Lab \#6: Combining Directional Derivatives and Functionals

1. Directional derivative

(1) In the last lab, we found in the case $n>1, m=1$ that the derivative map is just the gradient of f. In your own words, describe how the gradient is a map. (Hint: This is question is just asking you to recall what we did in Lab 5.)
(2) Now, let $u \in \mathbb{R}^{n}$ have length 1 , we can define the directional derivative at a point $a \in \mathbb{R}^{n}$ as

$$
D_{u}(f(a))=\lim _{t \rightarrow 0} \frac{f(a+t u)-f(a)}{t}
$$

Describe with a picture and words what is going on in this limit. (Note: This is a picture we have already drawn in this class.)
(3) Use this definition to find the directional derivative of $f(x, y, z)=x^{2}+2 y-z$ at $a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ in the direction $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}$ with $|u|=1$.
(4) Pick a point a and a direction u and use your computation to find the $D_{u}(f(a))$ for your choices. What does this derivative mean?

2. How does this tie into our discussion of functionals?

Recall that our goal is to find a way to minimize the functional.

$$
F(u)=\int_{\Omega}|\nabla u(x)|^{p} d x+\lambda \int_{\Omega}|f(x)-u(x)|^{q} d x
$$

The next set of questions will guide you through some preliminary steps by first considering minimization in some simpler settings.
(1) Using your knowledge of 1-dimensional derivatives, write the procedure one usually takes to find a minimum of a function.
(2) Now, suppose we have a multivariable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. How would we find the minimum of f along a specified line?
(3) We'd like to extend these ideas to find the minimum of a functional $F: \mathcal{C}^{\infty}(\Omega) \rightarrow \mathbb{R}$, where $\Omega \subset \mathbb{R}$ is an open domain space, along a specified line. Towards this end, how would you describe a "line path" in the domain (function space) $\mathcal{C}^{\infty}(\Omega)$?
(4) Using the definition of directional derivatives of functions from the first part of this lab, give a definition for the directional derivative of a functional $F: \mathcal{C}^{\infty}(\Omega) \rightarrow \mathbb{R}$.
(5) Test out your definition on some functionals $F: \mathcal{C}^{\infty}(\Omega) \rightarrow \mathbb{R}$. Find the "directional derivative" for the functionals below in the "direction" of some fixed function $v \in$ $\mathcal{C}^{\infty}(\Omega)$.
(a) $F(u)=\int_{0}^{1} u(x) d x$.
(b) Let $f(x)$ be a fixed function in \mathcal{C}^{∞} and define $F(u)=\int_{0}^{1} u(x)-f(x) d x$.
(c) $F(u)=\int_{0}^{1}|\nabla u(x)| d x$. (Be careful here to recognize what the $|\ldots|$ are representing.)
(d) For a functional $F: \mathcal{C}^{\infty}(\Omega) \rightarrow \mathbb{R}$ and the function v given by $v(x)=x$, what is the directional derivative of F in the direction v ?

