

Chapter 22

Why? Wittgenstein (1953) Philosophical Investigations
Austin (1962) How to Do Things with Words
Searle (1969) Speech Acts language is a form of action
Wittgenstein (1953) Philosop
"Modern" view (post-1953):
language consists of sentences that are true/false (c. logic)
"Classical" view (pre-1953):

教

$|$| Stages in communication (informing) | |
| :--- | :--- |
| Intention | S wants to inform H that P |
| Generation | S selects words W to express P in context C |
| Synthesis | S utters words W |
| | |
| Perception | H perceives W^{\prime} in context C^{\prime} |
| Analysis | H infers possible meanings $P_{1}, \ldots P_{n}$ |
| Disambiguation H infers intended meaning P_{i}
 Incorporation H incorporates P_{i} into KB | |
| How could this go wrong? | | l

Speech acts

Natural languages probably context-free, parsable in real time!
 Recursively enumerable: no constraints

Context-sensitive: more nonterminals on right-hand sid $\boldsymbol{q} S \boldsymbol{v} \leftarrow S$

Context-free: nonterminal \rightarrow anything $\begin{aligned} \mathrm{V} & \leftarrow S \\ C \boldsymbol{v} & \leftarrow S\end{aligned}$ Regular: nonterminal \rightarrow terminal $[$ nonterminal $]$
\rightarrow

Here S is the sentence symbol, $N P$ and $V P$ are nonterminals
grammar is a set of rewrite rules, e.g.
$S \rightarrow N P$ VP
Article \rightarrow the $|\boldsymbol{a}|$ an $\mid \ldots$ Each string in the language can be analyzed/generated by the grammar A formal language is a set of strings of terminal symbols Grammar specifies the compositional structure of complex messages
e.g., speech (linear), text (linear), music (two-dimensional) Vervet monkeys, antelopes etc. use isolated symbols for sentences
$\quad \Rightarrow$ restricted set of communicable propositions, no generative capacity
(Chomsky (1957): Syntactic Structures) Grammar
Vervet monkeys, antelopes etc. use isolated symbols for sentences
Grammaticality judgements
Adjusting L_{1} to agree with L_{2} is a learning problem!

* the gold grab the wumpus
* I smell the wumpus the gold
I give the wumpus the gold
I I donate the wumpus the gold
Intersubjective agreement somewhat reliable, independent of semantics!
Real grammars $10-500$ pages, insufficient even for "proper" English

Wumpus grammar	
$S \rightarrow N P V P$	$1+$ feel a breeze
\| S Conjunction S	I feel a breeze + and +1 smell a wumpus
$N P \rightarrow$ Pronoun	I
Noun	pits
Article Noun	the + wumpus
Digit Digit	34
$N P$ PP	the wumpus + to the east
\| NP RelClause	the wumpus + that is smelly
$V P \rightarrow$ Verb	stinks
$V P$ NP	feel + a breeze
$V P$ Adjective	is + smelly
$V P$ PP	turn + to the east
VP Adverb	go + ahead
$P P \rightarrow$ Preposition NP	to + the east
RelClause \rightarrow that VP	that + is smelly

Exhibit the grammatical structure of a sentence

$\stackrel{n}{\circ}$
$\stackrel{\circ}{\circ}$

Parse trees
Exhibit the grammatical structure of a sentence

Context-free parsing \equiv Boolean matrix multiplication (Lee, 2002)
$\quad \Rightarrow$ unlikely to find faster practical algorithms

Context-free parsing
Bottom-up parsing works by replacing any substring that matches
RHS of a rule with the rule's LHS
Efficient algorithms (e.g., chart parsing, Section 22.3) $O\left(n^{3}\right)$ for context-free,
run at several thousand words/sec for real grammars

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Gerrmans
I ate spaghetti with meatballs

 Chrysler announced record profits Using one noun phrase to stand for another
I've read Shakespeare

Kuイuołว小

