
Introduction to Algorithms

Part 1: Divide and Conquer
Sorting and Searching

1) Convex Hulls: An Example

2) Divide and Conquer

3) Sorting Revisited

4) Parallel Sorting

5) Finding the Median

6) Books

c© Wayne Goddard, Clemson University, 2004



Chapter 1: Convex Hulls: An Example
A polygon is convex if any line segment joining two points on the boundary stays within
the polygon. Equivalently, if you walk around the boundary of the polygon in counter-
clockwise direction you always take left turns.

The convex hull of a set of points in the plane is the smallest convex polygon for which
each point is either on the boundary or in the interior of the polygon. One might think
of the points as being nails sticking out of a wooden board: then the convex hull is the
shape formed by a tight rubber band that surrounds all the nails. A vertex is a corner of
a polygon. For example, the highest, lowest, leftmost and rightmost points are all vertices
of the convex hull. Some other characterizations are given in the exercises.

We discuss three algorithms: Graham Scan, Jarvis March and Divide & Conquer. We
present the algorithms under the assumption that:

• no 3 points are collinear (on a straight line)

1.1 Graham Scan

The idea is to identify one vertex of the convex hull and sort the other points as viewed
from that vertex. Then the points are scanned in order.

Let x0 be the leftmost point (which is guaranteed to be in the convex hull) and number the
remaining points by angle from x0 going counterclockwise: x1, x2, . . . , xn−1. Let xn = x0,
the chosen point. Assume that no two points have the same angle from x0.

The algorithm is simple to state with a single stack:

Graham Scan

1. Sort points by angle from x0

2. Push x0 and x1. Set i=2
3. While i ≤ n do:

If xi makes left turn w.r.t. top 2 items on stack
then { push xi; i++ }
else { pop and discard }



To prove that the algorithm works, it suffices to argue that:

• A discarded point is not in the convex hull. If xj is discarded, then for some i < j < k
the points xi → xj → xk form a right turn. So, xj is inside the triangle x0, xi, xk

and hence is not on the convex hull.

0

i

j

k

• What remains is convex. This is immediate as every turn is a left turn.

The running time: Each time the while loop is executed, a point is either stacked or
discarded. Since a point is looked at only once, the loop is executed at most 2n times.
There is a constant-time subroutine for checking, given three points in order, whether the
angle is a left or a right turn (Exercise). This gives an O(n) time algorithm, apart from the
initial sort which takes time O(n log n). (Recall that the notation O(f(n)), pronounced
“order f(n)”, means “asymptotically at most a constant times f(n)”.)

1.2 Jarvis March

This is also called the wrapping algorithm . This algorithm finds the points on the
convex hull in the order in which they appear. It is quick if there are only a few points
on the convex hull, but slow if there are many.

Let x0 be the leftmost point. Let x1 be the first point counterclockwise when viewed from
x0. Then x2 is the first point counterclockwise when viewed from x1, and so on.

Jarvis March

i = 0
while not done do

xi+1 = first point counterclockwise from xi

3



0

1

2

Finding xi+1 takes linear time. The while loop is executed at most n times. More specifi-
cally, the while loop is executed h times where h is the number of vertices on the convex
hull. So Jarvis March takes time O(nh).

The best case is h = 3. The worst case is h = n, when the points are, for example,
arranged on the circumference of a circle.

1.3 Divide and Conquer

Divide and Conquer is a popular technique for algorithm design. We use it here to find
the convex hull. The first step is a Divide step, the second step is a Conquer step, and
the third step is a Combine step.

The idea is to:

Divide and conquer

1. Divide the n points into two halves.
2. Find convex hull of each subset.
3. Combine the two hulls into overall convex hull.

Part 2 is simply two recursive calls. The first point to notice is that, if a point is in the
overall convex hull, then it is in the convex hull of any subset of points that contain it.
(Use characterization in exercise.) So the task is: given two convex hulls find the convex
hull of their union.

3 Combining two hulls

It helps to work with convex hulls that do not overlap. To ensure this, all the points are
presorted from left to right. So we have a left and right half and hence a left and right
convex hull.

