1. Find the equation of the line with slope $m=\frac{2}{3}$ and passing through $(1,3)$. Then, find the intercepts of this line. Draw the line below. (Be sure to label your axes accurately. Don't make 1 too small.)

2. Completely, fill in the unit circle below.

3. Use the unit circle and trigonometric identities to find $\sin \left(\frac{\pi}{12}\right)$.
4. Solve the equation $3 x^{2}+4 x+1=0$ in two ways: Using the quadratic formula and factoring. (Be sure you get the same answer.)
5. Solve the equation $2 x^{2}+8 x+1$ by completing the square.
6. Write the equation of a circle with center $(1,1)$ and radius $r=3$.
7. Find the equation of the parabola passing through the three points: $(1,0)$, and $(2,5)$, and $(-1,8)$.
8. Find the point where the two equations cross: $2 x+3 y=5$ and $3 x-2 y=14$. Draw the equations on the axes provided to show that your solution is correct.

9. Factor the following polynomials completely:
(a) $8 x^{3}-27$
(b) $4 x^{2}-9$
(c) $3 x^{4}-6 x^{3}-9 x^{2}$
(d) $x^{4}-64$
(e) $3 x^{3}-3 x^{2}+4 x-4$
10. Solve or simplify (state the difference before beginning any of these).
(a) $\frac{x-2}{x+4}=3$
(b) $\frac{\frac{2}{x+h}-\frac{2}{x}}{h}$
11. Rationalize the denominator or numerator (whichever begins with radicals)
(a) $\frac{3}{\sqrt{2}}$
(b) $\frac{x}{\sqrt{2 x+1}-\sqrt{x}}$
(c) $\sqrt{x+1}-\sqrt{2 x-1}$
