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Abstract. Ramanujan-type congruences for the unrestricted partition
function p(n) are well known and have been studied in great detail.
The existence of Ramanujan-type congruences are virtually unknown for
p(n,m), the closely related restricted partition function that enumerates
the number of partitions of n into exactly m parts. Let ` be any odd
prime. In this paper we establish explicit Ramanujan-type congruences
for p(n, `) modulo any power of that prime `α. In addition, we establish
general congruence relations for p(n, `) modulo `α for any n.

1. Introduction and a Result

A partition of a non-negative integer n is a non-increasing finite sequence

of positive integers λ1, λ2, ..., λr whose sum is n. The λi are called the parts

of the partition. Let p(n) denote the number of partitions of n. We agree

that p(0) = 1 and that p(n) = 0 for n /∈ Z≥0.
For example, there are five partitions of 4. One very natural way to list

these partitions is by increasing number of parts:

(1.1) 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Hence p(4) = 5. The restricted partition function which enumerates the

number of partitions of the non-negative integer n into exactly m parts is

denoted by p(n,m). From (1.1) we can see that there are two partitions of

4 into exactly two parts, namely 3 + 1 and 2 + 2 and we write p(4, 2) = 2. It

is clear that p(n,m) is closely related to the unrestricted partition function

p(n) in that

(1.2) p(n) = p(n, 1) + p(n, 2) + p(n, 3) + ...+ p(n, n− 1) + p(n, n).

where for n < m, p(n,m) = 0.

In 1919, Ramanujan [15] discovered three surprising congruences for p(n):

p(5j + 4) ≡ 0 (mod 5),

p(7j + 5) ≡ 0 (mod 7),
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and

p(11j + 6) ≡ 0 (mod 11).

Though he was able to provide proofs for these congruences, he felt there

was something unusual about them [14].

It appears that there are no equally simple properties for any

moduli involving primes other than these three (i.e. m =

5, 7, 11).

His intuition was correct. It took nearly fifty years after Ramanujan’s initial

discovery for A. L. O. Atkin [3] to discover a fourth such congruence:

p(206839j + 2623) ≡ 0 (mod 17).

More than thirty years would pass before Ken Ono [13] proved for primes

` ≥ 5 that there are infinitly many Ramanujan-like congruences of the form

(1.3) p(Aj +B) ≡ 0 (mod `).

A similar time scale follows theorems regarding congruences modulo

prime powers and composite munbers. In 1919 Ramanujan made a con-

jecture which was eventually refined by Watson in 1938 [17] and proved by

Atkin in 1967 [4].

Theorem 1. [17] If 24n−1 ≡ 0 (mod 5a7b11c) then p(n) ≡ 0 (mod 5a7d11c)

where a, b, c ≥ 0 and d =
[
b+2
2

]
if b > 0, d = 0 if b = 0.

In 2000, Scott Ahlgren [1] extended the results of Ono [13] by showing

that the prime ` may in fact be replaced by an arbitrary prime power `α

extending (1.3) to

(1.4) p(Aj +B) ≡ 0 (mod `α).

For their work on the Theory of Invariants, Sylvester [16] (along with

Cayley) did an enrmous amount of research on closed term formulae for

p(n,m) at the end of the 19th century. Mathematicians including Erdos and

Lehner, Gupta, Gwyther and Miller [6], Chowla, Szekeres, and Haselgrove

and Templerly have made great contributions to the behavior of p(n,m)

[5]. A paper by Wilf and Nijenhuis [12] describes the periodicity of p(n,m)

modulo a prime. This useful result was followed by three papers by Kwong

[9, 10, 11] extending the results of [12] to prime powers. Despite an abun-

dance of material on the function p(n,m) and the close relationship between

p(n) and p(n,m), there are no results regarding Ramanujan-type congru-

ences for p(n,m) save those by the author [7, 8].
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The purpose of this paper is to establish explicit Ramanujan-type con-

gruences as in (1.4) for p(n,m) modulo arbitrary powers of the prime ` with

` ≥ 3. For j ≥ 0:

p(54j, 3) ≡ 0 (mod 27)

p(60j − 5, 5) ≡ 0 (mod 5)

p(2940j, 7) ≡ 0 (mod 49)

p(304920j − 33, 11) ≡ 0 (mod 121)

p(360360j, 13) ≡ 0 (mod 13).

