5 The Fundamental Group

In this chapter we show how to associate a group with a topological space. When the spaces are the same the groups will be the same.

Definition A path in a topological space X is a map $\alpha : [0, 1] \to X$. The points $\alpha(0)$ and $\alpha(1)$ are said to be *joined* by α . A space is *path-connected* if any two points can be joined by a path.

Theorem 5.1. $X \approx Y \Rightarrow (X \text{ is path-connected} \Leftrightarrow Y \text{ is path-connected}).$

Proof.
Prove.

Theorem 5.2. Every path-connected space is connected.

Proof.

Prove, but show that the converse is false.

Definition Given a space X and a point x in X, a *loop based at* x is a path α with $\alpha(0) = \alpha(1) = x$.

Example 5.3.

In each of the following, choose an x in X and draw several loops in X based at x. Actually what you will draw is the image of the loop but we will use the same name for both. \mathbb{E}^1 , \mathbb{E}^2 , \mathbf{S}^1 , $\mathbb{E}^2 \setminus \mathbf{B}^2$, and $\mathbf{S}^1 \times \mathbf{S}^1$.

Definition If α and β are paths in a path-connected space X such that $\alpha(1) = \beta(0)$, define

$$\alpha \star \beta(s) = \begin{cases} \alpha(2s) & 0 \le s \le \frac{1}{2} \\ \beta(2s-1) & \frac{1}{2} \le s \le 1. \end{cases}$$

Definition Given a path-connected space X and a point x in X define $L(X, x) = \{ all loops in X based at x \}$.

Theorem 5.4. $(L(X, x), \star)$ forms a group.

Proof. Disprove.

Definition Let α, β be paths connecting x and y in a space X. We will say that α is homotopic to β (written $\alpha \sim \beta$) \Leftrightarrow there exists a map $H : [0, 1] \times [0, 1] \rightarrow X$ such that $H(s, 0) = \alpha(s), H(s, 1) = \beta(s), H(0, t) = x$, and H(1, t) = y. Note that when α and β are loops based at x, H(0, t) = H(1, t) = x.

Example 5.5.

In the spaces in Example 5.3 find some pairs of loops that are homotopic and some that are not.

Theorem 5.6. The relation \sim is an equivalence relation on L(X, x).

Proof. Prove this by showing: 1. $\alpha \sim \alpha$ 2. $\alpha \sim \beta \Rightarrow \beta \sim \alpha$ 3. $\alpha \sim \beta$ and $\beta \sim \gamma \Rightarrow \alpha \sim \gamma$

Definition Let $\langle \alpha \rangle$ denote the homotopy equivalence class of α , that is the collection of all loops homotopic to α . Then let $\Pi_1(X, x) = \{ \langle \alpha \rangle | \alpha \in L(X, x) \}$ and $\langle \alpha \rangle \otimes \langle \beta \rangle = \langle \alpha \star \beta \rangle$.

Theorem 5.7. $(\Pi_1(X, x), \otimes)$, is a group.

Proof.

Prove.

- 1. Show that the system is closed ... this follows from the definition.
- 2. To show associativity, we need to show $(\langle \alpha \rangle \otimes \langle \beta \rangle) \otimes \langle \gamma \rangle = \langle \alpha \rangle \otimes \langle \beta \rangle \otimes \langle \gamma \rangle)$. To do this we need to show $(\alpha \star \beta) \star \gamma \sim \alpha \star (\beta \star \gamma) \dots$

here is a picture that may help....

3. $e : [0,1] \to X$ by e(t) = x (for all t) seems a likely candidate for the identity. Show $\langle e \rangle \otimes \langle \alpha \rangle = \langle \alpha \rangle \otimes \langle e \rangle = \langle \alpha \rangle \dots$ here is another

Definition We will call $\Pi_1(X, x)$ the fundamental group of X based at x.

Definition Recall the following definitions from algebra. If G and H are groups, a function $h: G \to H$ is a homomorphism $\Leftrightarrow \forall a, b \in G, h(a \otimes b) =$

 $h(a) \otimes h(b)$. A bijective homomorphism is an *isomorphism*. Two groups are *isomorphic* (denoted $G \cong H$) \Leftrightarrow there exists an isomorphism between them.

Definition A space X is simply connected \Leftrightarrow for all $x \in X, \Pi_1(X, x) \cong \{\langle e \rangle\}$.

Theorem 5.8. Any topological space with the trivial topology is simply connected.

Proof. Prove. To do this, show that if α is any loop in X, then $\alpha \sim e$.

Definition Let \mathbf{x} and \mathbf{y} be two points in \mathbb{E}^n . We define the line segment $L(\mathbf{x}, \mathbf{y})$ between \mathbf{x} and \mathbf{y} as $L(\mathbf{x}, \mathbf{y}) = \{(1 - t)\mathbf{x} + t\mathbf{y} | 0 \le t \le 1\}$. A subset A of \mathbb{E}^n is said to be *convex* $\Leftrightarrow \forall \mathbf{x}, \mathbf{y} \in A, L(\mathbf{x}, \mathbf{y}) \subset A$.

Theorem 5.9. Any convex subset of \mathbb{E}^n with the subspace topology is simply connected.

