Topology

St. Mary's College of Maryland Topology Class

January 21, 2013

1 Topological Spaces

In this chapter we define topological spaces sdfadfg and look at a number of examples. In addition, we define subspaces and construct corresponding examples.

Definition A topological space is a non-empty set X together with a collection $\mathcal T$ of subsets of X such that:

- 1. The empty set is in \mathcal{T} .
- 2. The set X itself is in \mathcal{T} .
- 3. Any *finite* intersection of sets in $\mathcal T$ is also in $\mathcal T$.
- 4. Any union of sets in $\mathcal T$ is also in $\mathcal T$.

or more formally,

- 1. $\emptyset \in \mathcal{T}$.
- 2. $X \in \mathcal{T}$.
- 3. $A_i \in \mathcal{T}, i = 1 \cdots n \Rightarrow \bigcap \{A_i | i = 1 \cdots n\} \in \mathcal{T}.$
- 4. $A_{\alpha} \in \mathcal{T}, \ \alpha \in \Gamma \Rightarrow \bigcup \{ A_{\alpha} | \alpha \in \Gamma \} \in \mathcal{T}.$

Definition Given a topological space $\{X, \mathcal{T}\}\$, \mathcal{T} is called the *topology*, the elements of X are called *points* and the elements of $\mathcal T$ are called *open sets*.

Definition A subset B of a topological space X is closed $\Leftrightarrow X \setminus B$ (the compliment of B) is open.

Lemma 1.1. If X is a set and $\mathcal T$ a collection of subsets of X such that $\forall A_1, A_2 \in \mathcal{T}, A_1 \cap A_2 \in \mathcal{T}, \text{ then axiom } \beta \text{ is satisfied for } \mathcal{T}.$

Proof. Fill in proof

 \Box

Example 1.2. Let $X = \{a, b\}$ and $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}\}\$, then $\{X, \mathcal{T}\}\$ is a topological space. Fill in proof

Example 1.3. Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{a, b, c\}\}\$, then $\{X, \mathcal{T}\}$ is a topological space.

Show that this is false, and then make $\mathcal T$ into a topology by adding the fewest possible sets to \mathcal{T} .

Remark 1.4. From here on we will use the word *space* to mean a topological space.

Definition (Intuitive version- we'll make it more rigorous later) Two spaces are the same if the points are just renamed. They are different if they are not the same.

Example 1.5. Let $X = \{a, b\}, \mathcal{T}_1 = \{\emptyset, \{a\}, \{a, b\}\}, \mathcal{T}_2 = \{\emptyset, \{b\}, \{a, b\}\}, \mathcal{T}_3 =$ $\{\emptyset, \{a, b\}\}.$

Describe the relationships between these three topologies.

Example 1.6. The following are all the different topologies for $X = \{a, b, c\}$ Fill this in.

Theorem 1.7. Let X be a non-empty set and $\mathcal{T} = \{\emptyset, X\}$. Then \mathcal{T} is a topology for X.

Proof.

Fill in proof.

Definition We call the topology in the theorem above the trivial topology for X.

 \Box

Theorem 1.8. Let X be a non-empty set and $\mathcal{T} = \{all \text{ subsets of } X\}$. Then $\mathcal T$ is a topology for X.

Proof. Fill in proof. \Box

Definition We call the topology in the theorem above the discrete topology for X.

Definition Let $\{X, \mathcal{T}_X\}$ be a space, and \mathcal{B} a collection of subsets of X such that every element of \mathcal{B} is in \mathcal{T}_X , and every element of \mathcal{T}_X can be written as a union of members of \mathcal{B} . We call \mathcal{B} a basis for \mathcal{T}_X , and \mathcal{T}_X the topology induced by \mathcal{B} .

Theorem 1.9. Let X be a non-empty set and \mathcal{B} a collection of subsets of X satisfying:

1. The union of all elements of B is X.

2. The intersection of any pair of elements of B is the union of elements of $\mathcal{B}.$

Let $S = \{$ the set of all possible unions of elements of $\mathcal{B}\}$. Then S is a topology for X with basis B .

Proof. Fill in proof.

 $\overline{\Box}$

Definition Let R be the set of real numbers, $x \in \mathbb{R}$, and $\epsilon > 0$ then

 $N(x, \epsilon) = \{y \in \mathbb{R} | x - \epsilon < y < x + \epsilon\}.$

Note that $N(x, \epsilon)$ can also be written as $\{y \in \mathbb{R} | |x - y| < \epsilon\}$. We call $N(x, \epsilon)$ an ϵ -ball about x.

Theorem 1.10. Let $X = \mathbb{R}$ and $\mathcal{B} = \{N(x, \epsilon) | x \in \mathbb{R}, \epsilon > 0\}$ then \mathcal{B} is a basis for a topology on \mathbb{R} .

Proof.

Fill in proof. Hint: Use the theorem above.

 \Box

 \Box

Definition

Extend this idea to to \mathbb{R}^n by defining $N(\mathbf{x}, \epsilon) \subset \mathbb{R}^n = ...$

Theorem 1.11. Let $X = \mathbb{R}^n$ and $\mathcal{B} = \{N(\mathbf{x}, \epsilon) | \mathbf{x} \in \mathbb{R}^n, \epsilon > 0\}$ then \mathcal{B} is a basis for a topology on \mathbb{R}^n .

Proof.

Fill in proof. Hint: Use the theorem above.

