
5 The Fundamental Group

In this chapter we show how to associate a group with a topological space.
When the spaces are the same the groups will be the same.

Definition A path in a topological space X is a map α : [0, 1]→ X. The points
α(0) and α(1) are said to be joined by α. A space is path-connected if any two
points can be joined by a path.

Theorem 5.1. X ≈ Y ⇒ (X is path-connected ⇔ Y is path-connected).

Proof.
Prove.

Theorem 5.2. Every path-connected space is connected.

Proof.
Prove, but show that the converse is false.

Definition Given a space X and a point x in X, a loop based at x is a path α
with α(0) = α(1) = x.

Example 5.3.
In each of the following, choose an x in X and draw several loops in X
based at x. Actually what you will draw is the image of the loop but we
will use the same name for both. E1, E2, S1, E2 \B2, and S1 × S1.

Definition If α and β are paths in a path-connected space X such that α(1) =
β(0), define

α ? β(s) =
{
α(2s) 0 ≤ s ≤ 1

2
β(2s− 1) 1

2 ≤ s ≤ 1.

Definition Given a path-connected space X and a point x in X define L(X,x)
= { all loops in X based at x} .

Theorem 5.4. (L(X,x), ?) forms a group.

Proof.
Disprove.

Definition Let α, β be paths connecting x and y in a space X. We will say that
α is homotopic to β (written α ∼ β)⇔ there exists a map H : [0, 1]× [0, 1]→ X
such that H(s, 0) = α(s), H(s, 1) = β(s), H(0, t) = x, and H(1, t) = y. Note
that when α and β are loops based at x, H(0, t) = H(1, t) = x.

Example 5.5.
In the spaces in Example 5.3 find some pairs of loops that are homotopic
and some that are not.
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Theorem 5.6. The relation ∼ is an equivalence relation on L(X,x).

Proof.
Prove this by showing:

1. α ∼ α

2. α ∼ β ⇒ β ∼ α

3. α ∼ β and β ∼ γ ⇒ α ∼ γ

Definition Let 〈α〉 denote the homotopy equivalence class of α, that is the
collection of all loops homotopic to α. Then let Π1(X,x) = {〈α〉|α ∈ L(X,x)}
and 〈α〉 ⊗ 〈β〉 = 〈α ? β〉.

Theorem 5.7. (Π1(X,x),⊗), is a group.

Proof.
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Prove.

1. Show that the system is closed . . . this follows from the definition.

2. To show associativity, we need to show (〈α〉 ⊗ 〈β〉) ⊗ 〈γ〉 = 〈α〉 ⊗
〈β〉 ⊗ 〈γ〉). To do this we need to show (α ? β) ? γ ∼ α ? (β ? γ) ...

here is a picture that may help....
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3. e : [0, 1] → X by e(t) = x (for all t) seems a likely candidate for
the identity. Show 〈e〉 ⊗ 〈α〉 = 〈α〉 ⊗ 〈e〉 = 〈α〉 . . . here is another

picture . . .
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4. What should α−1 be? Try drawing the frames of a movie that show
α ? α−1 ∼ e . . .

Definition We will call Π1(X,x) the fundamental group of X based at x.

Definition Recall the following definitions from algebra. If G and H are
groups, a function h : G → H is a homomorphism ⇔ ∀a, b ∈ G, h(a ⊗ b) =
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h(a) ⊗ h(b). A bijective homomorphism is an isomorphism. Two groups are
isomorphic (denoted G ∼= H)⇔ there exists an isomorphism between them.

Definition A space X is simply connected ⇔ for all x ∈ X,Π1(X,x) ∼= {〈e〉}.

Theorem 5.8. Any topological space with the trivial topology is simply con-
nected.

Proof.
Prove. To do this, show that if α is any loop in X, then α ∼ e.

Definition Let x and y be two points in En. We define the line segment L(x,y)
between x and y as L(x,y) = {(1 − t)x + ty|0 ≤ t ≤ 1}. A subset A of En is
said to be convex ⇔ ∀x,y ∈ A,L(x,y) ⊂ A.

Theorem 5.9. Any convex subset of En with the subspace topology is simply
connected.

Proof.
Prove.

Theorem 5.10. Π1(S1, (1, 0)) ∼= Z.

Proof.
Give some intuitive argument as to why the theorem is true or false.

