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Abstract. We give conditions under which bounded solutions to
semilinear elliptic equations ∆u = f(u) on domains of R2 are con-
tinuous despite a possible infinite singularity of f(u). The condi-
tions do not require a minimization or variational stability property
for the solutions. The results are used in a second paper to show
regularity for a familiar class of equations.

1. Introduction and Main Results

In this paper we study positive solutions to equations ∆u = f(u) on
domains of R2 where f(u) is well behaved away from u = 0. Our model
equation is ∆u = u−α for α > 0. This type of equation has been studied
in various papers including [1], [4], and [7]. Positive solutions u > 0 will
be regular, for example smooth if f is smooth. However, standard reg-
ularity estimates depend on min u > 0. Here we give conditions for the
existence of interior continuity estimates on solutions. A program for
giving precise continuity estimates using the same techniques is a topic
of current research. We also consider “generalized solutions” which are
limits of smooth positive solutions, and which may have singularities,
as in [6]. Regularity properties of such generalized solutions follow from
the results for positive solutions. We establish conditions for regularity
in terms of the existence of “tornado sequences” of solutions. In the
second paper [5], we apply the results presented here to prove regular-
ity properties and existence of singular solutions to ∆u = f(u) when
f(u) = g(u)u−α, with 0 ≤ C1 < g(u) < C2, g continuous away from
u = 0.

We begin with the definition of tornado sequences. We will use the
notation Bρ for the ball of radius ρ centered at the origin of R2.
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Definition 1. A tornado sequence of solutions to ∆u = f(u) is given
by a number ε > 0, a sequence rj > 0, j = 1, 2, . . ., with rj → 0, and
solutions uj : Brj

→ R+ such that uj > ε on ∂Brj
and minBrj

uj → 0.

Given a modulus of continuity µ : R+ → R+, i.e. a nondecreasing
function with µ(δ) → 0 as δ → 0, we say that a function u on K ⊂ Rn

is uniformly continuous of class µ if there is a constant C such that
|u(x)− u(y)| ≤ Cµ(|x− y|) for all x and y in K.

Definition 2. Let µ be a modulus of continuity. A tornado sequence of
class µ is given by a sequence rj > 0 with rj → 0, constants Cj →∞,
and solutions uj : Brj

→ R+ such that uj > uj(0) + Cjµ(rj) on ∂Brj

and uj(0) → 0.

We will assume that Ω is an open domain, and that f satsifies the
following for every ε > 0:

(1)

{
f(u) ≤ M(ε) for u ≥ ε and
f(u) is Hölder continuous for u ≥ ε.

We may now state the main result. Here, Ω̃ ⊂⊂ Ω ⊂ R2 is a compact
subset of Ω.

Theorem 1. Suppose uj : Ω → R+ is a sequence of solutions to ∆u =

f(u) and uj ≤ M . If uj is not equicontinuous on Ω̃, then there exists
a tornado sequence for ∆u = f(u).

In the proof, the tornado sequence is constructed from a subsequence
of uj near points of Ω̃.

Corollary 1. If there does not exist a tornado sequence of solutions to
∆u = f(u), then a bounded family C of solutions to ∆u = f(u) on a
domain Ω is compact in C0(Ω̃) for any Ω̃ ⊂⊂ Ω

Theorem 2. Suppose uj : Ω → R+ is a sequence of solutions to ∆u =
f(u) and uj ≤ M . Suppose the modulus of continuity µ satisfies µ(δ) >

C
| log δ|γ for some 0 < γ < 1 and for δ < δ0. If uj is not uniformly

equicontinuous of class µ on Ω̃, then there exists a tornado sequence of
class µ.

We note that in contrast to some other results concerning equations
of this form, our result does not require stability conditions on the
solutions. That is, the equation ∆u = f(u) is the Euler–Lagrange
equation for the functional F(u) =

∫
Ω

1
2
|Du|2 + F (u), where F (u) =∫ u

1
f(t) dt. We do not assume that our solutions u are minimizers of

F(u), or that they are stable in the sense that the second variation
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of F is nonnegative. Minimizers of F in the set {u ≥ 0, u |∂Ω= g}
on bounded domains may solve a free boundary problem, which allows
for u to be identically zero on a subdomain Ω̂ ⊂ Ω, not solving the
differential equation in Ω̂. This type of problem for the f(u) we consider
has been studied for n ≥ 2 in [3], [4], and [7]. See also the recent book
[2] and the references therein. The big questions for these problems deal

with the size and regularity of the “free boundary” ∂Ω̂. The regularity
of positive stable solutions with f(u) = Cu−α, 0 < α ≤ 1, is dealt with
in [6].