Define a bridge as any line segment joining a vertex on the left and a vertex on the right
that does not cross the side of either polygon. What we need are the upper and lower

bridges. The following produces the upper bridge.

4



1. Start with any bridge. For example, a bridge is guaranteed if you join the rightmost
vertex on the left to the leftmost vertex on the right.

2. Keeping the left end of the bridge fixed, see if the right end can be raised. That is,
look at the next vertex on the right polygon going clockwise, and see whether that
would be a (better) bridge. Otherwise, see if the left end can be raised while the
right end remains fixed.

3. If made no progress in (2) (cannot raise either side), then stop else repeat (2).

1
2

3
4

5

We need to be sure that one will eventually stop. Is this obvious?

Now, we need to determine the running time of the algorithm. The key is to perform step
(2) in constant time. For this it is sufficient that each vertex has a pointer to the next
vertex going clockwise and going counterclockwise. Hence the choice of data structure: we
store each hull using a doubly linked circular linked list .

It follows that the total work done in a merge is proportional to the number of vertices.
And as we shall see in the next chapter, this means that the overall algorithm takes time
O(n log n).

Exercises

1. Find the convex hulls for the following list of points using the three algorithms
presented.

(0, 30)

(30, 60)

(50, 40)

(70, 30)

(55, 20)

(50, 10)

(20, 0)

(15, 25)

5



2. Give a quick calculation which tells one whether three points make a left or a right
turn.

3. Discuss how one might deal with collinear points in the algorithms.

4. Show that a point D is on the convex hull if and only if there do not exist points
A,B,C such that D is inside the triangle formed by A,B,C.

5. e© Assume one has a fast convex hull subroutine that returns the convex hull in

order . Show how to use the subroutine to sort.

6



Chapter 2: Divide and Conquer
In this chapter we consider divide and conquer: this is essentially a special type of recur-
sion. In divide and conquer, one:

divides the problem into pieces,
then conquers the pieces,
and re-assembles.

An example of this approach is the convex hull algorithm. We divide the problem into two
pieces (left and right), conquer each piece (by finding their hulls), and re-assemble (using
an efficient merge procedure).

2.1 Master Theorem for Recurrences

One useful result is the “Master Theorem” for a certain family of recurrence relations:

Consider the recurrence
T (n) = aT (n/b) + f(n).

Then

• if f(n)� nlogb a then T (n) = O(nlogb a).

• if f(n) ≈ nlogb a then T (n) = O(nlogb a log n).
• if f(n)� nlogb a and lim

n→∞

af(n/b)/f(n) < 1 then T (n) = O(f(n)).

Example. If T (n) denotes the time taken for the divide-and-conquer convex hull algo-
rithm (ignoring the initial sort), then we obtain the recurrence

T (n) = 2T (n/2) + O(n).

This solves to O(n log n).

2.2 Multiplying Long Integers

Another example of divide-and-conquer is the problem of multiplying long integers. The
following is based on the discussion by Aho, Hopcroft and Ullman.

Consider the problem of multiplying two n-bit integers X and Y . At school we learnt
long multiplication: if we take two n-digit numbers then long multiplication takes O(n2)
(quadratic) time. (Why?)

We can apply divide and conquer. For example, suppose we split X and Y into two halves:

X := A B Y := C D



Then X = A2n/2 + B and Y = C2n/2 + D. The product of X and Y can now be written
as:

XY = AC2n + (AD + BC)2n/2 + BD

This product requires four multiplications and three additions. To add two integers takes
linear time. (Why?) So we obtain the recurrence:

T (n) = 4T (n/2) + O(n)

Alas, the solution to this is again quadratic, and in practice this algorithm is worse than
normal long multiplication.

However, consider the following formula:

XY = AC 2n +
[

(A−B)(D − C) + AC + BD
]

2n/2 + BD

At first glance this looks more complicated. But we only need three multiplications to do
this: AC, BD and (A−B)(D − C). Therefore we obtain the recurrence:

T (n) = 3T (n/2) + cn

whose solution is T (n) = O(nlog
2
3) = O(n1.59).