Theorem 5.11. If X is path connected and x, y ∈ X then Π1(X,x) ∼= Π1(X, y).

Proof.
Prove...let γ be a path connecting x and y . . . consider γ̂ : Π1(X,x) →
Π1(X, y) defined by γ̂(〈α〉) = 〈γ−1 ? α ? γ〉 . . . γ̂ is an isomorphism . . .

Remark 5.12. Given the above theorem we will refer to Π1(X,x) as simply
Π1(X) when X is path-connected.

Definition
Make up a definition for the term star-shaped so that the following theo-
rem is true.

Theorem 5.13. Any star-shaped subset of En with the subspace topology is
simply connected.

Proof.
Prove using the same proof as in Theorem 5.9 .

Definition Given a map f : X → Y, x ∈ X, y ∈ Y , and f(x) = y, we define a
function f̂ : Π1(X,x)→ Π1(Y, y) by f̂(〈α〉) = 〈f ◦ α〉. We say that f̂ is induced
by f .
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Theorem 5.14. f̂ as defined above is a group homomorphism.

Proof.
Prove.

Theorem 5.15. Given maps f : X → Y and g : Y → Z, (̂g ◦ f) = ĝ ◦ f̂ .

Proof.
Prove.

Theorem 5.16. (X ≈ Y )⇒ (Π1(X) ∼= Π1(Y )).

Proof.
Prove . . . then by the previous theorem . . .

Theorem 5.17. (Π1(X) ∼= Π1(Y ))⇒ (X ≈ Y ).

Proof.
Prove or disprove.

Theorem 5.18. Let X be a space such that X = A ∪ B where A and B are
open. Then any path connecting a point in A \ B and a point in B \ A must
pass through A ∩B.

Proof. This follows from Lebesgue’s Lemma which we will not prove here.

Theorem 5.19. Let X be a path connected space such that X = A ∪B, where
A and B are open and simply connected and A ∩B is path-connected and non-
empty, then X is simply connected.

Proof.
Prove....choose a base point x in A ∩ B, let α be a loop in X based at x
. . . find a sequence of points 0 = t0 < t1 < t2 < t3 < · · · < tn = 1 such
that α([ti, ti+1]) is contained in A or B . . .α ∼ e . . .

Theorem 5.20. Sn is simply connected for n ≥ 2.

Proof.
Prove.

Theorem 5.21. E3 \ {0} is simply connected.

Proof.
Prove.

Theorem 5.22. E2 \ {0} is simply connected.

Proof.
Prove or disprove. Does the same proof work here as in the previous
theorem?
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Theorem 5.23. If X and Y are path-connected spaces, Π1(X×Y ) ∼= Π1(X)×
Π1(Y ).

Proof.
Prove . . . define Ψ : Π1(X × Y ) → Π1(X) × Π1(Y ) by Ψ(〈α〉) = (〈p1 ◦
α〉, 〈p2 ◦ α〉) . . .

Example 5.24.
With which spaces does the previous theorem help us?

Definition A subset A of a space X is a retract of X ⇔ there exists a surjective
map g : X → A such that ∀a ∈ A, g(a) = a and a map G : X × [0, 1]→ X such
that:

G(x, 0) = x ∀x ∈ X
G(x, 1) = g(x) ∀x ∈ X
G(a, t) = g(a) = a ∀a ∈ A,∀t ∈ [0, 1]

The map g is called a retraction map and G is called a homotopy.

Example 5.25.
Sn is a retract of Bn+1 \ {0}.
Sn is a retract of En+1 \ {0}.
Explicitly write down the retraction map and the homotopy in both cases.

Example 5.26.
S1 is a retract of S1 × [0, 1].
S1 is a retract of the Mobius Band.
A figure eight is a retract of B2 \ { two copies of B2}.
In these cases just show several frames of the movie as X ”retracts” onto
A.

Example 5.27.
A figure eight is a retract of S1 × S1 \ {B2}.
A figure eight is a retract of a Klein Bottle \{B2}.
S1 is a retract of P2 \ {B2}.
Do the same as above. Hint: Start with a square with sides identified.

Theorem 5.28. If A is a retract of X then Π1(X) ∼= Π1(A).

Proof.
Prove . . . think about ĝ.

Example 5.29.
List the fundamental groups that this theorem helps us find. Does it help us
distinguish any of our remaining spaces?
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