
2/6/13	  

1	  

C H A P T E R  4  
C O S C  3 7 0  

S P R I N G  2 0 1 3  
A L A N  C .  J A M I E S O N  

S O M E  S L I D E  C O N T E N T  F R O M  R U S S E L L  &  
N O R V I G  P R O V I D E D  S L I D E S  

Beyond Classical Search 

Some Administrata  

  Exam in 2 weeks! 
  Selection 
  Review sheet 

  Project 2 assigned next week! 

  Hill-climbing 
  Simulated annealing 
  Local beam search 
  Genetic algorithms 
  Searching with non-determinism 
  Searching with partial observations 

Local Searches 

  Sometimes, we don’t need to examine the whole 
state space (e.g. TSP). 

  Iterative improvement algorithms – class of 
algorithms that focus on getting to the end state, 
rather than the path. 

  State space = all possible complete configurations 
  Optimize over those configurations! 
  Constant space requirements. 

Example: TSP 

  Start with complete tour, perform pairwise 
exchange: 

  Variants of this approach get near optimal solutions 
very quickly with thousands of cities. 

Example: n-Queens 

  Place n queens on an nxn board with no queen able 
to attack another. 

  Strategy here? 
  Move a single queen to reduce conflicts: 

  Very quick solution! 



2/6/13	  

2	  

Hill-Climbing 

  a.k.a. Gradient Ascent/Descent 

Watch the Landscape! 

  Consider that the state space has a location and an elevation. 
  Location = state itself 
  Elevation = evaluation function result 

Local Extremal States 

  Local maximal/minimal states = bad news. 

  How to get around? Random restart & random 
move. 

14
18
17

15
14

18
14

14
14

14
14
12
16
12

13

16
17
14
18
13
14

17
15
18
15

13
15
13

12
15
15

13
15
12
13

14
14

14
16
12
14
12

12

15
16
13
14
12
14

18
16

16
16
14
16
14

Simulated Annealing 

  Notice – hill-climbing techniques that never make a 
downhill move can be incomplete. 

  Annealing – process used to temper or harden 
metals by heating them to high temperatures then 
gradually cooling them.  

  Simulated annealing – gradient descent algorithm 
that incorporates some random moves to keep an 
agent out of local minimums/maximums. 

  Allow “bad” moves but gradually decrease their 
frequency and size. 

Simulated Annealing Local Beam Search (briefly) 

  Simulated Annealing = one state kept in memory. 
  What if we were able to have k states? Would this 

speed things up? 
  Local beam search – start with k randomly generated 

initial states and expand. Choose the k best evaluated 
nodes expanded and continue until you get the goal. 

  Stochastic beam search expands this further by 
utilizing a probability to choose k random expanded 
states. 



2/6/13	  

3	  

Genetic Algorithms (briefly) 

  A expansion of the stochastic beam search. 
  Choose population (randomly selected states). 
  Each individual state must be represented by a string 

over a finite alphabet (binary bits, characters, etc.) 
  For instance: n-queens states represent by bits the location of each 

queen, 8-queens needs 24 bits, 3 bits per column. 
   The next generation of states is created by examining the 

current set of states and their fitness (typically by the 
standard evaluative function). Then a random (but 
probabilistically chosen) set of states are chosen. Those 
states are paired and a crossover point is chosen 
randomly. New states are created from the two parents 
by appending substrings from the parents together based 
on the crossover. 

Genetic Algorithms (briefly) 

  Mutations can be added in with small independent 
probability. This will be dependent on the problem, 
but represent a change in a generated state’s string. 
For instance – moving a single queen randomly in its 
column. 

Adding Nondeterminism 

  Consider an erratic Vacuum World - when the Suck 
command is executed the vacuum cleans just the 
current square, cleans the currents square and an 
adjacent square, or deposits dirt onto a clean square. 

  How do we deal with this non-determinism? What 
does our state space look like? How do we search 
when we don’t know what’s next? 

  Consider all the options!    

AND-OR Search Trees 

  Search trees where certain branches represent 
decisions (OR) and certain branches represent 
options that must all be taken. 

  For instance: our Suck command on a clean square. 
  What about just sitting at a particular state? 
  We assume that we have a fully observable 

environment. 

LeftSuck

RightSuck

RightSuck

6 

GOAL
8 

GOAL
7 

1 

2 5 

1 

LOOP
5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL
8 4 

What about… 

  A slippery Vacuum World? Movement actions 
occasionally fail. 

  Try, try again – an extension of our if-else state 
based operations before, occasionally we will have to 
loop back to the state where the failure occurred, 
then continue to execute as normal. 

  Requires some knowledge of whether or not an 
action failed. 



2/6/13	  

4	  

Partial/No Observations (briefly) 

  How do we deal with an agent that doesn’t provide 
enough information to set state? 

  Belief states: a set of fully observable states 
representing all possible configurations of state.  

  Predictions if we have partial or no sensor ability! 

2 

4 

1 

3 

2 

4 

1 

3 

1 

3 

(b)(a)

Quick Exercise! 

  4.1 a-d 


