LAB \#8: FINDING DESCENT TO MINIMIZE

Recall, we want to minimize

$$
F(u)=\int_{\Omega}|\nabla u|^{p} d x+\lambda \int_{\Omega}|f(x)-u(x)|^{q} d x
$$

Let's first put together some thoughts about minimizing:
(1) Given a function, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, at a point $a \in \mathbb{R}^{n}$, in which direction should you travel to find greatest descent?
(2) Suppose you follow this descent direction, why would you need to go a short distance and then reevaluate the descent direction? What could happen if you took a large step along this direction?
(3) Draw an example of a function where the scenario you described above would happen.
(4) In optimization terminology, looking along a line parallel to a descent direction to a "better" point is called a " line search." As we said in the last problem, if we take too big of a step along this line, we may have a problem. Because we know the direction in which we step is a direction of descent, what can we do to be sure we reach a better point?
(5) Following the steps below, we get a sequence $\left(x_{n}\right)$ of better points.
(a) At a current point, x_{k} find the direction of descent d_{k} (described above)
(b) Use a line search to find a better point, one where f has a lower value.
(c) Name the better point x^{*}.
(d) Repeat for $x_{k}=x^{*}$.

How can this plan go wrong?
(6) List two ideas to combat the problems that might happen with the above algorithm. Describe how these ideas combat the issues in 5 .
(7) When looking for a minimizer of a function, what must be true about the gradient at that point?
(8) We found that the minimizer, \bar{u} of F must satisfy the equation

$$
p \nabla \cdot\left(|\nabla u|^{p-2} \nabla u\right)-\lambda q|f-u|^{q-2}(f-u)=0 .
$$

How did we go about getting this equation?
(9) Using the last two questions, what can we use as the "gradient" of $F(u)$?
(10) Use your answers above to determine a direction of fastest descent at a point u.