2. Proofs

We will break up the proof of Theorem 1 into several lemmas below.
To begin, we show that equicontinuity can only be violated at points
where the functions get close to zero.

Lemma 1. If the solutions uj are not equicontinuous on Ω̃, then there

is an ε > 0 and a subsequence uj′ along with points xj′ ∈ Ω̃ and yj′ ∈ Ω
with uj′(xj′) > ε, uj′(yj′) → 0, and |xj′ − yj′| → 0.

Proof: Equicontinuity is violated if there is an ε > 0 and a subsequence
uk with corresponding xk, yk in Ω with |xk − yk| → 0 and uk(xk) −
uk(yk) > ε. Now, assuming the lemma is false, there is no subsequence
of uk with corresponding ỹk such that |xk − ỹk| → 0 and uk(ỹk) → 0.
That is, there is a δ > 0 so that uk > δ on the ball Bδ(xk). But then by
(1), |∆uk| ≤ M(δ) on Bδ(xk) and by the Calderon–Zygmund Inequality
and Sobolev Embedding, uk is continuous, uniformly in k on the ball
Bδ/2(xk), a contradiction.

We now use a classical “log trick” to get a useful estimate of the
square integrals of the gradients of uj.

Lemma 2. If 0 ≤ u ≤ M is weakly subharmonic on Bρ0, then there is
a C = C(M) such that∫

Bρ

|Du|2 ≤ C

| log ρ|
for ρ < min(ρ2

0, 1).

Proof: A weakly subharmonic function u satisfies the inequality

(2)

∫
Bρ0

Du ·Dζ ≤ 0 for ζ ≥ 0 with compact support

We use ζ = uϕ2 where ϕ has support in Bρ, ϕ = 1 on Bρ2 , and

ϕ = log r
log ρ

− 1 on Bρ \Bρ2 .
3



Then we have∫
|Du|2ϕ2 ≤ 2

∫
uϕ|Du||Dϕ|

≤ 4

∫
u2|Dϕ|2

≤ 4M2

∫ ρ

ρ2

dr

r(log ρ)2
=

4M2

| log ρ|
.

The lemma follows on replacing ρ by
√

ρ.

We note that this estimate is not sufficient to prove continuity of u
directly, as in [10], page 95. See also the remarks in [6].

The following result is akin to the classical Courant–Lebesgue lemma
(see [9] and references therein). The original result was used in solving
the Plateau Problem for minimal surfaces. We include the proof and a
slight improvement we will need for Theorem 2.

Lemma 3. (Courant–Lebesgue) Suppose that u is C1 and h(ρ) =∫
Bρ
|Du|2 → 0 as ρ → 0. For any δ > 0 and 0 < θ < 1, there is

a ρ0(δ, θ, h) > 0 such that for all ρ < ρ0, the oscillation

osc∂Bru ≤ δ

for all r in a set A ⊂ (0, ρ) with |A| ≥ θρ.

Proof: Using the Hölder inequality,

osc∂Bru ≤
∫ 2π

0

∣∣∣∣∂u

∂θ
(r, θ)

∣∣∣∣ dθ ≤
√

2π

(∫ 2π

0

∣∣∣∣∂u

∂θ

∣∣∣∣ dθ

) 1
2

thus

(3)

∫
Bρ

|Du|2 ≥ 1

2π

∫ ρ

0

1

r
(osc∂Bru)2 dr.

Assuming |A| < θρ, we then have
∫

Bρ
|Du|2 ≥ δ2

2π
| log θ|, a contradiction

for ρ small enough depending on δ, θ, and h.

Lemma 4. Suppose u is C1 and h(ρ) =
∫

Bρ
|Du|2 → 0 as ρ → 0.

Consider positive functions g(ρ) and η(ρ) both tending to zero as ρ → 0.
If for ρ < ρ0

g(ρ) >

√
2πh(ρ)

| log(1− η(ρ))|
,

then for all ρ < ρ0, the oscillation

osc∂Bru ≤ g(ρ)

for all r in a set A ⊂ (0, ρ) with |A| ≥ ρ(1− η(ρ)).
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Proof: From equation (3), we have

1

2π

∫ ρ

0

1

r
(osc∂Bru)2 dr ≤ h(ρ).

Assuming |A| < ρ(1− η(ρ)), we have

1

2π

∫ ρ

ρ(1−η(ρ))

1

r
g(ρ)2 dr ≤ h(ρ)

and thus

g(ρ)2| log(1− η(ρ))| ≤ 2πh(ρ),

a contradiction.

