)
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A.4 Computing: ∇|∇u|

In this section, we show that ∇|∇u| = 1
|∇u|D

2u∇u, where D2u is the Hessian of the function u. Note

that |∇u| is a scalar valued function. So to find its gradient we need to compute the first partials of

|∇u|.

∂

∂xi
|∇u| = ∂

∂xi

(∑n
j=1

(
∂u
∂x j

)2
)1/2

= 1
2

(∑n
j=1

(
∂u
∂x j

)2
)−1/2 ∑n

j=1

(
2 ∂u
∂x j

∂2u
∂x j∂xi

)
= 1

|∇u|

∑n
j=1

(
∂u
∂x j

∂2u
∂x j∂xi

)
(A.37)

Putting this together, we write the gradient of |∇u| as

∇|∇u| =
1
|∇u|


∑n

j=1

(
∂u
∂x j

∂2u
∂x j∂x1

)
...∑n

j=1

(
∂u
∂x j

∂2u
∂x j∂xn

)
 . (A.38)

Notice, when writing out the sums above, we can see that this is really the same as a scalar multiple

of the product of the Hessian and the gradient.

∇|∇u| =
1
|∇u|


∂u
∂x1

∂2u
∂x2

1
+ ∂u

∂x2

∂2u
∂x2∂x1

+ . . . + ∂u
∂xn

∂2u
∂xn∂x1

...

∂u
∂x1

∂2u
∂x1∂xn

+ ∂u
∂x2

∂2u
∂x2∂xn

+ . . . + ∂u
∂xn

∂2u
∂x2

n

 =
1
|∇u|

D2u∇u.

Using the above, we can compute ∇|∇u|β, where the regularized gradient is given by

|∇u|β =
√
|∇u|2 + β2 (A.39)
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Again, we start with the partial derivatives of |∇u|β.

∂

∂xi
|∇u|β = ∂

∂xi

(∑n
j=1

(
∂u
∂x j

)2
+ β2

)1/2

= 1
2

(∑n
j=1

(
∂u
∂x j

)2
+ β2

)−1/2 ∑n
j=1

(
2 ∂u
∂x j

∂2u
∂x j∂xi

)
= 1

|∇u|β

∑n
j=1

(
∂u
∂x j

∂2u
∂x j∂xi

)
(A.40)

So,

∇|∇u|β =
1
|∇u|β

D2u∇u (A.41)

171



BIBLIOGRAPHY

[1] William K Allard. Total variation regularization for image denoising, i. geometric theory.

SIAM Journal on Mathematical Analysis, 39(4):1150–1190, 2007.

[2] William K Allard. Total variation regularization for image denoising, ii. examples. SIAM

Journal on Imaging Sciences, 1(4):400–417, 2008.

[3] William K Allard. Total variation regularization for image denoising, iii. examples. SIAM

Journal on Imaging Sciences, 2(2):532–568, 2009.

[4] S. Alliney. A Property of the Minimum Vectors of a Regularizing Functional Defined by

Means of the Absolute Norm. IEEE Trans. Signal Process., 45:913–917, 1997.

[5] G. B. Arfken and H. J. Weber. Mathematical Methods For Physics. Academic Press, London,

fourth edition, 1995.
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