Our first result is stated as

Corollary 1. For ` an odd prime, j ≥ 0, and 0 ≤ k ≤ `−3
2

and α ≥ 1,

p(lcm(`) · `α−1 · j − k`, `) ≡ 0 (mod `α),

where lcm(m) is the least common multiple of the numbers from 1 to m.

Corollary 1 gives us `−1
2

Ramanujan-like congruences for each `. Corollary

1 was previously known only for the case α = 1 [7].

Example 1. Examples of Corollary 1 modulo powers of 3.

p(6j, 3) ≡ 0 (mod 3), p(18j, 3) ≡ 0 (mod 9)

p(54j, 3) ≡ 0 (mod 27), p(162j, 3) ≡ 0 (mod 81)

Example 2. Examples of Corollary 1 modulo powers of 5.

p(60j, 5) ≡ 0 (mod 5), p(60j − 5, 5) ≡ 0 (mod 5)

p(300j, 5) ≡ 0 (mod 25), p(300j − 5, 5) ≡ 0 (mod 25)

p(1500j, 5) ≡ 0 (mod 125), p(1500j − 5, 5) ≡ 0 (mod 125)

2. Statement of Theorems and Examples

We require the following definition to state our theorems.

Definition 1. Let m,h, j and r be integers such that m > 0, j ≥ 0, and

−m2−3m
2
≤ r < lcm(m) · h. Let n = lcm(m) · h · j + r and n′ = lcm(m) ·

h(j + 1)− m2−3m
2
− r.

We will define p(n,m) and p(n′,m) to be palindromic partners.

Example 3. p(12j + 1, 4) and p(12j + 9, 4) are palindromic partners.

We now state our main theorems. Though our theorems are stated for

odd primes, it should be said that since p(n, 2) = bn
2
c somewhat similar, but

by no means identical, results for the even prime 2 are easily formulated.
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Theorem 2. Let ` be an odd prime, n = lcm(`) · `α−1 · j + r and n′ be its

palindromic partner so that n′ = lcm(`) · `α−1(j + 1) − `2−3`
2
− r. For k an

integer such that min{n, n− k`, n′, n′ + k`} ≥ − `2−3`
2

and α ≥ 1 , then

(2.1) p(n, `)− p(n′, `) + p(n′ + k`, `)− p(n− k`, `) ≡ 0 (mod `α).

Note that not only are p(n, `) and p(n′, `) palindromic partners, but also

that p(n′ + k`, `) and p(n− k`, `) are as well.

In the following examples of Theorem 2, we consider p(n, 5) modulo 5α

for n = 47. We choose n = 47 simply for the purposes of the following

examples. Examples 4, 5, 6, 7, 8, and 9 highlight the variable k. Examples

10 and 11 have k = 1 and highlight the variable α.

Example 4. α = 1, k = 1,

p(47, 5)−p(8, 5)+p(13, 5)−p(42, 5) = 2062−3+18−1342 = 735 ≡ 0 (mod 5)

Example 5. α = 1, k = 2,

p(47, 5)−p(8, 5)+p(18, 5)−p(37, 5) = 2062−3+57−831 = 1285 ≡ 0 (mod 5)

Example 6. α = 1, k = 3,

p(47, 5)−p(8, 5)+p(23, 5)−p(32, 5) = 2062−3+141−480 = 1720 ≡ 0 (mod 5)

Example 7. α = 1, k = 4,

p(47, 5)−p(8, 5)+p(28, 5)−p(27, 5) = 2062−3+291−255 = 2095 ≡ 0 (mod 5)

Example 8. α = 1, k = 5,

p(47, 5)−p(8, 5)+p(33, 5)−p(22, 5) = 2062−3+540−119 = 2480 ≡ 0 (mod 5)

Example 9. α = 1, k = 6,

p(47, 5)−p(8, 5)+p(38, 5)−p(17, 5) = 2062−3+918−47 = 2930 ≡ 0 (mod 5)

Example 10. α = 2, k = 1, n = 47 = lcm(5) · 5 · 0 + 47 so n′ = lcm(5) ·
5 · 1− 5− 47 = 248,

p(47, 5)− p(248, 5) + p(253, 5)− p(42, 5)