We will use the notation Ωλ for the set of x such that u(x) > λ. In
the following lemmas, we will state the results in arbitrary dimension,
although we will only apply them in dimension 2. Here the Sobolev
exponent κ = n

n−1
.

Lemma 5. Suppose 0 < u ≤ M is subharmonic on B2ρ ⊂ Rn with
ρ < 1 and let 0 < λ ≤ 1, δ0 ≥ 0. If |Ωδ0+2λ ∩ Bρ| > 0, then |Ωδ0+λ ∩
B2ρ| ≥ Cλn/2ρn for C = C(M) > 0.

The proof of this lemma relies on the following auxiliary result.

Lemma 6. Suppose 0 < u ≤ M is subharmonic on Bρ with ρ < 1 and
let 0 < µ ≤ 1, 0 < σ < ρ. Then there is a C(M) > 0 with

|Ωλ ∩Bρ| ≥ Cσ
√

µ|Ωλ+µ ∩Bρ−σ|
1
κ

Proof of Lemma 5: We will iterate the result of Lemma 6, using se-
quences λj and ρj.
Set λ0 = δ0 + λ and λj = δ0 + 2λ− λ/2j = λj−1 + λ/2j.
Set ρ0 = 2ρ and ρj = ρ + ρ/2j = ρj−1 − ρ/2j.
So, using Lemma 6 with µ = λ/2j, σ = ρ/2j, we get

|Ωλj−1
∩Bρj−1

| ≥ C
ρλ1/2

23j/2
|Ωλj

∩Bρj
|1/κ
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So,

|Ωλ0 ∩Bρ0| ≥ Cρλ1/2

√
8

|Ωλ1 ∩Bρ1|
1
κ

≥ (Cρλ1/2)1+ 1
κ (
√

8)−(1+ 2
κ)|Ωλ2 ∩Bρ2|

1
κ2

≥ (Cρλ1/2)1+ 1
κ
+ 1

κ2 +···+ 1

κj−1

(
√

8)1+ 2
κ
+ 3

κ2 +···+ j

κj−1

|Ωλj
∩Bρj

|
1

κj

≥ (Cρλ1/2)
P∞

0 κ−j

(
√

8)−
P∞

0 (j+1)κ−j |Ωδ0+2λ ∩Bρ|
1

κj

≥ Cλn/2ρn|Ωδ0+2λ ∩Bρ|
1

κj

Letting j →∞ in the last inequality completes the proof.

Proof of Lemma 6: First we fix a nonnegative increasing Lipschitz
function γ : R → R with γ(t) = 0 for t < λ, γ(t) = µ for t > λ + µ,
0 ≤ γ′(t) ≤ 1, and 0 ≤ γ ≤ µ. We also choose a cutoff function ϕ on
Rn with ϕ = 1 on Bρ−σ, ϕ = 0 outside Bρ, and |Dϕ| ≤ 2/σ.
In equation (2), we first substitute ζ = uγ(u)ϕ. So,∫

ϕ2γ(u)|Du|2 +

∫
uϕ2γ′(u)|Du|2 ≤ 2

∫
ϕuγ(u)|Du||Dϕ|

Since γ′ ≥ 0, we can throw away the second term, and after using
Cauchy–Schwartz, we have

(4)

∫
ϕ2γ(u)|Du|2 ≤ 4

∫
u2γ(u)|Dϕ|2.

Now we substitute ζ = γ(u)ϕ2. After again using Cauchy–Schwartz,
we have

(5)

∫
ϕ2γ′(u)|Du|2 ≤

∫
ϕ2γ(u)|Du|2 +

∫
γ(u)|Dϕ|2.

We will use these inequalities to bound
∫
|D(ϕ2γ(u))|. Note that

|D(ϕ2γ(u))| ≤ 2ϕγ(u)|Dϕ|+ ϕ2γ′(u)|Du|. So,∫
|D(ϕ2γ(u))| ≤ 2

∫
ϕγ(u)|Dϕ|+

∫
ϕ2γ′(u)|Du|

≤ 2

∫
ϕγ(u)|Dϕ|+

(∫
ϕ2γ′(u)|Du|2

) 1
2 (

ϕ2γ′(u)
) 1

2

≤ 4µ

σ
|Ωλ ∩Bρ|+

(∫
ϕ2γ(u)|Du|2 +

∫
γ(u)|Dϕ|2

) 1
2 (

ϕ2γ′(u)
) 1

2

≤ 4µ

σ
|Ωλ ∩Bρ|+

(
4

∫
u2γ(u)|Dϕ|2 +

∫
γ(u)|Dϕ|2

) 1
2 (

ϕ2γ′(u)
) 1

2
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≤ 4µ

σ
|Ωλ ∩Bρ|+

(
16M2µ

σ2
|Ωλ ∩Bρ|+

4µ

σ2
|Ωλ ∩Bρ|

) 1
2

(|Ωλ ∩Bρ|)
1
2

So,

(6)