Definition

With $\mathcal B$ defined as above we define $\mathbb E^n$ to be the topology induced by $\mathcal B$ and refer to \mathbb{E}^n as the *Euclidean topology* for \mathbb{R}^n . We sometimes just refer to \mathbb{E}^n instead of $\{\mathbb{R}^n, \mathbb{E}^n\}$ for the whole space.

Theorem 1.12.

 $\mathbb{E}^n = \{ A \subseteq \mathbb{R}^n \mid \forall \mathbf{x} \in A, \exists \epsilon > 0 \text{ such that } N(\mathbf{x}, \epsilon) \subseteq A \}.$

Proof. Fill in proof

 \Box

Definition Define $\tilde{N}(x, \epsilon) = \{y \in \mathbb{R} | x - \epsilon < y \leq x\}.$

Theorem 1.13. Let $X = \mathbb{R}$ and $\tilde{\mathcal{B}} = {\tilde{N}(x, \epsilon) | x \in \mathbb{R}, \epsilon > 0}$ then $\tilde{\mathcal{B}}$ is a basis for a topology on R.

Proof. Fill in proof. Use the theorem above.

Definition We will call H^1 the *half-open* topology for R.

Theorem 1.14. Let $\mathbf{F}^1 = \{A \subseteq \mathbb{R} | \mathbb{R} \setminus A \text{ is a finite set}\} \cup \emptyset$. Then the pair $\{\mathbb{R},\mathbf{F}^1\}$ is a topological space.

Proof. Fill in proof

Definition We call \mathbf{F}^1 the *Finite-Complement Topology* for R.

Definition Denote R with the trivial topology as $\{\mathbb{R}, \mathbf{T}^1\}$, and R with the discrete topology as $\{\mathbb{R}, D^1\}$.

Example 1.15.

Determine whether sets consisting of single points are open in any of the five topologies $\mathbb{E}, H^1, F^1, T^1$ and D^1 .

Definition Let X be a space, $A \subseteq X$ and $x \in X$. Then, x is a limit point of A $\Leftrightarrow (\forall O \text{ open in } X \text{ such that } x \in O)(O \cap (A \setminus \{x\}) \neq \emptyset).$ $Cl(A)$ (the *closure of A*) = $A \cup \{\text{limit points of } A\}.$

Definition Let X be a space, $A \subseteq X$ and $x \in X$. Then, x is an *interior point of* $A \Leftrightarrow \exists O$ open in X such that $x \in O \subseteq A$, $Int(A)$ (the *interior of A*) = {interior points of *A*}.

Example 1.16. Let $X = \{p, q, r\}, \mathcal{T} = \{\emptyset, \{r\}, \{p, q\}, \{p, q, r\}\}\$ and $A = \{p, r\}.$ Determine if any of the points of X are limit points and/or interior points of A.

Example 1.17. Let $X = \mathbb{E}^2$ (really, $X = \mathbb{R}^2$, $\mathcal{T}_X = \mathbb{E}^2$) and $A = \{(x, y) | 0 \le x <$ $2, 0 \le y < 2$.

Determine if any of the points $(0,0), (1,1), (1,2), (3,3)$ of X are limit points and/or interior points of A.

Theorem 1.18. In any space X, a set $A \subseteq X$ is open \Leftrightarrow All points of A are interior.

Proof.

Fill in proof.

Theorem 1.19. In any space X, a set $A \subseteq X$ is closed $\Leftrightarrow A$ contains all of its limit points.

Proof.

 \Box

 \Box

 \Box

Definition Let X be a space with topology \mathcal{T}_X , and $Y \subseteq X$ where $Y \neq \emptyset$. Let $\mathcal{T}_Y = \{A \subseteq Y \mid \exists O \text{ open in } X(ie.O \in \mathcal{T}_X) \text{ with } A = O \cap Y\}.$

Theorem 1.20. The collection \mathcal{T}_Y is a topology for Y.

Proof. Fill in proof \Box

Definition With this topology, we call Y a *subspace* of X and we call \mathcal{T}_Y the subspace topology for Y.

Example 1.21. Let $X = \{a, b, c, d\}, \mathcal{T}_X = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, c, d\}\},\$ and $Y = \{a, b, d\}$. Give Y the subspace topology.

List the open sets in Y Give examples of non-empty subsets of Y that are: 1. open in Y and open in X . 2. open in Y but not open in X .

3. open in X but not open in Y .

Example 1.22. Let $X = \mathbb{E}^2$ and $Y = \{(x, y) | 0 \le x < 1, 0 \le y < 1\}$. Give Y the subspace topology.

Give examples of non-empty subsets of Y that are:

- 1. open in Y and open in X .
- 2. open in Y but not open in X .
- 3. open in X but not open in Y .

Theorem 1.23.

Make up a simple theorem about open subsets in subspaces.

Proof.

Fill in proof

 \Box

Definition Let $X = \mathbb{E}^n$ and $Y = \{(x_1, x_2, \dots, x_n) | x_1^2 + x_2^2 + \dots + x_n^2 = 1\}.$ Give Y the subspace topology. We will refer to Y as S^{n-1} . If we change the '=' to ' \leq ', the resulting space is called \mathbf{B}^n .

Example 1.24.

Draw pictures of S^{n-1} and B^n for $n = 1, 2, 3$. In your pictures draw some representative open sets. Can you guess why we use S^{n-1} instead of S^n ?