= 2062− 1366617 + 1479072− 1342 = 113175 ≡ 0 (mod 25)

Example 11. α = 3, k = 1, n = 47 = lcm(5) · 52 · 0 + 47 so n′ =

lcm(5) · 52 · 1− 5− 47 = 1448,

p(47, 5)− p(1448, 5) + p(1453, 5)− p(42, 5)

= 2062− 1493467461 + 1494035616− 1342 = 568875 ≡ 0 (mod 125)
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Our next result is a special case of Theorem 2. When n is a multiple of

the prime `, the congruence relation resides in the difference of a single case

of palindromic partners and not the sum of the differences of two instances

of palindromic partners as in Theorem 2. For example, Theorem 2 tells us

that

(2.2) p(35, 5)− p(20, 5) + p(25, 5)− p(30, 5) ≡ 0 (mod 5)

However, it is true that

(2.3) p(35, 5)− p(20, 5) ≡ 0 (mod 5).

Theorem 3 captures the generalization of this congruence.

Theorem 3. Let ` be an odd prime, n = lcm(`) · `α−1 · j + `k and n′ be

its palindromic partner so that n′ = lcm(`) · `α−1 · (j + 1)− `2−3`
2
− `k. For

min{n, n′} ≥ − `2−3`
2

and α ≥ 1 we have

(2.4) p(n, `)− p(n′, `) ≡ 0 (mod `α).

We illustrate Theorem 3 with the following examples.

Example 12. Let ` = 5, α = 1 so that n = lcm(5) + 5k there are only

lcm(5)/(5 · 2) = 6 palindromic partners whose difference is congruent to

zero modulo 5.

(2.5) p(60j + 55, 5)− p(60j, 5) ≡ 0 (mod 5)

(2.6) p(60j + 50, 5)− p(60j + 5, 5) ≡ 0 (mod 5)

(2.7) p(60j + 45, 5)− p(60j + 10, 5) ≡ 0 (mod 5)

(2.8) p(60j + 40, 5)− p(60j + 15, 5) ≡ 0 (mod 5)

(2.9) p(60j + 35, 5)− p(60j + 20, 5) ≡ 0 (mod 5)

(2.10) p(60j + 30, 5)− p(60j + 25, 5) ≡ 0 (mod 5)

Remark 1. Compare (2.9) to (2.3).

Example 13. With ` = 5, α = 2 so that n = lcm(5) · 5 + 5k there are now

5 · lcm(5)/(5 · 2) = 30 palindromic partners whose difference is congruent to

zero modulo 5.

p(300j + 295, 5)− p(300j, 5) ≡ 0 (mod 25)

p(300j + 290, 5)− p(300j + 5, 5) ≡ 0 (mod 25)

p(300j + 285, 5)− p(300j + 10, 5) ≡ 0 (mod 25)

p(300j + 280, 5)− p(300j + 15, 5) ≡ 0 (mod 25)
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p(300j + 275, 5)− p(300j + 20, 5) ≡ 0 (mod 25)
...

Corollary 1 is proved from Theorem 3. The proof appears in section 5.

3. Background

The generating functions for both p(n) and p(n,m) are similar.

(3.1)
∞∑
n=0

p(n)qn =
∞∏
k=1

1

(1− qk)
=

1

(q; q)∞

(3.2)
∞∑
n=0

p(n,m)qn = qm ·
m∏
k=1

1

(1− qk)
=

qm

(q; q)m

As in (1.2), we relate the generating functions in (3.1) and (3.2) by (3.3).

(3.3)
1

(q; q)∞
= 1 +

q

1− q
+

q2

(q; q)2
+

q3

(q; q)3
+

q4

(q; q)4
+

q5

(q; q)5
+ · · ·

Many partition theorems are proved by studying their generating functions.

Our results will come from congruentially identifying generating functions

like (3.2) to polynomials and then investigating these polynomials with tech-

niques both old and new.

We require the following information to prove our results.

