

How to leverage?

Validity, Satisfiability, and Proofs
- A sentence is valid if it is true in all models.
- A sentence is satisfiable if it is true in some models
- Proof methods:
Application of inference - legitimate generation of new
sentences from old, proof via inference rule application,
typically requires translation into a normal form.
Model checking - truth table enumeration, allows for
improved backtracking and heuristic search

Conversion to CNF

1.) Eliminate \Leftrightarrow, by replacing $A \Leftrightarrow B$ with $A \Rightarrow B \wedge B \Rightarrow A$.
2.) Eliminate \Rightarrow, by replacing $A \Rightarrow B$ with $\neg A \vee B$.
3.) We move our negations to be only attached to literals (not clauses):
$\neg(\neg \mathrm{A}) \equiv \mathrm{A}$ (double-negation elimination)
$\neg(\mathrm{A} \wedge \mathrm{B}) \equiv \neg \mathrm{A} \vee \neg \mathrm{B}$ (De Morgan's Law)
$\neg(\mathrm{A} \vee \mathrm{B}) \equiv \neg \mathrm{A} \wedge \neg \mathrm{B}$ (De Morgan's Law)
4.) Apply distributivity law to distribute \vee over \wedge : $(A \vee(B \wedge C)) \equiv(A \vee B) \wedge(A \vee C)$

