
3 Hausdorff and Connected Spaces

In this chapter we address the question of when two spaces are homeomorphic.
This is done by examining two properties that are shared by any pair of homeo-
morphic spaces. More importantly, if two spaces do not share the property they
are not homeomorphic.

Definition A space X is Hausdorff ⇔ ∀x, y ∈ X such that x 6= y,∃U, V open
in X such that x ∈ U, y ∈ V and U ∩ V = ∅.

Example 3.1. Let X = {a, b, c}
Take the list of topologies from Example 1.6 and decide which if any are
Hausdorff. Justify your answers.

Theorem 3.2.
State and prove a theorem about finite Hausdorff spaces. Note that your
proof should use the fact that your space is finite.

Theorem 3.3. E is Hausdorff.

Proof.

Prove or disprove.

Theorem 3.4. [0, 1] with the subspace from E is Hausdorff.

Proof.

Prove or disprove.

Theorem 3.5. H1 is Hausdorff.

Proof.

Prove or disprove.

Theorem 3.6. F1 is Hausdorff.

Proof.

Prove or disprove.

Theorem 3.7. D1 is Hausdorff.

Proof.

Prove or disprove.

Theorem 3.8. T1 is Hausdorff.

Proof.

Prove or disprove.

Theorem 3.9. Any subspace of a Hausdorff space is Hausdorff.
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Proof.

Prove or disprove.

Theorem 3.10. X ≈ Y ⇒ (X Hausdorff ⇔ Y Hausdorff).

Proof.

Fill in proof.

Remark 3.11.
• State the converse of this theorem. Prove or disprove it.

• State the contrapositive. Prove or disprove it.

• Does this theorem help in classifying E,H1,F1,D1, and T1?

Definition A space X is connected ⇔ X cannot be written as the union of two
non-empty disjoint open sets.

Example 3.12. Let X = {a, b, c}
Take the list of topologies from Example 1.6 and decide which if any are
connected. Justify your answers.

Theorem 3.13. X is connected ⇔ The only subsets of X that are open and
closed are X and ∅.

Proof.

Fill in proof.

Theorem 3.14. [a, b] with the subspace topology from E is connected.

Proof.

Fill in proof. You may use the fact that any non-empty subset of R that
has an upper bound has a least upper bound. Start by assuming that
[a, b] = A ∪ B where A and B are non-empty, disjoint and open and
W.L.O.G. that b ∈ B. Note that A must have a least upper bound x.
Now think about where x might be.

Theorem 3.15. If there exists a collection Ψ of subsets of X whose union is X
with the additional properties that each member of Ψ is connected (as a subspace
of X) and no two members of Ψ are disjoint, then X is connected.

Proof.

Fill in proof . . . let A be a non-empty subset of X that is open and closed
. . . for each member C of Ψ consider C ∩ A as a subset of the connected
space C . . .A = X . . .

Theorem 3.16. (0, 1], [0, 1), (0, 1) and E are connected.

Proof.

Fill in proof.
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Theorem 3.17. Suppose f : X → Y is a surjective map. If X is connected
then Y is connected.

Proof.

Fill in proof.

Theorem 3.18. S1 is connected.

Proof.

Prove or disprove.

Theorem 3.19. Let X = {x ∈ R|x is rational}. Give X the subspace topology
from E, then X is connected.

Proof.

Prove or disprove.

Theorem 3.20. H1 is connected.

Proof.

Prove or disprove.

Theorem 3.21. F1 is connected.

Proof.

Prove or disprove.

Example 3.22.

Find a topology for R1 that is not connected and not Hausdorff.

Theorem 3.23. Any subspace of a connected space is connected.

Proof.

Prove or disprove.

Corollary 3.24. X ≈ Y ⇒ (X connected ⇔ Y connected).

Proof.

Fill in proof.

Remark 3.25.
• State the converse of this theorem. Prove or disprove it.

• State the contrapositive. Prove or disprove it.

• Does this theorem help in classifying E,H1,F1,D1, and T1?

Theorem 3.26. If f : X → Y is a homeomorphism and A ⊂ X then (X \A) ≈
(Y \ f(A)) with the subspace topologies from X and Y .
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Proof.

Prove or disprove.

Remark 3.27.
Does this theorem help in classifying S1, (0, 1), [0, 1), and [0, 1]?