Lemma 1. For β ≥ 0 and n ≥ βm

(3.4) p(n,m)− p (n− βm,m) =

β−1∑
i=0

p(n− 1− im,m− 1)

Proof of Lemma 1 Let β ≥ 0 and n ≥ βm

(3.5)
∑
n≥0

[p(n,m)− p(n− βm,m)] qn =
qm(1− qβm)

(q; q)m

(3.6) =
qm−1

(q; q)m−1
· q(1− q

βm)

(1− qm)

(3.7) =
∑
k≥0

p(k,m− 1)qk ·
β−1∑
i=0

qim+1

And so

(3.8) p(n,m)− p (n− βm,m) =

β−1∑
i=0

p(n− 1− im,m− 1). �

For our purposes we consider two cases of Lemma 1 into the following

remarks as β is either odd or even.
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Remark 2. For β as in Lemma 1 with β = 2b+ 1,

(3.9) p(n,m)− p (n− (2b+ 1)m,m) =
b∑

i=−b

p(n− 1− (b+ i)m,m− 1).

For β as in Lemma 1 with β = 2b,

(3.10) p(n,m)− p (n− (2b)m,m) =
b−1∑
i=−b

p(n− 1− (b+ i)m,m− 1).

We observe that (3.9) and (3.10) are a result of reindexing the sum and

adjusting the summand accordingly.

Definition 2. [7] A polynomial P (q) = a0 + a1q + · · ·+ anq
n of degree n is

called anti-reciprocal if for each i,

(3.11) ai = −an−i

or if

(3.12) qn (P (1/q)) = −P (q).

When P (q) is an antireciprocal polynomial we will call the coefficients ai

and an−i antireciprocal partners.

Though the following definition of reciprocal polynomial is not directly

used in any proof in this paper, we include it here so that we may fully

describe the methods of proof.

Definition 3. [2] A polynomial P (q) = a0 + a1q + · · ·+ anq
n of degree n is

called reciprocal if for each i,

(3.13) ai = an−i

or if

(3.14) qn (P (1/q)) = P (q).

When P (q) is an reciprocal polynomial we will call the coefficients ai and

an−i reciprocal partners.

The following lemma is crucial for our results. It was first described by

Albert Nijenhuis and Herb Wilf [12] and later by the author [8] but only for

the case modulo `. The extension to prime powers `α is due to Y. H. Kwong

who was a student of Nijenhuis’. The following lemma used for the results

in this paper is the end result of a series of four papers beginning with [12]

and including [11],[9], and [10].
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Lemma 2. [10] For a nonnegative integer t, the sequence {p(n, t) (mod `α)}n≥0
is periodic with minimum period lcm(`) · `α−1 so long as∑

δ≥0

φ(`δ)
⌊ t
`δ

⌋
≤ `,

where φ is Euler’s function.

Remark 3. Given a nonnegative integer t, let d be any of the natural

numbers that are multiples of lcm(t) and let `α be a primary factor of

d. Set K(`, t, d) =
∑

δ≥0 φ(`δ)b t
`δ
c. Whenever K(`, t, d) ≤ ` we will say

that Kwong’s Criterion is satisfied. Moreover, when t = ` − 1 and d =

lcm(`) · `α−1 · j, for j ≥ 0 we have

(3.15) K(`, `− 1, lcm(`) · `α−1 · j) = `− 1 < `,

and Kwong’s Criterion is satisfied.

Kwong’s Criterion provides us with an easy way to determine if a rational

function of the form

(3.16)
(1− qd)
(q; q)t

can be congruentially identified to a polynomial. We exploit certain prop-

erties of the resulting polynomial to gain our results.

Lemma 3. Let `, t, d be as in Remark 3 so that Kwong’s Criterion is satis-

fied. Let n ≥ d−
(
t
2

)
. The generating function for the difference between the

number of partitions of n into exactly t parts and the number of partitions

of n − d into exactly t parts is congruent modulo `α to a polynomial. We

will call this polynomial A(q; `, t, d).

(3.17)
∞∑
n=0

(p(n, t)− p(n− d, t)) qn =
qt(1− qd)

(q; q)t
≡ A(q; `, t, d) (mod `α)

Depending on t (mod 4), A(q; `, t, d) has the following properties:

• If t ≡ 0 (mod 4), then A(q; `, t, d) is an antireciprocal polynomial of

degree d− t2−3t
4

with d+ 1 terms.

• If t ≡ 1 (mod 4), then A(q; `, t, d) is a reciprocal polynomial of degree

d− t2−3t+2
4

with d terms.

• If t ≡ 2 (mod 4), then A(q; `, t, d) is an antireciprocal polynomial of

degree d− t2−3t+2
4

with d terms.

