5 The Fundamental Group

In this chapter we show how to associate a group with a topological space. When the spaces are the same the groups will be the same.

Definition A path in a topological space X is a map α : $[0, 1] \rightarrow X$. The points $\alpha(0)$ and $\alpha(1)$ are said to be *joined* by α . A space is path-connected if any two points can be joined by a path.

Theorem 5.1. $X \approx Y \Rightarrow (X \text{ is path-connected} \Leftrightarrow Y \text{ is path-connected}).$

Proof. \Box Prove.

Theorem 5.2. Every path-connected space is connected.

Proof.

Prove, but show that the converse is false.

 \Box

Definition Given a space X and a point x in X, a loop based at x is a path α with $\alpha(0) = \alpha(1) = x$.

Example 5.3.

In each of the following, choose an x in X and draw several loops in X based at x. Actually what you will draw is the image of the loop but we will use the same name for both. \mathbb{E}^1 , \mathbb{E}^2 , \mathbf{S}^1 , $\mathbb{E}^2 \setminus \mathbf{B}^2$, and $\mathbf{S}^1 \times \mathbf{S}^1$.

Definition If α and β are paths in a path-connected space X such that $\alpha(1)$ = $\beta(0)$, define

$$
\alpha \star \beta(s) = \begin{cases} \alpha(2s) & 0 \le s \le \frac{1}{2} \\ \beta(2s-1) & \frac{1}{2} \le s \le 1. \end{cases}
$$

Definition Given a path-connected space X and a point x in X define $L(X, x)$ $=\{$ all loops in X based at $x\}$.

Theorem 5.4. $(L(X, x), \star)$ forms a group.

Proof. Disprove.

 \Box

Definition Let α , β be paths connecting x and y in a space X. We will say that α is homotopic to β (written $\alpha \sim \beta$) \Leftrightarrow there exists a map $H : [0, 1] \times [0, 1] \rightarrow X$ such that $H(s, 0) = \alpha(s)$, $H(s, 1) = \beta(s)$, $H(0, t) = x$, and $H(1, t) = y$. Note that when α and β are loops based at x, $H(0, t) = H(1, t) = x$.

Example 5.5.

In the spaces in Example 5.3 find some pairs of loops that are homotopic and some that are not.

Theorem 5.6. The relation $∼$ is an equivalence relation on $L(X, x)$.

Proof. Prove this by showing: 1. $\alpha \sim \alpha$ 1. $\alpha \sim \alpha$
2. $\alpha \sim \beta \Rightarrow \beta \sim \alpha$ 3. $\alpha \sim \beta$ and $\beta \sim \gamma \Rightarrow \alpha \sim \gamma$

Definition Let $\langle \alpha \rangle$ denote the homotopy equivalence class of α , that is the collection of all loops homotopic to α . Then let $\Pi_1(X, x) = {\{\alpha\}}|\alpha \in L(X, x)$ and $\langle \alpha \rangle \otimes \langle \beta \rangle = \langle \alpha \star \beta \rangle$.

 \Box

Theorem 5.7. $(\Pi_1(X, x), \otimes)$, is a group.

Proof.

Definition We will call $\Pi_1(X, x)$ the fundamental group of X based at x.

Definition Recall the following definitions from algebra. If G and H are groups, a function $h : G \to H$ is a homomorphism $\Leftrightarrow \forall a, b \in G, h(a \otimes b) =$

3

 \Box

 $h(a) \otimes h(b)$. A bijective homomorphism is an *isomorphism*. Two groups are *isomorphic* (denoted $G \cong H$) ⇔ there exists an isomorphism between them.

Definition A space X is *simply connected* ⇔ for all $x \in X$, $\Pi_1(X, x) \cong \{ \langle e \rangle \}.$

Theorem 5.8. Any topological space with the trivial topology is simply connected.

Proof. Prove. To do this, show that if α is any loop in X, then $\alpha \sim e$. \Box

Definition Let **x** and **y** be two points in \mathbb{E}^n . We define the line segment $L(\mathbf{x}, \mathbf{y})$ between **x** and **y** as $L(\mathbf{x}, \mathbf{y}) = \{(1-t)\mathbf{x} + t\mathbf{y} | 0 \le t \le 1\}$. A subset A of \mathbb{E}^n is said to be *convex* $\Leftrightarrow \forall x, y \in A, L(x, y) \subset A$.

Theorem 5.9. Any convex subset of \mathbb{E}^n with the subspace topology is simply connected.

Proof. Prove.

Theorem 5.10. $\Pi_1(\mathbf{S}^1, (1,0)) \cong \mathbb{Z}$.

Proof.

Give some intuitive argument as to why the theorem is true or false. \Box

Theorem 5.11. If X is path connected and $x, y \in X$ then $\Pi_1(X, x) \cong \Pi_1(X, y)$.

