TORNADO SOLUTIONS FOR SEMILINEAR ELLIPTIC
EQUATIONS IN R*: REGULARITY

ALEXANDER M. MEADOWS

ABSTRACT. We give conditions under which bounded solutions to
semilinear elliptic equations Au = f(u) on domains of R? are con-
tinuous despite a possible infinite singularity of f(u). The condi-
tions do not require a minimization or variational stability property
for the solutions. The results are used in a second paper to show
regularity for a familiar class of equations.

1. INTRODUCTION AND MAIN RESULTS

In this paper we study positive solutions to equations Au = f(u) on
domains of R? where f(u) is well behaved away from u = 0. Our model
equation is Au = u~® for a > 0. This type of equation has been studied
in various papers including [1], [4], and [7]. Positive solutions u > 0 will
be regular, for example smooth if f is smooth. However, standard reg-
ularity estimates depend on minu > (. Here we give conditions for the
existence of interior continuity estimates on solutions. A program for
giving precise continuity estimates using the same techniques is a topic
of current research. We also consider “generalized solutions” which are
limits of smooth positive solutions, and which may have singularities,
as in [6]. Regularity properties of such generalized solutions follow from
the results for positive solutions. We establish conditions for regularity
in terms of the existence of “tornado sequences” of solutions. In the
second paper [5], we apply the results presented here to prove regular-
ity properties and existence of singular solutions to Au = f(u) when
f(u) = g(u)u=®, with 0 < C} < g(u) < Cy, g continuous away from
u = 0.

We begin with the definition of tornado sequences. We will use the
notation B, for the ball of radius p centered at the origin of R?.
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Definition 1. A tornado sequence of solutions to Au = f(u) is given
by a number e > 0, a sequence r; >0, 7 =1,2,..., with r; — 0, and
solutions uj : B,, — Ry such that uj > € on aBrj and minBrj uj — 0.

Given a modulus of continuity p : R, — R, i.e. a nondecreasing
function with p(d) — 0 as § — 0, we say that a function v on K C R"
is uniformly continuous of class p if there is a constant C' such that
lu(z) —u(y)| < Cu(lx —y|) for all x and y in K.

Definition 2. Let  be a modulus of continuity. A tornado sequence of
class p s given by a sequence r; > 0 with r; — 0, constants C; — 00,
and solutions u; : B, — Ry such that u; > u;(0) + Cju(r;) on 0B,
and u;(0) — 0.

We will assume that €) is an open domain, and that f satsifies the
following for every e > 0:

(1)

We may now state the main result. Here, QccQcR?isa compact
subset of (2.

f(u) < M(e) for u > € and
f(u) is Holder continuous for u > e.

Theorem 1. Suppose u; : 0 — R is a sequence of solutions to Au =

f(u) and u; < M. If u; is not equicontinuous on 2, then there exists
a tornado sequence for Au = f(u).

In the proof, the tornado sequence is constructed from a subsequence
of u; near points of 2.

Corollary 1. If there does not exist a tornado sequence of solutions to
Au = f(u), then a bounded family C of solutions to Au = f(u) on a
domain ) is compact in C°(Q) for any Q CC Q

Theorem 2. Suppose u; : Q@ — Ry is a sequence of solutions to Au =
f(u) andu; < M. Suppose the modulus of continuity pu satisfies p(5) >
ﬁ for some 0 < v < 1 and for 6 < do. If u; is not uniformly

equicontinuous of class 1 on , then there exists a tornado sequence of
class .

We note that in contrast to some other results concerning equations
of this form, our result does not require stability conditions on the
solutions. That is, the equation Au = f(u) is the Euler-Lagrange
equation for the functional F(u) = [, 5|Dul* + F(u), where F(u) =
[ f(t)dt. We do not assume that our solutions u are minimizers of

F(u), or that they are stable in the sense that the second variation
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of F is nonnegative. Minimizers of F in the set {u > 0,u |so= g}
on bounded domains may solve a free boundary problem, which allows
for u to be identically zero on a subdomain QO c ), not solving the
differential equation in €. This type of problem for the f(u) we consider
has been studied for n > 2 in [3], [4], and [7]. See also the recent book
2] and the references therein. The big questions for these problems deal
with the size and regularity of the “free boundary” 9¢2. The regularity
of positive stable solutions with f(u) = Cu™*, 0 < a < 1, is dealt with
in [6].

2. PROOFS

We will break up the proof of Theorem 1 into several lemmas below.
To begin, we show that equicontinuity can only be violated at points
where the functions get close to zero.

Lemma 1. If the solutions u; are not equicontinuous on Q, then there
is an € > 0 and a subsequence uj along with points xj € ) and y; € 2
with wj () > €, uy(yy) — 0, and |x; — y;| — 0.

