Beyond Classical Search

CHAPTER 4
COSC 370
SPRING 2013
ALAN C. JAMIESON

SOME SLIDE CONTENT FROM RUSSELL &
NORVIG PROVIDED SLIDES

Some Administrata

» Exam in 2 weeks!
Selection
Review sheet

» Project 2 assigned next week!

« Hill-climbing

 Simulated annealing

 Local beam search

» Genetic algorithms

« Searching with non-determinism

» Searching with partial observations

Local Searches

» Sometimes, we don’t need to examine the whole
state space (e.g. TSP).

« Iterative improvement algorithms — class of
algorithms that focus on getting to the end state,
rather than the path.

« State space = all possible complete configurations
» Optimize over those configurations!
» Constant space requirements.

Example: TSP

« Start with complete tour, perform pairwise
exchange:

« Variants of this approach get near optimal solutions
very quickly with thousands of cities.

Example: n-Queens

« Place n queens on an nxn board with no queen able
to attack another.

o Strategy here?
Move a single queen to reduce conflicts:

h=5 h=2 h=0

« Very quick solution!

2/6/13

Hill-Climbing

Watch the Landscape!

« a.k.a. Gradient Ascent/Descent

inputs: problem, a problem
local variables: current, a node
neighbor, a node
curvent «— MAKE-NODE(INITIAL-STATE[problem])
loop do
neighbor«— a highest-valued successor of current

function HILL-CLIMBING(problem) returns a state that is a local maximum

if VALUE[neighbor] < VALUE[current] then return STATE[current]

current +— neighbor
end

» Consider that the state space has a location and an elevation.
 Location = state itself
« Elevation = evaluation function result

objectiye function lobal maximum

shoulder
local maximum
"flat" local maximum

current
state

Local Extremal States

Simulated Annealing

» Local maximal/minimal states = bad news.

» How to get around? Random restart & random
move.

» Notice — hill-climbing techniques that never make a
downhill move can be incomplete.

» Annealing — process used to temper or harden
metals by heating them to high temperatures then
gradually cooling them.

» Simulated annealing — gradient descent algorithm
that incorporates some random moves to keep an
agent out of local minimums/maximums.

 Allow “bad” moves but gradually decrease their
frequency and size.

Simulated Annealing

Local Beam Sgarch (briefly)

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
nezt, a node
T, a" " ing prob. of

current «— MAKE-NODE(INITIAL-STATE[problem])
for t+ 1 to oo do

T schedule[t]

if T'= 0 then return current

nezt+a randomly selected successor of current

AE «— VALUE[nezt] - VALUE[current]

if AE > 0 then current— next

else current «— next only with probability e® £/7"

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

steps

» Simulated Annealing = one state kept in memory.

» What if we were able to have k states? Would this
speed things up?

» Local beam search — start with k randomly generated
initial states and expand. Choose the k best evaluated
nodes expanded and continue until you get the goal.

« Stochastic beam search expands this further by
utilizing a probability to choose k random expanded
states.

2/6/13

Genetic Algorithms (briefly)

* A expansion of the stochastic beam search.
» Choose population (randomly selected states).

« Each individual state must be represented by a string
over a finite alphabet (binary bits, characters, etc.)
For instance: n-queens states represent by bits the location of each
queen, 8-queens needs 24 bits, 3 bits per column.
The next generation of states is created by examining the
current set of states and their fitness (typically by the
standard evaluative function). Then a random (but
probabilistically chosen) set of states are chosen. Those
states are paired and a crossover point is chosen
randomly. New states are created from the two parents
by aﬁpending substrings from the parents together based
on the crossover.

Genetic Algorithms (briefly)

» Mutations can be added in with small independent
probability. This will be dependent on the problem,
but represent a change in a generated state’s string.
For instance — moving a single queen randomly in its
column.

Adding Nondeterminism

Consider an erratic Vacuum World - when the Suck
command is executed the vacuum cleans just the
current square, cleans the currents square and an
adjacent square, or deposits dirt onto a clean square.
How do we deal with this non-determinism? What
does our state space look like? How do we search
when we don’t know what’s next?

» Consider all the options!

AND-OR Search Trees

« Search trees where certain branches represent
decisions (OR) and certain branches represent
options that must all be taken.

« For instance: our Suck command on a clean square.
» What about just sitting at a particular state?

» We assume that we have a fully observable
environment.

Suck Right

What about...

* A slippery Vacuum World? Movement actions
occasionally fail.

« Try, try again — an extension of our if-else state
based operations before, occasionally we will have to
loop back to the state where the failure occurred,
then continue to execute as normal.

» Requires some knowledge of whether or not an
action failed.

2/6/13

Partial/No Observations (briefly)

O

Quick Exercise!

O

2/6/13