Proof.

Prove...let γ be a path connecting x and y ... consider $\hat{\gamma} : \Pi_1(X, x) \to$ \Box $\Pi_1(X, y)$ defined by $\widehat{\gamma}(\langle \alpha \rangle) = \langle \gamma^{-1} \star \alpha \star \gamma \rangle \dots \widehat{\gamma}$ is an isomorphism ...

Remark 5.12. Given the above theorem we will refer to $\Pi_1(X, x)$ as simply $\Pi_1(X)$ when X is path-connected.

Definition

Make up a definition for the term *star-shaped* so that the following theorem is true.

Theorem 5.13. Any star-shaped subset of \mathbb{E}^n with the subspace topology is simply connected.

Proof.

Prove using the same proof as in Theorem 5.9 .

 \Box

 \Box

Definition Given a map $f: X \to Y, x \in X, y \in Y$, and $f(x) = y$, we define a function $\hat{f}: \Pi_1(X, x) \to \Pi_1(Y, y)$ by $\hat{f}(\langle \alpha \rangle) = \langle f \circ \alpha \rangle$. We say that \hat{f} is *induced* by f .

Theorem 5.14. \widehat{f} as defined above is a group homomorphism.

Theorem 5.18. Let X be a space such that $X = A \cup B$ where A and B are open. Then any path connecting a point in $A \setminus B$ and a point in $B \setminus A$ must pass through $A \cap B$.

Proof. This follows from Lebesgue's Lemma which we will not prove here. \Box

Theorem 5.19. Let X be a path connected space such that $X = A \cup B$, where A and B are open and simply connected and $A \cap B$ is path-connected and nonempty, then X is simply connected.

Proof.

Prove....choose a base point x in $A \cap B$, let α be a loop in X based at x ... find a sequence of points $0 = t_0 < t_1 < t_2 < t_3 < \cdots < t_n = 1$ such \Box that $\alpha([t_i, t_{i+1}])$ is contained in A or B ... $\alpha \sim e \ldots$

Theorem 5.20. \mathbf{S}^n is simply connected for $n \geq 2$.

Proof. Prove.

Theorem 5.21. $\mathbb{E}^3 \setminus \{0\}$ is simply connected.

Proof.

Prove.

Theorem 5.22. $\mathbb{E}^2 \setminus \{0\}$ is simply connected.

Proof.

Prove or disprove. Does the same proof work here as in the previous theorem?

 \Box

 \Box

 \Box

Theorem 5.23. If X and Y are path-connected spaces, $\Pi_1(X \times Y) \cong \Pi_1(X) \times \Pi_2(Y)$ $\Pi_1(Y)$.

Proof.

Prove ... define $\Psi : \Pi_1(X \times Y) \to \Pi_1(X) \times \Pi_1(Y)$ by $\Psi(\langle \alpha \rangle) = (\langle p_1 \circ$ \Box $|\alpha\rangle,\langle p_2\circ\alpha\rangle) \, \ldots$

Example 5.24.

With which spaces does the previous theorem help us?

Definition A subset A of a space X is a retract of $X \Leftrightarrow$ there exists a surjective map $g: X \to A$ such that $\forall a \in A$, $g(a) = a$ and a map $G: X \times [0, 1] \to X$ such that:

 $G(x, 0) = x \qquad \forall x \in X$ $G(x, 1) = g(x)$ $\forall x \in X$ $G(a, t) = g(a) = a \quad \forall a \in A, \forall t \in [0, 1]$

The map g is called a retraction map and G is called a *homotopy*.

Example 5.25. \mathbf{S}^n is a retract of $\mathbf{B}^{n+1} \setminus \{0\}.$ \mathbf{S}^n is a retract of $\mathbb{E}^{n+1} \setminus \{0\}.$ Explicitly write down the retraction map and the homotopy in both cases. Example 5.26. S^1 is a retract of $S^1 \times [0,1]$. $S¹$ is a retract of the Mobius Band. A figure eight is a retract of $\mathbf{B}^2 \setminus \{$ two copies of \mathbf{B}^2 . In these cases just show several frames of the movie as X "retracts" onto A. Example 5.27. A figure eight is a retract of $S^1 \times S^1 \setminus \{B^2\}.$ A figure eight is a retract of a Klein Bottle $\setminus \{\mathbf{B}^2\}.$ S^1 is a retract of $\mathbf{P}^2 \setminus \{\mathbf{B}^2\}.$ Do the same as above. Hint: Start with a square with sides identified.

Theorem 5.28. If A is a retract of X then $\Pi_1(X) \cong \Pi_1(A)$.

Proof. Prove ... think about \widehat{g} .

 \Box

Example 5.29.

List the fundamental groups that this theorem helps us find. Does it help us distinguish any of our remaining spaces?