There is some more work needed to write this down in a program. We need to consider
shifts and also deal with negative integers. Left as an exercise.

2.3 Matrix Multiplication

Consider the problem of multiplying two n × n matrices. Computing each entry in the
product takes n multiplications and there are n2 entries for a total of O(n3) work. Can
one do better?

Strassen devised a better method which has the same basic flavor as the multiplication of
long integers. The key idea is to save one multiplication on a small problem and then use
recursion.

We look first at multiplying two 2×2 matrices. This would normally take 8 multiplications,
but it turns out we can do it with 7. You can check the following. If

A =

(

a11 a12

a21 a22

)

and B =

(

b11 b12

b21 b22

)

and one calculates the following products:

m1 = (a21 + a22 − a11)(b22 − b12 + b11)
m2 = a11b11

m3 = a12b21

m4 = (a11 − a21)(b22 − b12)
m5 = (a21 + a22)(b12 − b11)
m6 = (a12 − a21 + a11 − a22)b22

m7 = a22(b12 + b21 − b11 − b22)

8



then the product of A and B is given by

AB =

(

m2 + m3 m1 + m2 + m5 + m6

m1 + m2 + m4 + m7 m1 + m2 + m4 + m5

)

Wow! But what use is this?

What we do is to use this idea recursively. If we have a 2n × 2n matrix, we can split it
into four n× n submatrices:

A =

(

A11 A12

A21 A22

)

and B =

(

B11 B12

B21 B22

)

and form seven products M1 up to M7, and the overall product AB can thus be calculated
with seven multiplications of n×n matrices. Since adding matrices is clearly proportional
to their size, we obtain a recurrence relation:

f(n) = 7f(n/2) + O(n2)

whose solution is O(nlog
2
7), an improvement on O(n3).

2.4 Modular Exponentiation

Another example of divide-and-conquer is the modular exponentiation problem. The fol-
lowing is based on the discussion by Brassard and Bratley.

Suppose Alice and Bob wish to establish a secret but do not initially share any common
secret information. Their problem is that the only way they can communicate is by using
a telephone, which is being tapped by Eve, a malevolent third party. They do not want
Eve to know their secret. To simplify the problem, we assume that, although Eve can
overhear conversations, she can neither add nor modify messages.

The goal is to find a protocol by which Alice and Bob can attain their ends.

The first solution to this problem was given in 1976 by Diffie and Hellman. The idea is
the following.

1. Alice and Bob agree openly on some integer p with a few hundred decimal digits,
and on some other integer g between 2 and p − 1. (The security of the secret they
intend to establish is not compromised should Eve learn these two numbers.)

2. Alice and Bob choose randomly and independently of each other two positive integers
A and B less than p.

3. Alice computes a = gA mod p (the mod function is the % of Java/C), and transmits
this result to Bob. Similarly, Bob sends Alice the value b = gB mod p.

9



4. Alice computes x = bA mod p and Bob calculates y = aB mod p.

Now x = y since both are equal to gAB mod p. This value is therefore a piece of information
shared by Alice and Bob. It can now be used as the key in a conventional cryptographic
system.

At the end of the exchange, Eve has the values of p, g, a, and b only. One way for her
to deduce x would be to find an integer A′ such that a = gA′

mod p, and then to proceed
like Alice to calculate x′ = bA′

mod p. Under some simple algebraic conditions, such A′ is
necessarily equal to A, and the secret is correctly computed by Eve in this case.

Calculating A′ from p, g and a is called the problem of the discrete logarithm . There
exists an obvious algorithm to solve it. (If the logarithm does not exist, the algorithm
returns the value p. For instance, there is no integer A such that 3 = 2A mod 7.)

dlog (base g,answer a,modulus p)

A← 0; x← 1
repeat

A← A + 1
x← xg

until (a = x mod p) or (A = p)
return A

This algorithm takes an unacceptable amount of time, since it makes p/2 trips round the
loop on the average. If each trip round the loop takes 1 microsecond, this average time is
more than the age of Earth even if p only has 24 decimal digits. Although there are more
efficient algorithms for calculating discrete logarithms, none is able to solve a randomly
chosen instance in a reasonable amount of time when p is a prime with several hundred
decimal digits. Furthermore, there is no known way of recovering x from p, g, a, and b that
does not involve calculating a discrete logarithm. For the time being, it seems therefore
that this method of providing Alice and Bob with a shared secret is sound, although no-one
has yet been able to prove this.