Proof: Equicontinuity is violated if there is an € > 0 and a subsequence
uy, with corresponding zy, yx in Q with |2y — yx| — 0 and wug(xy) —
ug(yg) > €. Now, assuming the lemma is false, there is no subsequence
of uy, with corresponding g such that |zy — x| — 0 and ug(gx) — 0.
That is, there is a § > 0 so that u, > § on the ball Bs(xy). But then by
(1), |[Aug| < M(0) on Bs(xy) and by the Calderon—Zygmund Inequality
and Sobolev Embedding, wu; is continuous, uniformly in k& on the ball
Bs)a(x1), a contradiction.

We now use a classical “log trick” to get a useful estimate of the
square integrals of the gradients of u;.

Lemma 2. If 0 < u < M is weakly subharmonic on B,,, then there is

a C =C(M) such that

PO

|Dul? < for p < min(p3, 1).
/ | log ol ’
Proof. A weakly subharmonic function u satisfies the inequality

(2) / Du-D( <0 for ¢ > 0 with compact support
B

PO

We use ¢ = ug?® where ¢ has support in B,, ¢ = 1 on B,2, and

logr
Y= loip_lonBP\BP
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Then we have

[1pu < 2 [uglpupg
< 4/u2leo|2

_ 4M2/P dr  AM?
- > r(logp)*  [logp|’

The lemma follows on replacing p by |/p.

We note that this estimate is not sufficient to prove continuity of u
directly, as in [10], page 95. See also the remarks in [6].

The following result is akin to the classical Courant-Lebesgue lemma
(see [9] and references therein). The original result was used in solving
the Plateau Problem for minimal surfaces. We include the proof and a
slight improvement we will need for Theorem 2.

Lemma 3. (Courant-Lebesgue) Suppose that u is C' and h(p) =
Js,1Dul> — 0 as p — 0. Forany 6 > 0 and 0 < 6 < 1, there is

a po(0,0,h) > 0 such that for all p < po, the oscillation
oscyp,u < 0

for allr in a set A C (0, p) with |A| > Op.

Proof. Using the Holder inequality,

27 (9U
0SCyp, U <
0

2w
JR— <
9(7",9)’ do ~ \/271 (/0
thus

3) L/mW>—/T@m&fm

Assuming |A| < 6p, we then have pr |Dul?> > £ |log 6], a contradiction
for p small enough depending on 9, ¢, and h.

ou
00

d@)

Lemma 4. Suppose u is C' and h(p fB |Dul* — 0 as p — 0.
Consider positive functions g(p) and n(p ) both tendmg to zero as p — 0.

If for p < po
27rh
[log(1 —n(p))|’

then for all p < pg, the oscillation

oscyp,u < g(p)
for all r in a set A C (0, p) with |A] > p(1 —n(p)).
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Proof: From equation (3), we have

1 71 ,
], ;(oscaBTu) dr < h(p).

Assuming |A| < p(1 —n(p)), we have

1 [* 1

and thus

9(p)*[log(1 = n(p))| < 2mh(p),

a contradiction.

We will use the notation €2, for the set of x such that u(x) > A\. In
the following lemmas, we will state the results in arbitrary dimension,
although we will only apply them in dimension 2. Here the Sobolev
exponent Kk = .

Lemma 5. Suppose 0 < u < M s subharmonic on By, C R™ with
p<landletO<X<1, 68 >0. If Q5,400 N B,| > 0, then |Qs,4x N
Ba,| > CXY2p" for C = C(M) > 0.

The proof of this lemma relies on the following auxiliary result.

Lemma 6. Suppose 0 < u < M is subharmonic on B, with p <1 and
let 0 <pu<1,0<0<p. Then there is a C(M) > 0 with

10N B,| > Co/ii| Qi N B,y

Proof of Lemma 5: We will iterate the result of Lemma 6, using se-
quences \; and p;.

Set )\0 = (50 + A and )‘j = (50+2)\— )\/2] = )\jfl +>\/2]

Set po = 2p and p; = p+p/2 = pj1 — p/2.

So, using Lemma 6 with = \/27 0 = p/27, we get

pA/? .
p].71’ > CW‘Q)\J N Bpj’l/
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So,
| Cp)\1/2
PO = \/g
(Con )i (VB4R |0y, 1 B [
(Op/\1/2)1+%+m%+-~+ﬂj—£l
(\/§)1+%+,§2+'“+K:‘%1
(CoN')ZT 7 (VB)™ 28 UF s, o0 1 B[
1
> CXN'2p"|Qsgr0x N B[

Letting 7 — oo in the last inequality completes the proof.

