Due: Tuesday 9/29MATH 351 Fall 2015 Homework 3

Read Sections 1.3,1.4 in your book.

(1) In the last homework, we would have been happier with the following result. Prove it.

Given an interval of the form $I = [a, b] \subset \mathbb{R}$. If a < b, then max I and min I exist and are not equal.

- (2) Prove or disprove:
 - (a) For all $a, b \in \mathbb{R}$, |ab| = |a||b|.

(b) For all $a \in \mathbb{R}$, |-a| = |a|.

(3) Prove or disprove: For all $a, b \in \mathbb{R}$ and $\epsilon > 0$,

 $|a-b| < \epsilon$ if and only if $b-\epsilon < a < b+\epsilon$.

- (4) What fails in the proof of Theorem 1.4.1 if $I_n = (a_n, b_n)$?
- (5) Prove: For every two real numbers a and b with a < b < 0, there exists a rational r satisfying a < r < b.
- (6) Prove: Given any two real number a < b, there exists an irrational number t satisfying a < t < b.
- (7) Prove that $\exists x \in \mathbb{R}$ so that $x^2 = 3$
- (8) Prove that $\inf \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\} = 0.$ (9) Prove or disprove: If $X \subset \mathbb{R}$ and the set of lower bounds for X is $(-\infty, 2)$, then $3 \in X$.
- (10) Prove or disprove: If $X \neq \emptyset$ is finite, then max X and min X exists.
- (11) This is a "Must Get Correct" problem. If you don't know what that means, you should talk to me. Given the set

$$A = \left\{ \left. 1 - \frac{n-1}{n+3} \right| n \in \mathbb{N} \right\}.$$

Find $\inf A$ and then prove your result.