Lab \#5: Linear Maps

In this lab, we want to explore the following definition:
Definition 1. Suppose A is an open set in \mathbb{R}^{n}, $f: A \rightarrow \mathbb{R}^{m}$, and $a \in A$. We say that f is differentiable at $a \in \mathbb{R}^{n}$ if $\exists L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ so that L is linear and

$$
\begin{gathered}
\lim _{|h| \rightarrow 0} \frac{|f(a+h)-f(a)-L h|}{|h|}=0 . \\
\text { 1. Case: } n=m=1
\end{gathered}
$$

(1) Rewrite this definition when $n=m=1$.
(2) What is L ?
(3) What does $L h$ mean?
(4) Find L for the function $f(x)=x^{2}$ at $a \in \mathbb{R}$. Prove your result.
2. Case: $n>1, m=1$
(1) Think about the definition when $n>1, m=1$ and rewrite it when $n=2, m=1$.
(2) What is L ?
(3) What does $L h$ mean in this setting?
(4) What do we mean when we use the $|\ldots|$ symbols?
(5) Find L for the function $f(x, y, z)=x^{2}+2 y-z$ at $a \in \mathbb{R}^{3}$. Prove your result.
(6) Find L for the function $f(x, y)=x y$ at $a \in \mathbb{R}^{2}$. Prove your result. (Homework)

$$
\text { 3. Case: } n>1, m>1
$$

(1) What is L ?
(2) What does $L h$ mean in this setting?
(3) What do we mean when we use the $|\ldots|$ symbols?
(4) Find L for the function $f(x, y, z)=\binom{x^{2}+2 y-z}{x y}$ at $a \in \mathbb{R}^{3}$. No need to prove your result (it's tedious).

4. More practice and questions

(1) When considering our denoising problem, how do you think derivatives will play a role?
(2) Use the above to find L in each of the following situations. Be sure to carefully (rigorously) define L.
(a) $f(x, y, z)=|(x, y, z)|$ (Be careful to recognize what we mean by the $|\ldots|$ here).
(b) $f(x, y)=\binom{y}{x^{2}}$

