MATH 352: HOMEWORK 2 DUE TUESDAY FEBRUARY 2

(1) Prove or disprove: Suppose f satisfies the property that for every $a \in \mathbb{R}$ and every $\varepsilon>0$, there exists $\delta>0$ such that whenever $|x-a|<\delta,|f(x)-f(a)|<\varepsilon$ then f also satisfies the property that for every $\varepsilon>0$, there exists a $\delta>0$ so that whenever $x, a \in \mathbb{R}$ and $|x-a|<\delta,|f(x)-f(a)|<\epsilon$. What about the converse? Is it true or false? Justify your answer with a proof.
(2) Prove or disprove: Suppose f satisfies the property that there exists an $L>0$ such that whenever $x, a \in \mathbb{R},|f(x)-f(a)| \leq L|x-a|$. Then f also satisfies the property that for every $a \in \mathbb{R}$ and every $\epsilon>0$, there exists $\delta>0$ such that whenever $|x-a|<\delta$, $|f(x)-f(a)|<\varepsilon$. What about the converse of this statement? Is it true or false? Justify your answer with a proof.
(3) Show that $f(x)=x^{3}$ is continuous, but not uniformly continuous.
(4) Suppose $h:(a, b) \rightarrow \mathbb{R}$ is is uniformly continuous on $\left(a, x_{0}\right]$ and also on $\left[x_{0}, b\right)$. Prove or disprove that h is uniformly continuous on (a, b).
(5) Given $f: X \rightarrow \mathbb{R}$ and $g: Y \rightarrow \mathbb{R}$, assume also that $f(X) \subseteq Y$.
(a) Define $f(X)$.
(b) Define $f \circ g$.
(c) Prove or disprove: If f is continuous at $a \in X$ and g is continuous at $f(a) \in Y$, then $g \circ f$ is continuous at $a \in X$.
(6) Let K be a compact subset of \mathbb{R} and let $f: K \rightarrow \mathbb{R}$ be continous.
(a) Define what it means for f to attain a maximum value in K and what it means for f to attain a minimum in K.
(b) Prove or disprove: f attains both a maximum and a minimum value in K.
(c) Is it necessary that K is compact? Can it be only closed instead? Justify your answer with a proof.
MGC\#1 Prove or disprove that $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.