But is this a joke? If Eve needs to be able to calculate discrete logarithms efficiently to
discover the secret shared by Alice and Bob, it is equally true that Alice and Bob must
be able to calculate efficiently exponentiations of the form a = gA mod p. The obvious
algorithm for this is no more subtle or efficient than the one for discrete logarithms.

The fact that
xyz mod p = ((xy mod p)× z) mod p

for every x, y, z, and p allows us to avoid accumulation of extremely large integers in
the loop. (The same improvement can be made in dlog, which is necessary if we hope to
execute each trip round the loop in 1 microsecond.)

10



Happily for Alice and Bob, there is a more efficient algorithm for computing the exponen-
tiation. An example will reveal the basic idea.

x25 = (((x2x)2)2)2x

Thus x25 can be obtained with just two multiplications and four squarings. This formula
arises because x25 = x24x, x24 = (x12)2, and so on.

This idea can be generalized to obtain a divide-and-conquer algorithm.

dexpo (g,A,p) % calculates a = gA mod p

if A = 0 then return 1
if A odd then {

a← dexpo(g, A− 1, p)
return(ag mod p)
}

else {
a← dexpo (g, A/2, p)
return(a2 mod p)
}

This requires O(log g) multiplications.

2.5 Good Algorithms

Recursion is often easy to think of but does not always work well. Consider the problem
of calculating the nth Fibonacci number, which is defined by

an = an−1 + an−2

with initial values a1 = 1 and a2 = 1. Recursion is terrible! Rather do iteration: calculate
a3 then a4 etc.

The key to good performance in divide and conquer is to partition the problem as evenly
as possible, and to save something over the näıve implementation.

Exercises

1. Illustrate the multiplication of 1234 and 5678 using the algorithm described above.

2. Create a class for long integers. Then provide the operations shift, addition and
multiplication. Then calculate the square of the 50th Fibonacci number.

11



3. Use Strassen’s algorithm to multiply

(

1 2
3 4

)

and

(

5 6
7 8

)

4. Consider the recurrence:

f(n) = 2f(n/2) + cn f(1) = 0

Prove that this has the solution f(n) = cn log2 n for n a power of 2.

5. Calculate 72004 mod 13

6. Consider the following program:

function Fibonacci(n)

if n<2 then return n

else return Fibonacci(n-1) + Fibonacci(n-2)

Analyze the time used for this algorithm.

7. e© a) Give a fast algorithm to computer F n where F is a 2-by-2 matrix and n a
positive integer. It should run in time O(log n).

b) Consider the matrix

F =

(

0 1
1 1

)

Show that

F n =

(

an−1 an

an an+1

)

where an denotes the nth Fibonacci number.

c) Hence give a fast algorithm to determine the nth Fibonacci number.

8. e© Consider an n-bit binary counter. This is used to count from 0 up to 2n − 1.
Each time the counter is incremented, the natural add-one algorithm is follows: one
works in from the right-most bit changing bits until there is no carry. Determine the
average number of bit operations needed per increment.

12



Chapter 3: Sorting Revisited

In this chapter we revisit the sorts Quicksort and Merge Sort which you have probably
seen before.

3.1 Quicksort

Quicksort is a procedure for sorting that was invented by Hoare in 1962. It uses divide
and conquer. Say one starts with n distinct numbers in a list. Call the list A. Then
Quicksort does:

Quicksort (A:valuelist)

1: Choose a Key (often just the first element in the list).

2: Split the list into two sublists A< and A> (called buckets). The bucket A< contains
those elements smaller than the Key and the bucket A> contains those elements
larger than the Key.

3: Use Quicksort to sort both buckets recursively.

