

• Enumeration!												
$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	false	false	false	false	false	false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
1	1	1	:	1	1	1	1	1			1	1
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
1	+	:	:	:	1	1	1	1	1	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

Validity, Satisfiability, and Proofs

- A sentence is valid if it is true in all models.
- A sentence is satisfiable if it is true in some models.
- Proof methods:
 - Application of inference legitimate generation of new sentences from old, proof via inference rule application, typically requires translation into a normal form.
 - Model checking truth table enumeration, allows for improved backtracking and heuristic search

Forward and Backward Chaining

- First a normal form Horn Form KB = conjunction of Horn clauses Horn clause – proposition symbol OR conjunction of symbols ⇒ symbol
- Example: $KB = C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$
- Can be used by forward and backward chaining in linear time.
- Chaining way of reasoning while leveraging a KB. Utilizes modus ponens "P implies Q. P is true, thus Q is true".

В

FC vs. BC

- FC is data-driven, automatic processing • May do lots of work that's irrelevant!
- BC is goal-driven, appropriate for problem-solving (a bit more complex)

• However, complexity is still linear!

CNF and Resolution Conjunctive Normal Form (CNF) – conjunction of disjunction of literals (clauses) Example: (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D) Resolution – like FC and BC, a way to query a KB, figure out if a particular value can be inferred.

Resolution	
Proof by contradiction!	
function PL-RESOLUTION(KB, α) returns true or false	
inputs: KB, the knowledge base, a sentence in propositional logic	
lpha, the query, a sentence in propositional logic	
$clauses \leftarrow \text{the set}$ of clauses in the CNF representation of $KB \land \neg \alpha$	
$new \leftarrow \{\}$	
loop do	
for each C_i , C_j in clauses do	
$resolvents \leftarrow PL-RESOLVE(C_i, C_j)$	
if resolvents contains the empty clause then return true	
$new \leftarrow new \cup resolvents$	
If new \subseteq clauses then return false	
$clauses \leftarrow clauses \cup new$	

