
The I’m in Cali and
you’re not Lecture

Alan C Jamieson, PhD

Lab Solution
• Question 1: Factorial

def Fact(n):
	 result = 1
	 for i in range(n):
	 	 result = result * (i+1)
	 return result

Lab Solution
• Question 2: Summation

def Sum(n):
	 result = 0
	 for i in range(n):
	 	 result = result + i + 1
	 return result

Lab Solution
• Question 3: Fibonacci

def Fib(n):
	 if n == 0:
	 	 return 0
	 if n == 1:
	 	 return 1
	 else:
	 	 return Fib(n-1) + Fib(n-2)

More Python Phun

• The del keyword

• del a[0]

• del a

Sets

• Set - unordered collection with no
duplicates

• Python basic type

• Supports fast membership testing and
mathematical set operations

Sets
Load up IDLE (or a Python interpreter of your choice)

Try the following:

a = set(‘hi how are you’)
basket = [‘apple’, ‘orange’, ‘apple’, ‘pear’, ‘orange’, ‘banana’]

fruit = set(basket)

Sets

• Notice that Python takes care of duplicates
for you. The ‘hi how are you’ example
shows that Python will even split up a string
into characters and eliminate duplicates that
way.

• Fast membership testing - ‘orange’ in fruit

Sets
• Mathematical Set Functions

a = set(‘hi, how are you?’)
b = set(‘not bad, you?’)

a - b 		 #a but not b
a | b	 	 #a or b
a & b		 #a and b
a ^ b	 	 #a or b but not both

Dictionaries
• Basically a map structure. Entries are made

up of keys and values.

tel = {‘alan’ : 1123, ‘lindsay’ : 3345}
tel[‘simon’] = 4443
tel
tel[‘alan’]

Dictionaries
• Looping through dictionaries

#tel from previous slide

for k, v in tel.iteritems():
	 print k, v

Other Looping Fun

• Looping through a sequence and having the
index print out:

for i, v in enumerate([‘tic’, ‘tac’, ‘toe’]):
 print i, v

Other Looping Fun

• Looping through two or more sequences at
the same time:

questions = [‘name’, ‘quest’, ‘favorite color’]
answers = [‘lancelot’, ‘the holy grail’, ‘blue’]
for q, a in zip(questions, answers):
 print ‘What is your %s? It is %s.’ % (q, a)

Other Looping Fun

• Reversed and/or non-1 increments

for i in reversed(xrange(1, 10, 2)):
 print i

Modules
• We’ve already had a look at modules.

• Any file that we have defined functions, etc.
in is considered a module.

• import modulename

• modulename.functionname(params)

• dir(modulename)

Modules

• Multiple modules packaged together are
considered a package.

• Provides structure

• import moduleA.moduleB

• importing utilizing * (does not work in
Windows!)

Standard Library

• os module (import os)

• large module, specifically designed for
interaction with OS via command line.

os.getcwd()
os.chdir()

Standard Library

• glob (import glob)

• designed to handle pathname pattern
expansions

• Wildcard searches to the OS

glob.glob(‘*.py’)

Standard Library

• Command Line Arguments (import sys)

print sys.argv

• argv is a list of strings

Standard Library

• Regular Expression pattern matching
(import re)

re.findall(r’\bf[a-z]*’, ‘which foot or hand fell fastest’)

• When only simple capabilities are needed, you
should use the String functionalities

Standard Library

• Math (import math)

• Gives access to the C mathematics library

math.cos(math.pi /4.0)
math.log(1024, 2)

Standard Library
• Random (import random)

• Random selections

random.choice([‘apple’, ‘pear’, ‘banana’])

• Random float

random.random()

• Random integer

random.randrange(6)

Standard Library
• Dates and Times (import datetime.date)

now = date.today()

now.strftime(“%m-%d-%y. %d %b %Y is a %A on
the %d day of %B.”)

birthday = date(1981, 10, 19)
age = now - birthday
age.days

Standard Library

• Performance Measurement (import
timeit.Timer)

Timer(stuff).timeit()

Standard Library Pro

• textwrap (import textwrap) allows for
output formatting to a particular width

print textwrap.fill(string, width=#)

• locale (import locale) enables alternate
output formatting depending on
international locales.

Standard Library Pro

• Templating (import string.Template) allows
for the creation of templates for strings and
other data types

• Threading (import threading) allows for
multi-threading support

Standard Library Pro

• Logging support (import logging) has
multiple log based operations that allow you
to log certain behaviors if you wish.

• Array based behaviors is handled by the
array module (import array) and allows for
more compact storage of lists.

Standard Library

• Other uses:

• Data Compression (using gzip, tarfile, etc)

• Network functionality (TCP/IP, sockets)

• Quality Control and Documentation

Monday

• Classes and other Object Oriented
Constructs

• Lab solution

• Maybe the project solution

See YA!

