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Logical Agents

CHAPTER 7 CONTINUED
COSC 370
SPRING 2013
ALAN C. JAMIESON

SOME SLIDE CONTENT FROM RUSSELL &
NORVIG PROVIDED SLIDES

» More Inference
» Equivalence, Validity, Satisfiability
» Forward and Backward Chaining

» Resolution

Recall: Wumpus World Sentences

* Let P;; mean that there is a pit at square i,j
* Let B;; mean that there is a breeze at square i,j
¢ Our KB:

Rll —|P1’1

R4: _'Bl,l

5 B2,1

» “Pits cause breezes in adjacent squares”

R2: B1,1 < (Pl,z \ Pz,l)

R,;:B,, ® (P, VP,,VP,)
» “A square is breezy iff there is an adjacent pit”

How to leverage?

» Enumeration!
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Algorithm

function TT-ENTAILS?(KB, a) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic
symbols —a list of the proposition symbols in KB and o
return TT-CHECK-ALL(KB, a, symbols,[])

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return true
else do
P FIRST(symbols); rest — REST(symbols)
return TT-CHECK-ALL(KB, @, rest, EXTEND(P, true, model)) and
TT-CHECK-ALL(KB, , rest, EXTEND(P, false, model))

« In general, depth first enumeration. Complete, but time-intensive —
0O(2m) for n symbols.

Logical Equivalence
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associativity of A
associativity of V
ouble-negation elimination
-3 = —a) contraposition
implication elimination
(@ = B)A(B = a))
—aV —f3) De Morgan
—a A—-f3) De Morgan
(@« AB)V (aA7)) distributivity of A over V
(aVB)A(aV~y)) distributivity of V over A

biconditional elimination
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Validity, Satisfiability, and Proofs

» A sentence is valid if it is true in all models.
» A sentence is satisfiable if it is true in some models

» Proof methods:
Application of inference — legitimate generation of new
sentences from old, proof via inference rule application,
typically requires translation into a normal form.
Model checking — truth table enumeration, allows for
improved backtracking and heuristic search

Forward and Backward Chaining

» First a normal form — Horn Form
KB = conjunction of Horn clauses
Horn clause — proposition symbol OR
conjunction of symbols = symbol
» Example: KB=C A (B=A) A (C AD=B)
» Can be used by forward and backward chaining in
linear time.
» Chaining — way of reasoning while leveraging a KB.
Utilizes modus ponens “P implies Q. P is true, thus Q
is true”.

Forward Chaining

« Idea — start from the premise, then add things to the
KB as we infer from the Horn clauses.

FC Algorithm

function PL-FC-ENTAILS?(KB, g) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses
g, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
p«Pop(agenda)
unless inferred[p] do
inferred[p] — true
for each Horn clause ¢ in whose premise p appears do
decrement count[c]
if count[c] = 0 then do
if HEAD[c] = ¢ then return irue
PusH(HEAD](], agenda)
return false
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Backward Chaining

O

» Work back from the query q:
© Check to see if q is already known
© prove by BC all premises of rules that imply q.

» Avoidance of loops.

 Avoidance of repeated work.
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FCvs. BC

» FC is data-driven, automatic processing
May do lots of work that’s irrelevant!

» BCis goal-driven, appropriate for problem-solving (a
bit more complex)
However, complexity is still linear!

CNF and Resolution

» Conjunctive Normal Form (CNF) — conjunction of
disjunction of literals (clauses)

» Example: (A V -B) A (BV -C V -D)

» Resolution — like FC and BC, a way to query a KB,
figure out if a particular value can be inferred.

Conversion to CNF

1.) Eliminate <, by replacing A<B with A=B A B=A.
2.) Eliminate =, by replacing A=B with -A V B.
3.) We move our negations to be only attached to
literals (not clauses):
=(=A) = A (double-negation elimination)
-(A A B) = -A V -B (De Morgan’s Law)
-(A V B) = -A A -B (De Morgan’s Law)
4.) Apply distributivity law to distribute V over A:
AVBAC)=MAVBAMLVO

Resolution

» Proof by contradiction!

function PL-RESOLUTION(KB, ) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
, the query, a sentence in propositional logic
clauses — the set of clauses in the CNF representation of KB A ~a
new—{}
loop do
for each C;, Cj in clauses do
resolvents — PL-RESOLVE(C;, C;)
if resolvents contains the empty clause then return true
new«— newU resolvents
if new C clauses then return false
clauses — clauses U new

Resolution Example

* KB = (Bl,l < (P1,2 \ P2,1)) A _'B1,1
cQa= _|P1,2

PiaV Py VP,

ﬁRHvPDvBHI lPD\/FN\/ﬁPUI lag,,vpz‘vsul

Exercise

» CNF conversion practice + Resolution — 7.18 b&c