• If t ≡ 3 (mod 4), then A(q; `, t, d) is a reciprocal polynomial of degree

d− t2−3t
4

with d+ 1 terms.
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We note here that the degree of the polynomial A(q; `, t, d) is larger than

that specified by Definiton 2 and Definition 3. This is due to including a

certain number of terms with coefficient zero. We include these terms so that

we may make efficient use of the properties of reciprocal and anti-reciprocal

polynomials. Given that we write a polynomial in canonical form, these

properties are unaltered by including terms with coefficient zero on the

leading side of the polynomial and an equivalent number of likewise terms

on the opposite end of the polynomial. These additional terms are obtained

in the following way: Since (1−qd)
(q;q)t

is purely periodic modulo `α with period

d by Lemma 2 then it identifies to a polynomial with d terms. Moreover,

it is easy to show that A(q; `, t, d) is a polynomial of degree d − t2−3t
2

by

satisfying either Definition 2 or Definition 3. This difference between the

number of terms d and the degree of the polynomial is where the additional

terms with coefficient zero come from.

For example, in Lemma 3 letting t = 2, ` = 3, and d = lcm(3) ·3 = 18 we

may identify the generating function for the difference between the number

of partitions of n into exactly 2 parts and n− 18 into exactly 2 parts in line

(3.18) to the polynomial A(q; 3, 2, 18) in line (3.19).

(3.18)
∞∑
n=0

[p (n, 2)− p(n− lcm(3) · 3, 2)] qn =
q2(1− q18)

(1− q)(1− q2)

≡ 0q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 4q9

(3.19) −4q10− 4q11− 3q12− 3q13− 2q14− 2q15− q16− q17− 0q18 (mod 9).

Indeed, (3.19) is an antireciprocal polynomial of degree 18 with 18 terms

by Lemma 3.

Theorem 4 is the partition theoretic interpretation of Lemma 3.

Theorem 4. Let `, t, d be as in Remark (3) so that Kwong’s Criterion is

satisfied and N ≥ 0, M > N .

• If t ≡ 0 (mod 4), then

p

(
dN −

(
t2 − 3t

4

)
+ i, t

)
≡ −p

(
dM −

(
t2 − 3t

4

)
− i, t

)
(mod `α).

• If t ≡ 1 (mod 4), then

p

(
dN −

(
t2 − 3t− 2

4

)
+ i, t

)
≡ p

(
dM −

(
t2 − 3t+ 2

4

)
− i, t

)
(mod `α).

• If t ≡ 2 (mod 4), then

p

(
dN −

(
t2 − 3t− 2

4

)
+ i, t

)
≡ −p

(
dM −

(
t2 − 3t+ 2

4

)
− i, t

)
(mod `α).
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• If t ≡ 3 (mod 4), then

p

(
dN −

(
t2 − 3t

4

)
+ i, t

)
≡ p

(
dM −

(
t2 − 3t

4

)
− i, t

)
(mod `α).

The importance of Theorem 4 is that depending on t and for fixed i,

these partitions correspond to the reciprocal or antireciprocal partners of the

polynomial A(q; `, t, d) in (3.17). Moreover, the partitions in this theorem

satisfy Definition 1 and are palindromic partners. Theorem 4 is a most

general congruence relation for all n into exactly t parts.

Remark 4. Let `, t, d be so that Kwong’s Criterion (Remark (3)) is satisfied

and N ≥ 0, M > N .

• If t ≡ 0 (mod 4), then

d(M−N)∑
i=0

[
p

(
dN −

(
t2 − 3t

4

)
+ i, t

)
+ p

(
dM −

(
t2 − 3t

4

)
− i, t

)]
(3.20) ≡ 0 (mod `α).

• If t ≡ 2 (mod 4), then

d(M−N)∑
i=0

[
p

(
dN −

(
t2 − 3t− 2

4

)
+ i, t

)
+ p

(
dM −

(
t2 − 3t+ 2

4

)
− i, t

)]
(3.21) ≡ 0 (mod `α).

4. Proofs of Theorems

For Theorem 2 we will prove the case for ` ≡ 1 (mod 4). We begin with

line (3.20) in Remark 4 where Kwong’s Criterion is satisfied.

d(M−N)∑
i=0

[
p

(
dN −

(
t2 − 3t

4

)
+ i, t

)
+ p

(
dM −

(
t2 − 3t

4

)
− i, t

)]
(4.1) ≡ 0 (mod `α).

