MATH 352: HOMEWORK 9 DUE TUESDAY APRIL 26

- (1) Let $f : [0,1] \to \mathbb{R}$ be the function f(x) = 2x 4. Choose a partition of [0,1]. Find U(f, P), where P is the partition you chose.
- (2) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Let \mathcal{P} be an arbitrary partition of the domain of f. Show $U(f) \ge L(f, P)$.
- (3) Prove or disprove: A bounded function f is integrable on [a, b] if and only if, for every $\varepsilon > 0$, there exists a partition a partition \tilde{P} of [a, b] so that

$$U(f, \tilde{P}) - L(f, \tilde{P}) < \varepsilon.$$

- (4) Let $f : [a, b] \to \mathbb{R}$ be an increasing function. Show that f is integrable.
- (5) Consider f(x) = 3x 2 over the interval [1,4]. Let P be the partition consisting of the points $\{1, 2, 3, 4\}$.
 - (a) Compute L(f, P), U(f, P), and U(f, P) L(f, P).
 - (b) What happens to the value of U(f, P) L(f, P) when we add the point 1.5 to the partition?
 - (c) Find a partition P' of [1, 4] for which U(f, P') L(f, P') < 3.
- (MGC#3) Prove that f in Exercise (1) is Riemann integrable, without stating that Theorem 7.2.9 gives you this result. That is, prove this as if Theorem 7.2.9 didn't exist.