MATH 351 Fall 2015 Homework 5

Due: Tuesday 10/06

Reread Sections 1.4 and 1.5 in your book.
(1) Prove or Disprove: Suppose $S \subset \mathbb{R}$ is nonempty and bounded above with no maximum element, and suppose $s \in S$. Then $\sup S=\sup (S \backslash\{s\})$.
(2) Prove and extend: If $A_{1}, A_{2}, \ldots, A_{m}$ are each countable sets, then

$$
\cup_{k=1}^{m} A_{k} \quad \text { is also countable }
$$

(3) Prove or Disprove: Suppose that $a, b, c \in \mathbb{R}$. Suppose also for all positive real numbers α, β that $|a-c|<\alpha$ and $|a-b|<\beta$. Show that $b=c$.
(4) Let $A=\{a, b\} \subset \mathbb{R}$. Define the set S to be the set of all sequences whose terms are in A. That is,

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mid x_{n} \in A\right\}
$$

Show that S is uncountable.
(5) Is the set of functions defined by $\{f:\{0,1\} \rightarrow \mathbb{N}\}$ countable or uncountable? Justify your answer with a proof.