For N = j ≥ 0 and M = j+1 we set d = lcm(`)`α−1 with ` ≡ 1 (mod 4), so

that t = `−1. Set i = r+`
(
`−1
4
− k + i

)
and for 0 ≤ k ≤ lcm(`−1), reindex

from i = 0 to k − 1. Note K(`, `− 1, lcm(`)`α−1j) = `− 1 so that Kwong’s

Criterion remains satisfied. In essence we are manipulating the polynomial

A(q; `, `− 1, lcm(`)`α−1j). Rewrite (4.1):

k−1∑
i=0

[
p

(
lcm(`)`α−1j −

(
`2 − 5`+ 4

4

)
+ r + `

(
`− 1

4
− k + i

)
, `− 1

)
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(4.2)

+p

(
lcm(`)`α−1(j + 1)−

(
`2 − 5`+ 4

4

)
− r − `

(
`− 1

4
− k + i

)
, `− 1

)]

≡
k−1∑
i=0

[
p
(
lcm(`)`α−1j + r − 1− (k − 1)`+ i`, `− 1

)
(4.3) +p

(
lcm(`)`α−1(j + 1)−

(
`2 − 3`

2

)
− r + k`− 1− i`, `− 1

)]

≡
k−1∑
i=0

p
(
lcm(`)`α−1j + r − 1− i`, `− 1

)
+

k−1∑
i=0

p

(
lcm(`)`α−1(j + 1)−

(
`2 − 3`

2

)
− r + k`− 1− i`, `− 1

)
(4.4) ≡ 0 (mod `α)

Observe that lcm(`)`α−1j+ r and lcm(`)`α−1(j+ 1)−
(
`2−3`

2

)
− r are palin-

dromic partners. Set lcm(`)`α−1j + r = n so that n′ = lcm(`)`α−1(j + 1)−(
`2−3`

2

)
− r and write

(4.5)
k−1∑
i=0

p (n− 1− i`, `− 1) +
k−1∑
i=0

p (n′ + k`− 1− i`, `− 1) ≡ 0 (mod `α)

By Lemma 1, (4.5) is equal to

(4.6) [p(n, `)− p(n− k`, `)] + [p(n′ + k`, `)− p(n′, `)] ≡ 0 (mod `α)

(4.7) = p(n, `)− p(n′, `) + p(n′ + k`, `)− p(n− k`, `) ≡ 0 (mod `α)

The case for ` ≡ 3 (mod 4) is done by the same method and is left for the

reader. �

For Theorem 3 we will prove the case for ` ≡ 1 (mod 4) We start with

line (3.20) in Remark 4 where Kwong’s Criterion is satisfied.

d(M−N)∑
i=0

[
p

(
dN −

(
t2 − 3t

4

)
+ i, t

)
+ p

(
dM −

(
t2 − 3t

4

)
− i, t

)]
(4.8) ≡ 0 (mod `α).

For N = j ≥ 0 and M = j + 1 we set d = lcm(`)`α−1 with ` ≡ 1 (mod 4),

so that t = `− 1. Set i = i+ lcm(`−1)
2

+ `−5
4

and for 0 ≤ k ≤ lcm(`− 1)− 1,

reindex from i = 0 to k − lcm(`−1)
2

. Note K(`, ` − 1, lcm(`) · `α−1j) = ` − 1

so that Kwong’s Criterion remains satisfied. Rewrite (4.8) as
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k− lcm(`−1)
2∑

i=0

[
p
(
lcm(`)`α−1j −

(
`2−5`+4

4

)
+ `
(
i+ lcm(`−1)

2
+ `−5

4

)
, `− 1

)
+ p

(
lcm(`)`α−1(j + 1)−

(
`2−5`+4

4

)
− `
(
i+ lcm(`−1)

2
+ `−5

4

)
, `− 1

)]
≡

k− lcm(`−1)
2

+ `−5
4∑

i=0

[
p
(
lcm(`)`α−1j −

(
`2−5`+4

4

)
+ `
(
i+ lcm(`−1)

2

)
, `− 1

)
+ p

(
lcm(`)`α−1(j + 1)−

(
`2−5`+4

4

)
− `
(
i+ lcm(`−1)

2

)
, `− 1

)]
(4.9) ≡ 0 (mod `α)

Observe in 4.9 that for i = 0 we have

p

(
lcm(`)`α−1j −

(
`2 − 5`+ 4

4

)
+ `

(
lcm(`− 1)

2

)
, `− 1

)
+p

(
lcm(`)`α−1(j + 1)−

(
`2 − 5`+ 4

4

)
− `
(
lcm(`− 1)

2

)
, `− 1

)
(4.10) ≡ 0 (mod `α).