1
N B €0, N By, [

v

v

a
€2, N By, [w

v

Proof of Lemma 6: First we fix a nonnegative increasing Lipschitz
function v : R — R with v(t) = 0 for ¢t < A, v(t) = p for t > X\ + p,
0<~(t) <1,and 0 < v < pu. We also choose a cutoff function ¢ on
R" with ¢ =1 on B,_,, ¢ = 0 outside B,, and |Dy| < 2/0.

In equation (2), we first substitute ¢ = uy(u)p. So,

[evwipa + [ugy@ipa? <2 [ ur@lDalDel

Since ' > 0, we can throw away the second term, and after using
Cauchy—Schwartz, we have

(@) [ ewip <4 [ @il

Now we substitute ¢ = ~y(u)p?>.

we have
(5) / o2/ ()| Dul? < / () [ Dul? + / ()| D

We will use these inequalities to bound [|D(¢*y(u))|. Note that
[ D(¢*y(u)] < 2¢07(u)| Dol + ¢*v'(w)|Dul. So,

[ D@l < 2 [eripe+ [l
< 2/9@7(U)\D90! + (/wQV’(U)!DuV); (SOQ’Y’(U))%

After again using Cauchy—Schwartz,

< Ljoyn B, + ( [ewipar+ | v(u)ngoF)% (o2 (w))

= %‘QAHBP’ + (4/UQV(U)ID90|2+/7(U)\le2)% (%7 ()
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N[

16M?pu

4 1
<P+ (o0 5l + ion ) (905!

So,

CM+1 1/2
) [ < 0, 0 5,

Now we apply the Sobolev Inequality and note that ¢*y(u) = u on
Q)\J’_N N Bp—O':

C’,ul/2

X |-

(W[4 N By ) [N By,

which proves the lemma.

We can now prove the main results.

Proof of Theorem 1: Suppose u; is not equicontinuous on Q. By
Lemma 1, and by translation, there is an € > 0 along with a sequence
of solutions u; on some B,, and a sequence of points z; € B,, with
x; — 0, u;(x;) > €, and u;(0) — 0. Thus by Lemma 5 with ¢y = 0,
A =¢/2, and p = |z;|, there are radii p; — 0 such that u; is greater than
€/2 on a fixed portion of B, . That is, u satisfies Qo N B, | > Cp2.
By Lemmas 2 and 3, with § = ¢/4, h(p) = @,

priately depending on C, there are radii r; < pj — 0 with u; > €/4 on
0B,,. This completes the proof.

and # chosen appro-

Proof of Theorem 2: As before, supposing u; is not uniformly pu-
continuous on Q, there is a sequence of solutions u; on B, and a
sequence of points z; € B,, with z; — 0, u;(z;) > u;(0) + C;u(|z;]),
and u;(0) — 0. By Lemma 5 with dy = u;(0), A = C;u(|z;])/2, and p =
|z;|, there are radii p; — 0 such that u; is greater than u;(0)+C;u(p;)/2
on a portion of By, of measure greater than CoCju(p;) p?. That is

‘B2pj N Quj(0)+cju(pj)/2‘ > Cjﬂ(ﬂj)ﬂ?

with C; — co. By Lemma 4 with h(p) = C/|logp| and p = 2p;, we
have

C
0SCyp, <
V11og p;l[Tog(1 = n(2p;))]

on 0B, for all r in a set A C (0,2p;) with [A] > 2p;(1 —n(2p;)). We
choose n(p) < %u(p/Q) so that the set

Bap; N Quy(0)+Ciuipp)/2 N2 ¢ |2] € A}
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is nonempty. Thus there are radii 7; < 2p; so that
Cinlps) C

u; > u;(0) + on 0B,,.
Y 2 V/Ilogp;{[Tog(T = pu(py))|
For pu(8) > |logd|~/3, this implies
C 1l ps
uj > u;(0) + % on 0B,,,

for sufficiently large j. Thus u; forms a tornado sequence of class pu.
At this point we have proven the result for all v < 9 = %

Now suppose 1/3 < 4 < 1 and the result has been proven for v < ;.
Let v >~ and let u; be a sequence of solutions not equicontinuous of
class pu(9) = |logd|™7. If we assume, for a contradiction, that there is
no tornado sequence of class u, then by the assumption, all bounded
solutions are equicontinuous of class v (d) = |logd|~". Thus, for any
p, a solution u < M satisfies |u(z) —ming, u| < C|logp|~ " for x € B,,.
So, using the test function (v — ming, u)p* as in Lemma 2, we have

C
Du?< ——— .
/Bp' ul = g

The above argument using Lemma 4 then shows that for any modulus
v with v(86) > vp1(6) = |logd|+1, where v = 2% u; are

equicontinuous of class v unless there is a tornado sequence of class
v. So, we have proven the result for v < 44.;. We may continue the
bootstrap sequence v until we reach a contradiction with p < 1.
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