
3/18/13	

1	

C H A P T E R 7 C O N T I N U E D
C O S C 3 7 0

S P R I N G 2 0 1 3
A L A N C . J A M I E S O N

S O M E S L I D E C O N T E N T F R O M R U S S E L L &
N O R V I G P R O V I D E D S L I D E S

Logical Agents   More Inference
  Equivalence, Validity, Satisfiability
  Forward and Backward Chaining
  Resolution

Recall: Wumpus World Sentences

  Let Pi,j mean that there is a pit at square i,j
  Let Bi,j mean that there is a breeze at square i,j
  Our KB:

R1: ¬P1,1
R4: ¬B1,1
R5: B2,1

  “Pits cause breezes in adjacent squares”
R2: B1,1 ⇔ (P1,2 ∨ P2,1)
R3: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

  “A square is breezy iff there is an adjacent pit”

How to leverage?

  Enumeration!

Algorithm

  In general, depth first enumeration. Complete, but time-intensive –
O(2n) for n symbols.

Logical Equivalence

  α≡β iff α ⊨ β and β ⊨ α

3/18/13	

2	

Validity, Satisfiability, and Proofs

  A sentence is valid if it is true in all models.
  A sentence is satisfiable if it is true in some models
  Proof methods:

  Application of inference – legitimate generation of new
sentences from old, proof via inference rule application,
typically requires translation into a normal form.

  Model checking – truth table enumeration, allows for
improved backtracking and heuristic search

Forward and Backward Chaining

  First a normal form – Horn Form
 KB = conjunction of Horn clauses
 Horn clause – proposition symbol OR
 conjunction of symbols ⇒ symbol

  Example: KB = C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
  Can be used by forward and backward chaining in

linear time.
  Chaining – way of reasoning while leveraging a KB.

Utilizes modus ponens “P implies Q. P is true, thus Q
is true”.

Forward Chaining

  Idea – start from the premise, then add things to the
KB as we infer from the Horn clauses.

FC Algorithm

Run-Through Run-Through

3/18/13	

3	

Run-Through Run-Through

Run-Through Run-Through

Run-Through Run-Through

3/18/13	

4	

Backward Chaining

  Work back from the query q:
  Check to see if q is already known
  prove by BC all premises of rules that imply q.

  Avoidance of loops.

  Avoidance of repeated work.

Run-Through

Run-Through Run-Through

Run-Through Run-Through

3/18/13	

5	

Run-Through Run-Through

Run-Through Run-Through

Run-Through Run-Through

3/18/13	

6	

FC vs. BC

  FC is data-driven, automatic processing
  May do lots of work that’s irrelevant!

  BC is goal-driven, appropriate for problem-solving (a
bit more complex)
  However, complexity is still linear!

CNF and Resolution

  Conjunctive Normal Form (CNF) – conjunction of
disjunction of literals (clauses)

  Example: (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)
  Resolution – like FC and BC, a way to query a KB,

figure out if a particular value can be inferred.

Conversion to CNF

1.) Eliminate ⇔, by replacing A⇔B with A⇒B ∧ B⇒A.
2.) Eliminate ⇒, by replacing A⇒B with ¬A ∨ B.
3.) We move our negations to be only attached to

literals (not clauses):
 ¬(¬A) ≡ A (double-negation elimination)

 ¬(A ∧ B) ≡ ¬A ∨ ¬B (De Morgan’s Law)
 ¬(A ∨ B) ≡ ¬A ∧ ¬B (De Morgan’s Law)

4.) Apply distributivity law to distribute ∨ over ∧:
 (A ∨ (B ∧ C)) ≡ (A ∨ B) ∧ (A ∨ C)

Resolution

  Proof by contradiction!

Resolution Example

  KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1
  α = ¬P1,2

¬P2,1 B1,1 ¬B1,1 P1,2 P2,1 ¬P1,2 B1,1 ¬B1,1 P1,2

¬P2,1 ¬P1,2P1,2 P2,1 ¬P2,1 ¬B1,1 P2,1 B1,1 P1,2 P2,1 ¬P1,2¬B1,1 P1,2 B1,1

^ ^ ^

^^ ^ ^ ^ ^ ^ ^

^

Exercise

  CNF conversion practice + Resolution – 7.18 b&c