Since

lcm(`)`α−1j +
lcm(`)

2
= lcm(`)`α−1(j + 1)− lcm(`)

2
Then it follows that

p

(
lcm(`)`α−1(j + 1)−

(
`2 − 5`+ 4

4

)
− `
(
lcm(`− 1)

2

)
, `− 1

)
(4.11) ≡ 0 (mod `α).

We subtract the term in (4.11) from equation (4.9) and consider

0∑
i=−(k− lcm(`−1)

2
+ `−5

4 )

p
(
lcm(`)`α−1j + k`− 1− `

(
k − lcm(`−1)

2
+ `−5

4
+ i
)
, `− 1

)

+

k− lcm(`−1)
2

+ `−5
4∑

i=1

p
(
lcm(`)`α−1j + k`− 1− `

(
k − lcm(`−1)

2
+ `−5

4
+ i
)
, `− 1

)

≡
k− lcm(`−1)

2
+ `−5

4∑
i=−(k− lcm(`−1)

2
+ `−5

4 )

p
(
lcm(`)`α−1j + k`− 1− `

(
k − lcm(`−1)

2
+ `−5

4
+ i
)
, `− 1

)
(4.12)

≡
2k−lcm(`−1)+ `−3

2
−1∑

i=0

p
(
lcm(`)`α−1j + k`− 1− `i, `− 1

)
≡ 0 (mod `α)

By Lemma 1 (4.12) is equal to

p(lcm(`)`α−1j + k`, `)
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−p
(
lcm(`)`α−1j + k`−

(
2k − lcm(`− 1) + `−3

2

)
`, `
)

≡ p(lcm(`)`α−1j + k`, `)− p
(
lcm(`)`α−1(j + 1)− `2 − 3`

2
− k`, `

)
(4.13) ≡ 0 (mod`α)

Observe that lcm(`)`α−1 · j + k` and lcm(`)`α−1 · (j + 1) − `2−3`
2
− k` are

palindromic partners. We rewrite (4.13) by setting lcm(`)`α−1j + k` = n so

that n′ = lcm(`)`α−1(j + 1)− `2−3`
2
− k`. Hence

(4.14) p(n, `)− p (n′, `) ≡ 0 (mod `α)

and Theorem 3 is proved. The case for ` ≡ 3 (mod 4) is left to the reader.

�

5. Proof of Corollary 1

To prove Corollary 1 we begin with line (2.4) in Theorem 3. Multiply

(2.4) by −1, and set n = lcm(`)`α−1g+k`− `2−3`
2

, giving us the palindromic

partner n′ = lcm(`)`α−1(g + 1)− k` so that we have

p (lcm(`)`α−1(g + 1)− k`, `)−

p
(
lcm(`)`α−1g − `2−3`

2
+ k`, `

)
≡ 0 (mod `α).

Proceed by induction on g. Let g = 0 so that for 0 ≤ k ≤ `−3
2

p
(
lcm(`)`α−1 − k`, `

)
= p

(
lcm(`)`α−1 − k`, `

)
− 0

= p
(
lcm(`)`α−1 − k`, `

)
− p

(
k`− `2 − 3`

2
, `

)
≡ 0 (mod `α).

Now suppose p (lcm(`)`α−1g − k`, `) is true for all j < g. Hence,

p (lcm(`)`α−1(g + 1)− k`, `)−

p
(
lcm(`)`α−1 + k`− `2−3`

2
, `
)
≡ 0 (mod`α)

which implies that p (lcm(`)`α−1j − k`, `) ≡ 0 (mod `α) for 0 ≤ k ≤ `−3
2

and α ≥ 1 by the induction hypothesis. Thus the corollary is proved. �
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