Proof.
Prove.

Theorem 5.10. $\Pi_1(\mathbf{S}^1, (1, 0)) \cong \mathbb{Z}$.

Proof.

Give some intuitive argument as to why the theorem is true or false. \Box

Theorem 5.11. If X is path connected and $x, y \in X$ then $\Pi_1(X, x) \cong \Pi_1(X, y)$.

Proof.

Prove...let γ be a path connecting x and y ... consider $\widehat{\gamma} : \Pi_1(X, x) \to \Pi_1(X, y)$ defined by $\widehat{\gamma}(\langle \alpha \rangle) = \langle \gamma^{-1} \star \alpha \star \gamma \rangle \dots \widehat{\gamma}$ is an isomorphism ...

Remark 5.12. Given the above theorem we will refer to $\Pi_1(X, x)$ as simply $\Pi_1(X)$ when X is path-connected.

Definition

Make up a definition for the term *star-shaped* so that the following theorem is true.

Theorem 5.13. Any star-shaped subset of \mathbb{E}^n with the subspace topology is simply connected.

Proof.

Prove using the same proof as in Theorem 5.9.

Definition Given a map $f: X \to Y, x \in X, y \in Y$, and f(x) = y, we define a function $\widehat{f}: \Pi_1(X, x) \to \Pi_1(Y, y)$ by $\widehat{f}(\langle \alpha \rangle) = \langle f \circ \alpha \rangle$. We say that \widehat{f} is *induced* by f.

Theorem 5.14. \hat{f} as defined above is a group homomorphism.

Theorem 5.18. Let X be a space such that $X = A \cup B$ where A and B are open. Then any path connecting a point in $A \setminus B$ and a point in $B \setminus A$ must pass through $A \cap B$.

Proof. This follows from Lebesgue's Lemma which we will not prove here.

Theorem 5.19. Let X be a path connected space such that $X = A \cup B$, where A and B are open and simply connected and $A \cap B$ is path-connected and nonempty, then X is simply connected.

Proof.

Prove....choose a base point x in $A \cap B$, let α be a loop in X based at x ... find a sequence of points $0 = t_0 < t_1 < t_2 < t_3 < \cdots < t_n = 1$ such that $\alpha([t_i, t_{i+1}])$ is contained in A or $B \dots \alpha \sim e \dots$

Theorem 5.20. \mathbf{S}^n is simply connected for $n \geq 2$.

Proof. Prove.

Theorem 5.21. $\mathbb{E}^3 \setminus \{0\}$ is simply connected.

Proof.

Prove.

Theorem 5.22. $\mathbb{E}^2 \setminus \{0\}$ is simply connected.

Proof.

Prove or disprove. Does the same proof work here as in the previous theorem?

Theorem 5.23. If X and Y are path-connected spaces, $\Pi_1(X \times Y) \cong \Pi_1(X) \times \Pi_1(Y)$.

Proof.

Prove ... define $\Psi : \Pi_1(X \times Y) \to \Pi_1(X) \times \Pi_1(Y)$ by $\Psi(\langle \alpha \rangle) = (\langle p_1 \circ \alpha \rangle, \langle p_2 \circ \alpha \rangle) \dots$

Example 5.24.

With which spaces does the previous theorem help us?

Definition A subset A of a space X is a *retract* of X \Leftrightarrow there exists a surjective map $g: X \to A$ such that $\forall a \in A, g(a) = a$ and a map $G: X \times [0, 1] \to X$ such that:

 $\begin{array}{ll} G(x,0)=x & \forall x\in X\\ G(x,1)=g(x) & \forall x\in X\\ G(a,t)=g(a)=a & \forall a\in A, \forall t\in [0,1] \end{array}$

The map g is called a *retraction map* and G is called a *homotopy*.

Example 5.25. \mathbf{S}^{n} is a retract of $\mathbf{B}^{n+1} \setminus \{0\}$. \mathbf{S}^{n} is a retract of $\mathbb{E}^{n+1} \setminus \{0\}$. Explicitly write down the retraction map and the homotopy in both cases. Example 5.26. \mathbf{S}^{1} is a retract of $\mathbf{S}^{1} \times [0, 1]$. \mathbf{S}^{1} is a retract of the Mobius Band. A figure eight is a retract of $\mathbf{B}^{2} \setminus \{$ two copies of $\mathbf{B}^{2} \}$. In these cases just show several frames of the movie as X "retracts" onto A.

Example 5.27.

A figure eight is a retract of $\mathbf{S}^1 \times \mathbf{S}^1 \setminus {\mathbf{B}^2}$. A figure eight is a retract of a Klein Bottle $\setminus {\mathbf{B}^2}$. \mathbf{S}^1 is a retract of $\mathbf{P}^2 \setminus {\mathbf{B}^2}$.

Do the same as above. Hint: Start with a square with sides identified.

Theorem 5.28. If A is a retract of X then $\Pi_1(X) \cong \Pi_1(A)$.

Proof.

Prove ... think about \widehat{g} .

 $Example \ 5.29.$

List the fundamental groups that this theorem helps us find. Does it help us distinguish any of our remaining spaces?