Topology

St. Mary's College of Maryland Topology Class

January 21, 2013

1 Topological Spaces

In this chapter we define topological spaces sdfadfg and look at a number of examples. In addition, we define subspaces and construct corresponding examples.

Definition A topological space is a non-empty set X together with a collection \mathcal{T} of subsets of X such that:

- 1. The empty set is in \mathcal{T} .
- 2. The set X itself is in \mathcal{T} .
- 3. Any *finite* intersection of sets in \mathcal{T} is also in \mathcal{T} .
- 4. Any union of sets in \mathcal{T} is also in \mathcal{T} .

or more formally,

- 1. $\emptyset \in \mathcal{T}$.
- 2. $X \in \mathcal{T}$.
- 3. $A_i \in \mathcal{T}, i = 1 \cdots n \Rightarrow \bigcap \{A_i | i = 1 \cdots n\} \in \mathcal{T}.$
- 4. $A_{\alpha} \in \mathcal{T}, \ \alpha \in \Gamma \Rightarrow \bigcup \{A_{\alpha} | \alpha \in \Gamma\} \in \mathcal{T}.$

Definition Given a topological space $\{X, \mathcal{T}\}, \mathcal{T}$ is called the *topology*, the elements of X are called *points* and the elements of \mathcal{T} are called *open sets*.

Definition A subset B of a topological space X is closed $\Leftrightarrow X \setminus B$ (the compliment of B) is open.

Lemma 1.1. If X is a set and \mathcal{T} a collection of subsets of X such that $\forall A_1, A_2 \in \mathcal{T}, A_1 \cap A_2 \in \mathcal{T}$, then axiom 3 is satisfied for \mathcal{T} .

Proof. Fill in proof

Example 1.2. Let $X = \{a, b\}$ and $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}\}$, then $\{X, \mathcal{T}\}$ is a topological space. Fill in proof

Example 1.3. Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}\}$, then $\{X, \mathcal{T}\}$ is a topological space.

Show that this is false, and then make \mathcal{T} into a topology by adding the fewest possible sets to \mathcal{T} .

Remark 1.4. From here on we will use the word *space* to mean a topological space.

Definition (Intuitive version- we'll make it more rigorous later) Two spaces are *the same* if the points are just renamed. They are *different* if they are not the same.

Example 1.5. Let $X = \{a, b\}, \mathcal{T}_1 = \{\emptyset, \{a\}, \{a, b\}\}, \mathcal{T}_2 = \{\emptyset, \{b\}, \{a, b\}\}, \mathcal{T}_3 = \{\emptyset, \{a, b\}\}.$

Describe the relationships between these three topologies.

Example 1.6. The following are all the different topologies for $X = \{a, b, c\}$ Fill this in.

Theorem 1.7. Let X be a non-empty set and $\mathcal{T} = \{\emptyset, X\}$. Then \mathcal{T} is a topology for X.

Proof.

Fill in proof.

Definition We call the topology in the theorem above the *trivial topology* for X.

Theorem 1.8. Let X be a non-empty set and $\mathcal{T} = \{all \text{ subsets of } X\}$. Then \mathcal{T} is a topology for X.

 Proof.

 Fill in proof.

Definition We call the topology in the theorem above the *discrete topology* for X.

Definition Let $\{X, \mathcal{T}_X\}$ be a space, and \mathcal{B} a collection of subsets of X such that every element of \mathcal{B} is in \mathcal{T}_X , and every element of \mathcal{T}_X can be written as a union of members of \mathcal{B} . We call \mathcal{B} a *basis for* \mathcal{T}_X , and \mathcal{T}_X the *topology induced* by \mathcal{B} .

Theorem 1.9. Let X be a non-empty set and \mathcal{B} a collection of subsets of X satisfying:

1. The union of all elements of \mathcal{B} is X.

2. The intersection of any pair of elements of \mathcal{B} is the union of elements of \mathcal{B} .

Let $S = \{$ the set of all possible unions of elements of $B \}$. Then S is a topology for X with basis B.

Proof. Fill in proof.

Definition Let \mathbb{R} be the set of real numbers, $x \in \mathbb{R}$, and $\epsilon > 0$ then

 $N(x, \epsilon) = \{ y \in \mathbb{R} | x - \epsilon < y < x + \epsilon \}.$

Note that $N(x,\epsilon)$ can also be written as $\{y \in \mathbb{R} | |x-y| < \epsilon\}$. We call $N(x,\epsilon)$ an ϵ -ball about x.

Theorem 1.10. Let $X = \mathbb{R}$ and $\mathcal{B} = \{N(x, \epsilon) | x \in \mathbb{R}, \epsilon > 0\}$ then \mathcal{B} is a basis for a topology on \mathbb{R} .

Proof.

Fill in proof. Hint: Use the theorem above.

Definition

Extend this idea to to \mathbb{R}^n by defining $N(\mathbf{x}, \epsilon) \subset \mathbb{R}^n = \dots$

Theorem 1.11. Let $X = \mathbb{R}^n$ and $\mathcal{B} = \{N(\mathbf{x}, \epsilon) | \mathbf{x} \in \mathbb{R}^n, \epsilon > 0\}$ then \mathcal{B} is a basis for a topology on \mathbb{R}^n .

Proof.

Fill in proof. Hint: Use the theorem above.

