
SE in Cali Lecture
Alan Jamieson

Metrics

• Why? As an engineering field, measurement
is needed.

• Software in general is not easy to measure.

• How would you measure?

Metrics

• Metrics are a point of contention among
software engineers.

• They are not absolute, but provide a
working, clearly defined set of rules to work
with.

Software Quality
• Metrics are used for software quality assurance.

• Software requirements are the foundation from
which quality is measured.

• Specified standards define a set of development
criteria that guide the production of software.

• Implicit requirements often go unmentioned
(ease of use, etc.)

McCall’s Quality Factors
• Factors that affect software quality can be

categorized into two groups: those that can
be directly measured and those that can’t,
but allow indirect measurement.

• In both cases, measurements must occur.

• These two groups form the McCall’s Quality
Factors.

McCall’s Quality Factors

• Correctness - satisfaction of it’s
specification.

• Reliability - extent that the software will do
it’s job.

• Efficiency - amount of computing resources/
code needed.

McCall’s Quality Factors
• Integrity - how secure the software is

• Usability - the effort required to learn how
to use the software

• Maintainability - effort required to locate
and fix an error

• Flexibility - effort required to modify the
program

McCall’s Quality Factors

• Testability - effort required to test a program

• Portability - effort required to move software
from one set of hardware to another.

• Reusability - extent which parts can be reused

• Interoperability - extent that this program can
be coupled with another

McCall’s Quality Factors

• Unfortunately, all of these things are really
hard to measure.

ISO 9126 Quality Factors

• Functionality - how well does it satisfy stated
needs (suitability, accuracy, interoperability,
compliance, security)

• Reliability - amount of time that the
software is available for use (maturity, fault
tolerance, recoverability)

ISO 9126 Factors
• Usability - ease of use (understandability,

learnability, operability)

• Efficiency - how well does it use system resources
(time behavior, resource behavior)

• Maintainability - The ease that repairs may be made
(analyzability, changeability, stability, testability)

• Portability - move from one environment to
another (adaptability, installability, conformance,
replaceability)

Transition to Metrics

• Previous section dealt with qualitative view
of software quality. We desire a quantitative
measure.

• A single, comprehensive metric to measure
software quality may be, as Fenton put it
“the impossible holy grail.”

Basic Measurement Principles

• Formulation - derivation of software metrics
that are appropriate

• Collection - mechanism for data collection

• