MATH 351 - SEPTEMBER 15, 2015 EXERCISE

Statement 1. If $S=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ then $\sup S=1, \min S=\inf S=0$.
proof: First we will show that $\sup S=1$. Let $n \in \mathbb{N}$. Then $n>0$. Thus, $\frac{1}{n}>0$. So, we have that $1-\frac{1}{n}<1$. So 1 is an upper bound of S. Now, let $\epsilon>0$. We want to show that $\exists s \in S$ so that $1-\epsilon<s$. Indeed, by the Archimedean property, we know that $\exists n \in \mathbb{N}$ so that $\frac{1}{n}<\epsilon$. Thus,

$$
1-\epsilon<1-\frac{1}{n} \in S
$$

Thus, by Lemma 1.3.7, $\sup S=1$.
Now, we will show that $\min S=0$. Notice that $0=1-\frac{1}{1} \in S$. We will show that $1-\frac{1}{n}<1-\frac{1}{n+1}$. That is, $1-\frac{1}{n}$ increases as n gets larger. We know that $n<n+1$. Thus, $\frac{1}{n+1}<\frac{1}{n}$. So,

$$
1-\frac{1}{n}<1-\frac{1}{n+1} .
$$

So, $0 \leq 1-\frac{1}{n}$ for all $n \in \mathbb{N}$. Thus, $\min S=0$. Now, since $\min S$ exists, we know that $\inf S=\min S=0$.