Definition

With \mathcal{B} defined as above we define \mathbb{E}^n to be the topology induced by \mathcal{B} and refer to \mathbb{E}^n as the *Euclidean topology* for \mathbb{R}^n . We sometimes just refer to \mathbb{E}^n instead of $\{\mathbb{R}^n, \mathbb{E}^n\}$ for the whole space.

Theorem 1.12.

 $\mathbb{E}^n = \{ A \subseteq \mathbb{R}^n \mid \forall \mathbf{x} \in A, \exists \epsilon > 0 \text{ such that } N(\mathbf{x}, \epsilon) \subseteq A \}.$

Proof.

Fill in proof

Definition Define $\tilde{N}(x, \epsilon) = \{y \in \mathbb{R} | x - \epsilon < y \le x\}.$

Theorem 1.13. Let $X = \mathbb{R}$ and $\tilde{\mathcal{B}} = \{\tilde{N}(x, \epsilon) | x \in \mathbb{R}, \epsilon > 0\}$ then $\tilde{\mathcal{B}}$ is a basis for a topology on \mathbb{R} .

 ${\it Proof.}$

Fill in proof. Use the theorem above..

Definition We will call \mathbf{H}^1 the *half-open* topology for \mathbb{R} .

Theorem 1.14. Let $\mathbf{F}^1 = \{A \subseteq \mathbb{R} | \mathbb{R} \setminus A \text{ is a finite set}\} \cup \emptyset$. Then the pair $\{\mathbb{R}, \mathbf{F}^1\}$ is a topological space.

Proof. Fill in proof

Definition We call \mathbf{F}^1 the *Finite-Complement Topology* for \mathbb{R} .

Definition Denote \mathbb{R} with the trivial topology as $\{\mathbb{R}, \mathbf{T}^1\}$, and \mathbb{R} with the discrete topology as $\{\mathbb{R}, \mathbf{D}^1\}$.

Example 1.15.

Determine whether sets consisting of single points are open in any of the five topologies \mathbb{E} , \mathbf{H}^1 , \mathbf{F}^1 , \mathbf{T}^1 and \mathbf{D}^1 .

Definition Let X be a space, $A \subseteq X$ and $x \in X$. Then, x is a *limit point of* $A \Leftrightarrow (\forall O \text{ open in } X \text{ such that } x \in O)(O \cap (A \setminus \{x\}) \neq \emptyset).$ Cl(A) (the *closure of* A) = $A \cup \{\text{limit points of } A\}.$

Definition Let X be a space, $A \subseteq X$ and $x \in X$. Then, x is an *interior point* of $A \Leftrightarrow (\exists O \text{ open in } X \text{ such that } x \in O \subseteq A)$, Int(A) (the *interior of* A) = {interior points of A}.

Example 1.16. Let $X = \{p, q, r\}, \mathcal{T} = \{\emptyset, \{r\}, \{p, q\}, \{p, q, r\}\}$ and $A = \{p, r\}$. Determine if any of the points of X are limit points and/or interior points of A.

Example 1.17. Let $X = \mathbb{E}^2$ (really, $X = \mathbb{R}^2$, $\mathcal{T}_X = \mathbb{E}^2$) and $A = \{(x, y) | 0 \le x < 2, 0 \le y < 2\}$.

Determine if any of the points (0,0), (1,1), (1,2), (3,3) of X are limit points and/or interior points of A.

Theorem 1.18. In any space X, a set $A \subseteq X$ is open \Leftrightarrow All points of A are interior.

Proof.

Fill in proof.

Theorem 1.19. In any space X, a set $A \subseteq X$ is closed $\Leftrightarrow A$ contains all of its limit points.

4

Proof.

Fill in proof.

Definition Let X be a space with topology \mathcal{T}_X , and $Y \subseteq X$ where $Y \neq \emptyset$. Let $\mathcal{T}_Y = \{A \subseteq Y | \exists O \text{ open in } X(ie.O \in \mathcal{T}_X) \text{ with } A = O \cap Y\}.$

Theorem 1.20. The collection \mathcal{T}_Y is a topology for Y.

Proof. Fill in proof

Definition With this topology, we call Y a subspace of X and we call \mathcal{T}_Y the subspace topology for Y.

Example 1.21. Let $X = \{a, b, c, d\}, \mathcal{T}_X = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, c, d\}\},$ and $Y = \{a, b, d\}$. Give Y the subspace topology.

Give examples of non-empty subsets of Y that are:

1. open in Y and open in X.

List the open sets in Y

- 2. open in Y but not open in X.
- 3. open in X but not open in Y.

Example 1.22. Let $X = \mathbb{E}^2$ and $Y = \{(x, y) | 0 \le x < 1, 0 \le y < 1\}$. Give Y the subspace topology.

Give examples of non-empty subsets of Y that are:

- 1. open in Y and open in X.
- 2. open in Y but not open in X.
- 3. open in X but not open in Y.

<u>Theorem 1.23.</u>

Make up a simple theorem about open subsets in subspaces.

Proof. Fill in proof

Definition Let $X = \mathbb{E}^n$ and $Y = \{(x_1, x_2, \dots, x_n) | x_1^2 + x_2^2 + \dots + x_n^2 = 1\}$. Give Y the subspace topology. We will refer to Y as \mathbf{S}^{n-1} . If we change the '=' to ' \leq ', the resulting space is called \mathbf{B}^n .

Example 1.24.

Draw pictures of \mathbf{S}^{n-1} and \mathbf{B}^n for n = 1, 2, 3. In your pictures draw some representative open sets. Can you guess why we use \mathbf{S}^{n-1} instead of \mathbf{S}^n ?