
2/11/13	

1	

C H A P T E R 5
C O S C 3 7 0

S P R I N G 2 0 1 3
A L A N C . J A M I E S O N

S O M E S L I D E C O N T E N T F R O M R U S S E L L &
N O R V I G P R O V I D E D S L I D E S

Game Playing   Games
  Minimax
  α-β Pruning
  Imperfect Choice
  Stochastic Games
  Partially Observable Games

Games and AI

  A natural application!
  Two different kinds:

  Single agent “solitaire” games
  Adversarial multi-agent games

  The most common – turn-based, two-player, zero-
sum games with perfect environment information.
  Example: Chess

  Chance, imperfect information, multi-agent,
cooperative-agent, non-deterministic aspects can be
added.

  Frequently: hard to solve!

Kinds of Games

Deterministic Chance
Perfect Information chess, checkers, go,

othello
backgammon,
monopoly

Imperfect Information battleship, blind tic-
tac-toe

bridge, poker, nuclear
war

Adversarial Games

  Typically, we will still consider a tree for the state
space, start with an initial configuration of our game
and then the successors is each possible move from
that configuration.

  Big issue: size of search tree:
  Chess – branching factor of ~35, games of 50+ moves per

player common. 35^100 or 10^154 possible search space
(10^40 possible configurations)

  What do we do? Good enough solutions. Pruning.
Better evaluation/heuristic functions.

Defining Games

  S0 – initial state
  PLAYER(s) – player that has the move at s
  ACTIONS(s) – set of legal moves at s
  RESULT(s, a) – resulting state per the transition

function
  TERMINAL-TEST(s) – function that determines whether

or not the game is over.
  UTILITY(s, p) – utility/objective/payoff function for

player p at terminal state s. Examples:
  Chess – 0, 1, 1/2
  Backgammon – 0 to 192

2/11/13	

2	

Minimax

  Label our players MAX and MIN. This represents the
target utility value in reference to our first player.

  MAX – the first player wants to maximize his or her
utility, the higher the better (traditionally).

  MIN – our second player wants to minimize the first
player’s utility with their move.

  Traditionally – expand all of our nodes then work
backwards.

  We assume that our opponent will make optimal
moves – minimax value represents best possible
payoff against optimal opponent.

Minimax

XX
XX

X
X

X

XX

X X
O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX
–1 0 +1

XX
X XO

X XOX XO
O
O

X
X XO

OO
O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL
Utility

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN

Exercise 5.3

(b)

(a) a

f

e

dcb

bd

cd ad

ce cf cc ae af ac

de df

dd dd

? ????

P E

Properties of Minimax

  Complete only if tree is finite.
  Optimal against an optimal opponent.
  Time complexity – exponential!
  Space complexity – linear!

2/11/13	

3	

α-β Pruning

  Trouble with Minimax – time! Exponential in the
depth of the tree.

  How do we trim this? Pruning!
  Effectively cuts the time in half (still exponential).
  Pruning – elimination of subtrees/possible states

without examining them due to some factor.
  Eliminate branches that cannot affect our final

solution – still returns the same solution as
minimax.

α-β Pruning

  General principal – consider a node n such that the
player has a choice to moving to that node. If player
has a better choice at that branch (m) or at any
choice further up, n will never actually be reached!

  Basically the same properties as minimax.

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Dealing with Complexity

  Size is an issue (isn’t it always)? How do we deal with
it?

  Option 1 – cutoff test – use a heuristic to estimate
the utility of a given move at the set maximum depth.
If that heuristic meets a threshold (dependent on if
that level is a min or a max) then keep it, otherwise,
discard.

  Option 2 – forward pruning – consider only a
selection of n best moves, prune all others.

  Neither option is guaranteed to be optimal!

Games of Chance

  Frequently, our games will include some element of
chance (commonly, dice).

  We can still use minimax/α-β pruning in this case,
but a small adjustment is required.

  Between each max and min we will add a chance
branch – this represents the roll that the player at
that level could make, including the probabilities (for
instance, with 2 die, 7 is the most common roll at
~17%).

  We can only calculate expected utility here!

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

2/11/13	

4	

Partially Observable Games

  In other games, only part of my environment is
known – for instance, card games where the
opponent’s cards are hidden.

  Typically – just figure out all possible configurations
and probabilities, and go from there.

  Choose the action that has the highest expected
utility regardless of the deal for your opponent.

  Called averaging over clairvoyance – assumes that
the environment becomes fully observable to both
players immediately or soon after the first action.

Problems with AOC

  Averaging over clairvoyance can lead you astray –
  Day 1 – Road A leads to a heap of gold, Road B leads to a

fork. Take the left fork and it leads to a bigger heap of
gold. Take the right fork and you’ll be run over by a bus.

  Day 2 – Road A leads to a heap of gold, Road B leads to a
fork. Take the right fork and it leads to a bigger heap of
gold. Take the left fork and you’ll be run over by a bus.

  Day 3 - Road A leads to a heap of gold, Road B leads to a
fork. One of the fork leads to a bigger heap of gold, but
the other has that darned bus. Which fork do you take?

Exercise

  5.16!