9

13

1

7

8

2

6

9

13

7

8

6

1

2

9

13

8

7

6

2

1

13

9

8

7

6

2

1

There remain questions about:

1) Implementation
2) Speed
3) Storage required
4) Is this the best we can do?
5) Problems with the method.



The beauty of Quicksort lies in the storage requirement: the sorting takes place “in situ”
and very little extra memory is required.

3.2 How Fast is Quicksort?

To analyze the speed, we focus on the number of comparisons between data items. We
count only the comparisons. We will come back to whether this is valid or not. But even
this counting is hard to do.

3 Worst case

What is the worst case scenario? A very uneven split. For example, our Key might be
the minimum value. Then we compare it with every element in the list only to find that
the bucket A< is empty. Then when we sort A> we might again be unlucky and have the
minimum value of that bucket as the Key. In fact, if the list was already sorted we would
end up comparing every element with every other element for a total of

(

n
2

)

comparisons.

We can analyze the worst case (when the list is in fact already sorted) another way: The
first step breaks the list up into A< which is empty and A> which contains n − 1 items.
This takes n − 1 comparisons. Then A> is split using n − 2 comparisons, and leaves a
basket of n− 2 items. So number of comparisons is:

(n− 1) + (n− 2) + (n− 3) + . . . + 2 + 1 = n(n− 1)/2 ≈ n2/2.

3 Best case

The best case is when the list is split evenly each time. (Why?) In this case the size of
the largest bucket goes down by a factor of 2 each time.

At the top level we use n− 1 comparisons and then have to sort the buckets A< and A>

which have approximately (n− 1)/2 elements each. To make the arithmetic simpler, let’s
say that we use n comparisons and end up with two buckets of size n/2.

Let f(n) denote the number of comparisons needed by Quicksort in the best case. We
then have the recurrence relation:

f(n) = n + 2f(n/2)

with the boundary condition that f(1) = 0. One can then check that the solution to this,
at least in the case that n is a power of 2, is

f(n) = n log2 n

3 Average case

Of course, we are actually interested in what happens in real life. Fortunately, the typical
behavior of Quicksort is much more like n log2 n than n2. We do not explore this here—but
see Exercise 6.

14



3.3 Binary Sort

An iterative method for sorting is also available. At each stage one inserts the new element
in the already sorted list.

Finding the place for the new element is known as binary search . Recall that one
compares the new element with the middle element of the list. If the new element is
smaller than the middle element, one recursively searches in the top half of the list. If the
new element is larger than the middle element, one searches in the bottom half.

BinarySort (A:valuelist)

For each element of A in turn:
Insert the new element into current sorted list using binary search.

A binary search takes log2 m comparisons (rounded up) where m is the number of elements
in the list. In binary sort, at each stage one does a binary search to find the place where
the new element goes. So each stage takes log2 m comparisons where m is the number of
elements in the list. This provides a guarantee of at most n log2 n comparisons.

But this sort is seldom used. Why?

3.4 Merge Sort

Another example of recursion is the following.

MergeSort (A:valuelist)

1: Arbitrarily split the list into two halves.

2: Use MergeSort to sort each half.

3: Merge the two sorted halves.

One divides the list into two pieces just by slicing in the middle. Then one sorts each piece
using recursion. Finally one is left with two sorted lists. And must now combine them.
The process of combining is known as merging .

How quickly can one merge? Well, think of the two sorted lists as stacks of exam papers
sitting on the desk with the worst grade on top of each pile. The worst grade in the entire

15



list is either the worst grade in the first pile or the worst grade in the second pile. So
compare the two top elements and set the worst aside. The second-worst grade is now
found by comparing the top grade on both piles and setting it aside. Etc.

Why does this work?

How long does merging take? Answer: One comparison for every element placed in the
sorted pile. So, roughly n comparisons where n is the total number of elements in the
combined list. (It could take less. When?)

Merge Sort therefore obeys the following recurrence relation

M(n) = n + 2M(n/2).

(Or rather the number of comparisons is like this.)

We’ve seen before that the solution to this equation is n log2 n. Thus Merge Sort is an
n log n algorithm in the worst case.