3.1 Compactness

Definition A collection A of subsets of a space X is said to cover X, or to be
a covering of X, if the union of elements of A equals X. It is called an open
covering of X if its elements are open subsets of X.

Definition A space X is said to be compact if ...

complete the definition.

Definition A subset Y of a space X is said to be compact if ...

complete the definition.

Theorem 3.28.
Let Y be a subspace of X. Then Y is compact if and only if every covering of
Y by sets open in X contains a finite subcollection covering Y .

Proof.

Complete the proof.

Theorem 3.29.
State the theorem that is proved below.

Proof. Let Y be a closed subspace of the compact space X. Given a covering A
of Y by sets that are open in X, we form an open covering B of X by adjoining
to A the single open set X\Y . That is

B = A ∪ {X\Y } .

Since X is compact, some finite subcollection of B covers X. If this subcollection
contains the set X\Y , then discard X\Y ; otherwise leave the subcollection
alone. In either case, the resulting subcollection is a finite subcollection of A
that covers Y .

Lemma 3.30. If Y is a compact subspace of the Hausdorff space X and x0 /∈ Y ,
then there exist disjoint open sets U and V of X such that x0 ∈ U and Y ⊆ V .

Proof.

Prove or disprove

Theorem 3.31. Every compact subspace of a Hausdorff space is closed.

Proof.

Prove or disprove
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Theorem 3.32. If X is a compact space and f : X → Y is a map, then f(X)
is compact.

Proof.

Prove

Corollary 3.33. The Extreme Value Theorem

Proof.

Deduce the E.V.T. as a consequence of Theorem 3.32

Definition A collection C of subsets of X is said to have the finite intersection
property if for every finite subcollection

{C1, C2, . . . , Cn}

of C, the intersection C1 ∩ C2 ∩ · · · ∩ Cn is non-empty.

Theorem 3.34. A topological space X is compact ⇐⇒ for every collection C
of closed sets in X having the finite intersection property, the intersection⋂

C∈C
C 6= ∅.

Proof. Complete the proof below:

To prove X is compact, let A be an open covering of X. Then consider
the collection of closed sets

C = {X\A|A ∈ A}.

Why does it follow that ⋂
C∈C

C = ∅

and why does this imply that some finite subcollection of sets C ∈ C do
not have the finite intersection property? What does this imply about
the open sets A?

Conversely, suppose X is compact and let C be a collection of closed sets
having the finite intersection property. How does this imply that the set
of open sets

A = {X\C |C ∈ C}

is not an open cover of X? What does this imply about the intersection
of all closed sets C?

Example 3.35. X = E1

Provide an open cover of X that admits no finite subcover. Are the
subsets (a, b), (a, b], [a, b) compact? Prove that [a, b] is compact.
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Example 3.36. X = En, Y = N(0, 1) ⊂ X

Provide an open cover of Y that admits no finite subcover.

Theorem 3.37. A subset A ⊆ R is compact in the finite complement topology
⇐⇒ ...
Complete and prove the statement of this theorem. Formulate and prove
a corresponding theorem for D1.

Theorem 3.38. If K ⊂ En is compact, then K is closed and bounded.

Proof.

Prove or disprove. Assuming that n-dimensional boxes [a1, b1]× [a2, b2]×
· · · × [anbn] ⊂ En are compact, prove the converse to the theorem above.
We will prove that such boxes are compact in the next chapter.

Example 3.39.

Use Theorem 3.38 and its converse to prove Sn is compact for all n ∈ N.

Definition If X is a space, a point x ∈ X is said to be an isolated point if the
set {x} is open.

Theorem 3.40. Let X be a non-empty, compact, Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof.

Prove or disprove.

Theorem 3.41. If f : X → Y is a map and C ⊆ Y is compact, then f−1(C)
is compact.

Proof.

Prove or disprove.

Theorem 3.42. If f : X → Y is a bijective map with X compact and Y
Hausdorff, then f is a homeomorphism.

Proof.

Prove or disprove.

Theorem 3.43. Suppose X is a compact space and A ⊆ X is an infinite subset.
Then A has a limit point in X.

Proof.

Complete the following proof: Suppose A has no limit point in X. Then,
for each x ∈ X there exists an open set Ux containing x but satisfying
(Ux\{x}) ∩ A = ∅. The collection A = {Ux : x ∈ X} is an open covering
for X. Why is it impossible for a finite subcollection of A to cover X?
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