There are closed forms for some finite sums that are "relatively simple" to come by. For example,

$$
\sum_{k=1}^{n} 1=n, \quad \sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

We get the first one by noticing that we are just adding the number $1 n$ times. So we get $n \cdot 1=n$.
The second we get by rewriting:

$$
\begin{aligned}
\sum_{k=1}^{n} k & =1+2+3+\ldots+(n-2)+(n-1)+n \\
& =(1+n)+(2+(n-1))+(3+(n-2))+\ldots \\
& =(n+1)+(n+1)+(n+1)+\ldots
\end{aligned}
$$

In the above, we pair up the first half of the numbers with the second half of the numbers in the list. So, there are $\frac{n}{2}$ such pairs and they all add to $n+1$. So

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} .
$$

The third sum can be obtained with some trickery...be patient at first.

$$
\sum_{k=1}^{n} k^{3}=\sum_{k=0}^{n} k^{3}=\sum_{k=0}^{n}(k+1)^{3}-(n+1)^{3} .
$$

Let me stop and tell you that we are getting there and that this last step seems magical, but because the $k=0$ term is 0 , we really do start with 1 on both sums. The second step is just doing what I will do in the following example:

$$
0^{3}+1^{3}+2^{3}+3^{3}=1^{3}+2^{3}+3^{3}+4^{3}-4^{3}
$$

See how the 0 at the beginning is ignored and there's this extra term added at the end that we just subtract again. This seems like a bad idea, but watch what happens:

$$
\begin{aligned}
\sum_{k=1}^{n} k^{3} & =\sum_{k=0}^{n} k^{3}=\sum_{k=0}^{n}(k+1)^{3}-(n+1)^{3}=\sum_{k=0}^{n}\left(k^{3}+3 k^{2}+3 k+1\right)-(n+1)^{3} \\
& =\sum_{k=0}^{n} k^{3}+3 \sum_{k=0}^{n} k^{2}+3 \sum_{k=0}^{n} k+\sum_{k=0}^{n} 1-(n+1)^{3}
\end{aligned}
$$

So now we have this equation:

$$
\sum_{k=0}^{n} k^{3}=\sum_{k=0}^{n} k^{3}+3 \sum_{k=0}^{n} k^{2}+3 \sum_{k=0}^{n} k+\sum_{k=0}^{n} 1-(n+1)^{3} .
$$

We can solve for $\sum_{k=0}^{n} k^{2}$ and we get:

$$
\begin{aligned}
\sum_{k=1}^{n} k^{2} & =\frac{1}{3}(n+1)^{3}-\sum_{k=1}^{n} k-\frac{1}{3} \sum_{k=0}^{n} 1 \\
& =\frac{1}{3}(n+1)^{3}-\frac{n(n+1)}{2}-\frac{1}{3}(n+1)=\frac{2(n+1)^{3}-3 n(n+1)-2(n+1)}{6} \\
& =\frac{(n+1)\left(2\left(n^{2}+2 n+1\right)-3 n-2\right)}{6}=\frac{(n+1)\left(2 n^{2}+n\right)}{6}=\frac{n(n+1)(2 n+1)}{6} .
\end{aligned}
$$

Ok, so now you see why I said that there was some trickery and why I said "relatively simple." Anyway, I want you to use these formulas to calculate the following sums:

1. $\sum_{k=1}^{n}\left(k^{2}-5 k+2\right)$
2. $\sum_{k=1}^{n}(k+1)(3 k-2)$
3. $\sum_{k=1}^{n}\left(3 k^{2}+4 k-2\right)$
4. $\sum_{k=1}^{n}\left(4 k^{2}-1\right)$