What is the drawback of this method?

3.5 Optimality of Sorting

So we have sorting algorithms that take time proportional to n log2 n. Is this the best we
can do? Yes, in some sense, as we will show later.

Exercises

1. Illustrate the behavior of Quicksort, Binary Sort and Merge Sort on the following
data: 2, 4, 19, 8, 9, 17, 5, 3, 7, 11, 13, 16

2. Discuss the advantages and disadvantages of the three sorts introduced here.

3. In your favorite programming language, code up the Quicksort algorithm. Test it on
random lists of length 10, 100, 1000 and 10 000, and comment on the results.

4. Suppose we have a list of n numbers. The list is guaranteed to have a number which
appears more than n/2 times on it. Devise a good algorithm to find the Majority
element.

5. e© Repeat the previous question but now assume one can only test two numbers for
equality or inequality.

6. e© Let q(n) be the average number of data-comparisons required for Quicksort on a
randomly generated list.

a) Explain why q(1) = 0, q(2) = 1 and q(3) = 2 2
3

16



b) Explain why the following recurrence holds:

q(n) = n− 1 +
2

n

n−1
∑

i=0

q(i)

c) Show that the solution to the above recurrence is:

q(n) = 2(n + 1)
n

∑

k=1

1

k
− 4n

d) Use a calculator, computer or mathematical analysis to look at the asymptotics
of q(n).

7. a) Suppose we have a collection of records with a 1-bit key K. Devise an efficient
algorithm to separate the records with K = 0 from those with K = 1.

b) What about a 2-bit key?

c) What has all this to do with sorting? Discuss.

17



Chapter 4: Parallel Sorting

We consider parallel algorithms where the processors have limited capabilities and where
there is a definite topology: a processor can communicate with only a few processors. Also
there is a global clock (SIMD). We consider the sorting problem where each processor
maintains one data value, and there is a specific target order which must be established.
At each step, a processor can do a bit of computation, and swap data value with one of
its neighbors.

This chapter is based on the discussion by Leighton.

4.1 Odd-Even Transposition Sort on a Linear Array

A linear array has the processors in a row: each processor can communicate with only
the one before it and the one after it. We give a linear array sorting algorithm that takes
precisely N steps, where N is the number of processors and the number of data values.
N − 1 is a lower bound, because one might need to get a data value from the last cell to
the first cell.

Odd-even transposition sort.

At odd steps, compare contents of cell 1 and 2, cells 3 and 4, etc, and swap values if
necessary so that the smaller value ends up in the leftmost cell. At even steps do the
same but for the pairs 2 and 3, 4 and 5, etc.

Example. 46278135.
46-27-81-35→ 4-62-71-83-5→ 42-61-73-85→ 2-41-63-75-8→ 21-43-65-78→ 1-23-45-67-8

To prove that this works, focus on the smallest element. It is clear that after a while the
smallest element ends up in the leftmost cell. At that stage we can look at the second
smallest element and so on. With a bit more work one can show that the whole process
runs in N steps.

4.2 Odd-Even Merge Sort

This sort is a famous parallel algorithm. It can be implemented on the topology called
a hypercube, but we will consider only the PRAM version. PRAM is parallel random

access machine : in this model there is global memory accessible to all processors. In
particular all the data is accessible to all processors (though each can only look at one
piece in one clock-step). The algorithm runs in O(log2 N) steps.



Merge Sort.

Given list of length N , split into N lists of length 1. Then in parallel merge pairs of
length-1 lists to form N/2 sorted lists of length 2. These lists are then merged into N/4
sorted lists of length 4, and so on. At the end, we merge two sorted lists of length N/2
into the final sorted list.

But the merge step we described in Merge Sort looks inherently sequential. The new idea
is as follows:

Odd-even merge.

To merge two sorted lists A and B, split A into two sublists Aeven and Aodd containing
the even-numbered entries and the odd-numbered entries respectively; similarly split B
into Beven and Bodd . Since A and B are sorted, the four sublists are sorted. Then use
recursion to merge Aeven and Bodd to form C, and merge Aodd and Beven to form D.
Finally, merge C and D.

