3/18/13

Logical Agents

CHAPTER 7 CONTINUED
COSC 370
SPRING 2013
ALAN C. JAMIESON

SOME SLIDE CONTENT FROM RUSSELL &
NORVIG PROVIDED SLIDES

» More Inference
» Equivalence, Validity, Satisfiability
» Forward and Backward Chaining

» Resolution

Recall: Wumpus World Sentences

* Let P;; mean that there is a pit at square i,j
* Let B;; mean that there is a breeze at square i,j
¢ Our KB:

Rll —|P1’1

R4: _'Bl,l

5 B2,1

» “Pits cause breezes in adjacent squares”

R2: B1,1 < (Pl,z \ Pz,l)

R,;:B,, ® (P, VP,,VP,)
» “A square is breezy iff there is an adjacent pit”

How to leverage?

» Enumeration!

By

By

Py

Piy

P

P2

Py

R:

R

KB

false
false

false

false
false

true

false
false

false

false
false

false

false
false

false

false
false

faise

false
true

false

false
false

true

false
false

false

false
false
false

false
false
false

false
false
false

false
false
false

false
true
true

true
false
true

true
true
true

false

true

false

true

false

true

true

true

false

true

false

true

true

fa;.se

true

true

false

false

Algorithm

function TT-ENTAILS?(KB, a) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic
symbols —a list of the proposition symbols in KB and o
return TT-CHECK-ALL(KB, a, symbols,[])

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return true
else do
P FIRST(symbols); rest — REST(symbols)
return TT-CHECK-ALL(KB, @, rest, EXTEND(P, true, model)) and
TT-CHECK-ALL(KB, , rest, EXTEND(P, false, model))

« In general, depth first enumeration. Complete, but time-intensive —
0O(2m) for n symbols.

Logical Equivalence

ca=fiffarBand fFra

(
(
(
(
(
(
(

A
\
A
\

d

a)

)

—aVg)

commutativity of A
commutativity of V

BA7)
Bv))

associativity of A
associativity of V
ouble-negation elimination
-3 = —a) contraposition
implication elimination
(@ = B)A(B = a))
—aV —f3) De Morgan
—a A—-f3) De Morgan
(@« AB)V (aA7)) distributivity of A over V
(aVB)A(aV~y)) distributivity of V over A

biconditional elimination




3/18/13

Validity, Satisfiability, and Proofs

» A sentence is valid if it is true in all models.
» A sentence is satisfiable if it is true in some models

» Proof methods:
Application of inference — legitimate generation of new
sentences from old, proof via inference rule application,
typically requires translation into a normal form.
Model checking — truth table enumeration, allows for
improved backtracking and heuristic search

Forward and Backward Chaining

» First a normal form — Horn Form
KB = conjunction of Horn clauses
Horn clause — proposition symbol OR
conjunction of symbols = symbol
» Example: KB=C A (B=A) A (C AD=B)
» Can be used by forward and backward chaining in
linear time.
» Chaining — way of reasoning while leveraging a KB.
Utilizes modus ponens “P implies Q. P is true, thus Q
is true”.

Forward Chaining

« Idea — start from the premise, then add things to the
KB as we infer from the Horn clauses.

FC Algorithm

function PL-FC-ENTAILS?(KB, g) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses
g, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do
p«Pop(agenda)
unless inferred[p] do
inferred[p] — true
for each Horn clause ¢ in whose premise p appears do
decrement count[c]
if count[c] = 0 then do
if HEAD[c] = ¢ then return irue
PusH(HEAD](], agenda)
return false

Q
P=Q
LAM = P b
BAL = M
AAP = L W
ANB = L L
A
B
A B
Run-Through
P=Q
LAM = P
BAL = M
AAP = L
AAB = L
A

Run-Through

P=Q

LAM = P
BAL = M
AAP = L
AANB = L




Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

3/18/13

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L




Backward Chaining

O

» Work back from the query q:
© Check to see if q is already known
© prove by BC all premises of rules that imply q.

» Avoidance of loops.

 Avoidance of repeated work.

3/18/13

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

P=Q

LAM = P
BAL = M
AANP = L
AAB = L




Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

3/18/13

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L

Run-Through

P=Q

LAM = P
BAL = M
AANP = L
AAB = L




3/18/13

FCvs. BC

» FC is data-driven, automatic processing
May do lots of work that’s irrelevant!

» BCis goal-driven, appropriate for problem-solving (a
bit more complex)
However, complexity is still linear!

CNF and Resolution

» Conjunctive Normal Form (CNF) — conjunction of
disjunction of literals (clauses)

» Example: (A V -B) A (BV -C V -D)

» Resolution — like FC and BC, a way to query a KB,
figure out if a particular value can be inferred.

Conversion to CNF

1.) Eliminate <, by replacing A<B with A=B A B=A.
2.) Eliminate =, by replacing A=B with -A V B.
3.) We move our negations to be only attached to
literals (not clauses):
=(=A) = A (double-negation elimination)
-(A A B) = -A V -B (De Morgan’s Law)
-(A V B) = -A A -B (De Morgan’s Law)
4.) Apply distributivity law to distribute V over A:
AVBAC)=MAVBAMLVO

Resolution

» Proof by contradiction!

function PL-RESOLUTION(KB, ) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
, the query, a sentence in propositional logic
clauses — the set of clauses in the CNF representation of KB A ~a
new—{}
loop do
for each C;, Cj in clauses do
resolvents — PL-RESOLVE(C;, C;)
if resolvents contains the empty clause then return true
new«— newU resolvents
if new C clauses then return false
clauses — clauses U new

Resolution Example

* KB = (Bl,l < (P1,2 \ P2,1)) A _'B1,1
cQa= _|P1,2

PiaV Py VP,

ﬁRHvPDvBHI lPD\/FN\/ﬁPUI lag,,vpz‘vsul

Exercise

» CNF conversion practice + Resolution — 7.18 b&c




