MATH 352: HOMEWORK 9 DUE TUESDAY APRIL 26

(1) Let $f:[0,1] \rightarrow \mathbb{R}$ be the function $f(x)=2 x-4$. Choose a partition of $[0,1]$. Find $U(f, P)$, where P is the partition you chose.
(2) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Let \mathcal{P} be an arbitrary partition of the domain of f. Show $U(f) \geq L(f, P)$.
(3) Prove or disprove: A bounded function f is integrable on $[a, b]$ if and only if, for every $\varepsilon>0$, there exists a partition a partition \tilde{P} of $[a, b]$ so that

$$
U(f, \tilde{P})-L(f, \tilde{P})<\varepsilon
$$

(4) Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function. Show that f is integrable.
(5) Consider $f(x)=3 x-2$ over the interval $[1,4]$. Let P be the partition consisting of the points $\{1,2,3,4\}$.
(a) Compute $L(f, P), U(f, P)$, and $U(f, P)-L(f, P)$.
(b) What happens to the value of $U(f, P)-L(f, P)$ when we add the point 1.5 to the partition?
(c) Find a partition P^{\prime} of $[1,4]$ for which $U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)<3$.
(MGC\#3) Prove that f in Exercise (1) is Riemann integrable, without stating that Theorem 7.2.9 gives you this result. That is, prove this as if Theorem 7.2.9 didn't exist.