At first glance, this appear ridiculous: we have made no progress. But it turns out that
merging C and D is trivial. The fact is, the first two elements of the sorted list are the
top elements in C and D in some order, the third and forth elements in the sorted list are
the second elements of C and D in some order, and so on. (See below.)

Example. To merge A=1467 and B=2358, C is merge of 47 and 25, D is merge of 16 and
38, so C is 2457 and D is 1368.

4.3 Proof and Analysis of Odd-Even Merge Sort

The proof is made simpler by considering only small and big elements. For any value T
(threshold), we define a data element to be T -small if it less than T and T -big if it is T
or greater. Then:

Observation. A list is sorted if and only if for all choices of T all T -small
elements come before all T -big elements.

Now, notice that Aeven and Aodd have almost the same number of T -small elements, as do
Beven and Bodd . So C and D have almost the same number of T -small elements. Indeed,
the pairing of Aeven with Bodd ensures that if Aeven and Aodd have different amounts of

19



small elements, and Bodd and Beven different amounts too, then C and D have the same
number of smalls. Thus in the final list, all the smalls will occur before all the bigs.

It remains to determine how long this process takes. The final merge of C and D takes O(1)
time, and the two submerges occur in parallel. So the overall merge takes O(log N) steps.
There are O(log N) merge-phases, and so the overall algorithm runs in time O(log2 N).
Provided there are O(N) processors.

Exercises

1. For the supplied data, illustrate the stages of the given sort and count the actual
number of steps. (i) odd-even transposition sort (ii) odd-even merge sort.

9 3 6 1 7 8 2 4

2. An oblivious sorting algorithm is one which consists entirely of a prescribed se-
quence of compare-and-swap operations: each step is to compare two elements and
swap them if necessary so that they are in a particular order.

(a) Explain why the odd-even transposition sort is oblivious, but neither Quicksort
nor Merge Sort is oblivious.

(b) e© Prove that if an oblivious algorithm sorts a list consisting entirely of 0s and
1s, then it sorts a general list.

20



Chapter 5: Finding the Median

The median of a collection is the middle value (in sorted order). For example, the
collection {3, 1, 6, 2, 8, 4, 9} has a median of 4: There are three values smaller than 4 and
three values larger. The answer to a median question when there is an even number of
values is the smaller of the two middle values. (There are other possible definitions but
this is convenient.)

We want an algorithm for finding the median of a collection of n values. One possibility
would be to sort the list. But one hopes for a faster method. One can try recursion or
iteration, but at first glance they don’t seem to work.

Blum, Floyd, Pratt, Rivest and Tarjan provided a linear-time algorithm: it uses O(n)
comparisons. It is a bit hairy at places.

5.1 A Generalization

One approach to the median problem is to define a generalization: the rank selection

problem. The input is a collection of n numbers and a rank k. The output must be the
value that is the kth smallest value. For example, for the above collection, 4 has rank 4
and 8 has rank 6. The minimum has rank 1.

Thus the median of a collection with n values has rank dn/2e (round up): it’s n/2 if n is
even and (n + 1)/2 if n is odd.

5.2 Using Median for Rank Selection

Okay. We do not know how to find the median. But I now argue that if (and that’s a big
if) we have an algorithm for median, then we can derive an algorithm for rank-selection:

We use the median algorithm to break the list in half. And keep only the
relevant half.

How much work does this take?



RankSelect (A:valuelist, k:integer)

R1: Calculate the median m of the list A.

R2: Determine the set A< of elements smaller than the median.
Determine the set A> of elements larger than the median.

R3: If k < dn/2e then return RankSelect(A<, k)
If k > dn/2e then return RankSelect(A>, k − dn/2e)
Else return m

Suppose that the median procedure takes cn comparisons where c is some constant. (That
is, suppose we have a linear-time median algorithm.) The number of comparisons for
Step R1 the first time is cn. The number for Step R2 the first time is n. The total for the
first two steps is therefore n(1 + c) comparisons.

