## MATH 351 Fall 2015 Homework 3 <br> Due: Tuesday $9 / 29$

Read Sections 1.3,1.4 in your book.
(1) In the last homework, we would have been happier with the following result. Prove it.

Given an interval of the form $I=[a, b] \subset \mathbb{R}$. If $a<b$, then $\max I$ and min $I$ exist and are not equal.
(2) Prove or disprove:
(a) For all $a, b \in \mathbb{R},|a b|=|a||b|$.
(b) For all $a \in \mathbb{R},|-a|=|a|$.
(3) Prove or disprove: For all $a, b \in \mathbb{R}$ and $\epsilon>0$,

$$
|a-b|<\epsilon \quad \text { if and only if } \quad b-\epsilon<a<b+\epsilon
$$

(4) What fails in the proof of Theorem 1.4.1 if $I_{n}=\left(a_{n}, b_{n}\right)$ ?
(5) Prove: For every two real numbers $a$ and $b$ with $a<b<0$, there exists a rational $r$ satisfying $a<r<b$.
(6) Prove: Given any two real number $a<b$, there exists an irrational number $t$ satisfying $a<t<b$.
(7) Prove that $\exists x \in \mathbb{R}$ so that $x^{2}=3$
(8) Prove that $\inf \left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=0$.
(9) Prove or disprove: If $X \subset \mathbb{R}$ and the set of lower bounds for $X$ is $(-\infty, 2)$, then $3 \in X$.
(10) Prove or disprove: If $X \neq \emptyset$ is finite, then $\max X$ and $\min X$ exists.
(11) This is a "Must Get Correct" problem. If you don't know what that means, you should talk to me.
Given the set

$$
A=\left\{\left.1-\frac{n-1}{n+3} \right\rvert\, n \in \mathbb{N}\right\} .
$$

Find $\inf A$ and then prove your result.