∫
|D(ϕ2γ(u))| ≤ C(M + 1)µ1/2

σ
|Ωλ ∩Bρ|

Now we apply the Sobolev Inequality and note that ϕ2γ(u) = µ on
Ωλ+µ ∩Bρ−σ:

(µκ|Ωλ+µ ∩Bρ−σ|)
1
κ ≤ Cµ1/2

σ
|Ωλ ∩Bρ|,

which proves the lemma.

We can now prove the main results.

Proof of Theorem 1: Suppose uj is not equicontinuous on Ω̃. By
Lemma 1, and by translation, there is an ε > 0 along with a sequence
of solutions uj on some Bρ0 and a sequence of points xj ∈ Bρ0 with
xj → 0, uj(xj) > ε, and uj(0) → 0. Thus by Lemma 5 with δ0 = 0,
λ = ε/2, and ρ = |xj|, there are radii ρj → 0 such that uj is greater than

ε/2 on a fixed portion of Bρj
. That is, u satisfies |Ωε/2 ∩ Bρj

| ≥ C̃ρ2.

By Lemmas 2 and 3, with δ = ε/4, h(ρ) = C
| log ρ| , and θ chosen appro-

priately depending on C̃, there are radii rj < ρj → 0 with uj > ε/4 on
∂Brj

. This completes the proof.

Proof of Theorem 2: As before, supposing uj is not uniformly µ-

continuous on Ω̃, there is a sequence of solutions uj on Bρ0 and a
sequence of points xj ∈ Bρ0 with xj → 0, uj(xj) > uj(0) + Cjµ(|xj|),
and uj(0) → 0. By Lemma 5 with δ0 = uj(0), λ = Cjµ(|xj|)/2, and ρ =
|xj|, there are radii ρj → 0 such that uj is greater than uj(0)+Cjµ(ρj)/2
on a portion of B2ρj

of measure greater than C0Cjµ(ρj)ρ
2
j . That is∣∣B2ρj

∩ Ωuj(0)+Cjµ(ρj)/2

∣∣ ≥ C̃jµ(ρj)ρ
2
j

with C̃j → ∞. By Lemma 4 with h(ρ) = C/| log ρ| and ρ = 2ρj, we
have

osc∂Br ≤
C√

| log ρj|| log(1− η(2ρj))|
on ∂Br for all r in a set A ⊂ (0, 2ρj) with |A| ≥ 2ρj(1 − η(2ρj)). We

choose η(ρ) <
C̃j

8π
µ(ρ/2) so that the set

B2ρj
∩ Ωuj(0)+Cjµ(ρj)/2 ∩ {x : |x| ∈ A}
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is nonempty. Thus there are radii rj < 2ρj so that

uj > uj(0) +
Cjµ(ρj)

2
− C√

| log ρj|| log(1− µ(ρj))|
on ∂Brj

.

For µ(δ) ≥ | log δ|−1/3, this implies

uj > uj(0) +
Cjµ(ρj)

4
on ∂Brj

,

for sufficiently large j. Thus uj forms a tornado sequence of class µ.
At this point we have proven the result for all γ ≤ γ0 = 1

3
.

Now suppose 1/3 ≤ γk < 1 and the result has been proven for γ ≤ γk.
Let γ > γk and let uj be a sequence of solutions not equicontinuous of
class µ(δ) = | log δ|−γ. If we assume, for a contradiction, that there is
no tornado sequence of class µ, then by the assumption, all bounded
solutions are equicontinuous of class νk(δ) = | log δ|−γk . Thus, for any
ρ, a solution u ≤ M satisfies |u(x)−minBρ u| ≤ C| log ρ|−γk for x ∈ Bρ.
So, using the test function (u−minBρ u)ϕ2 as in Lemma 2, we have∫

Bρ

|Du|2 ≤ C

| log ρ|1+2γk
.

The above argument using Lemma 4 then shows that for any modulus
ν with ν(δ) ≥ νk+1(δ) = | log δ|−γk+1 , where γk+1 = 1+2γk

3
, uj are

equicontinuous of class ν unless there is a tornado sequence of class
ν. So, we have proven the result for γ ≤ γk+1. We may continue the
bootstrap sequence νk until we reach a contradiction with µ < νk.
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