The second time we have a list half the size. So our work is half that of the original. The
number of comparisons for Step R1 the second time is cn/2. The number for Step R2 the
second time is n/2. The total for the first two steps is n(1 + c)/2 comparisons.

Hence the total number of comparisons is

n(1 + c) +
n(1 + c)

2
+

n(1 + c)

4
+

n(1 + c)

8
+

n(1 + c)

16
+

n(1 + c)

32
+ . . .

If this sum continues forever it would add up to

2n(1 + c).

So the total work is at most 2(1+c)n. This is linear! (The beauty of the geometric series.)

5.3 The Pseudo-Median

We still don’t have a median algorithm. There are two ideas needed:

(1) that the above algorithm is still efficient if one uses only an approximation to the
median; and
(2) one can actually find an approximation to the median.

We define a pseudo-median as any value such that at least 30% of the values lie above
the pseudo-median and at least 30% of the values lie below the pseudo-median. (The value
30% is chosen to make the presentation easier.)

Suppose we have an algorithm that finds a pseudo-median. Then we can use it for rank
selection in exactly the same way as above. (And hence we can find the median!)

22



RankSelect (A:valuelist, k:integer)

R1: Calculate a pseudo-median m of the list A.

R2: Determine the set A< of elements smaller than m.
Determine the set A> of elements larger than m.
Calculate the rank r of m in A.

R3: If k < r then return RankSelect(A<, k)
If k > r then return RankSelect(A>, k − r)
Else return m

Hence we have a function RankSelect which uses as a subroutine the function Pseudo-
Median.

5.4 Finding a Pseudo-Median

How do we find a pseudo-median? What we do is:

take a sample of the data and find the median of the sample.

This algorithm is bizarre but beautiful: we now have a function Pseudo-Median which uses
as a subroutine the function RankSelect.

Pseudo-Median (B:valuelist)

P1: Break up the list B into quintets (groups of 5).

P2: Calculate the median in each quintet (by brute-force). Call the result the repre-
sentative of the quintet. There are n/5 representatives.

P3: Return the median of the set of representatives:
RankSelect(reps,n/10)

Does this produce a pseudo-median?

Well, consider the resultant value mr which is the median of the representatives. This
value is bigger than n/10 representatives. And for each representative that mr is bigger

23



than, mr is bigger than two other members of the quintet. Thus there are at least 3n/10
values which mr is guaranteed to be bigger than. And similarly there are 3n/10 values
which mr is guaranteed to be smaller than. Hence mr is guaranteed to be a pseudo-median.

Note that the intricate recursion: RankSelect calls PseudoMedian which calls RankSelect
and so on. The reason why this works is that the problem size is getting smaller at each
stage. (When implementing this algorithm one must be very careful not to get an infinite
loop. . . )

5.5 Analysis

The calculation of the median in a quintet takes at most 10 comparisons. (Since sorting
the quintet takes this many comparisons!) So the total number of comparisons for Step P2
is 2n.

Now, let us return to the RankSelect algorithm modified to use PseudoMedian. Let g(n)
be the number of comparisons needed by RankSelect on a list of size n in the worst case.
Then the number of comparisons for the three steps are:

Step R1: 2n + g(n/5)
Step R2: n
Step R3: g(7n/10)

This gives us the recurrence:

g(n) = g(n/5) + g(7n/10) + 3n

which has solution g(n) = 30n. (Plug it in and check!)

Exercises

1. Implement the median-finding algorithm.

2. Run your program on random lists of length 10, 100, 1000 and 10 000. Comment on
the results.

3. Why quintets? Use either theory or a modification of your program to compare
triplets with quintets.

24



Chapter 6: Books

I have made much use of:

• Data Structures and Algorithms,
A. Aho, J. Hopcroft and J. Ullman

• Fundamentals of Algorithmics,
G. Brassard and P. Bratley

• Introduction to Algorithms,
T. Cormen, C. Leiserson and R. Rivest

• Introduction to Parellel Algorithms and Architectures: Arrays, Trees, Hypercubes,
F.T. Leighton

• Data Structures and Algorithm Analysis,
M.A. Weiss


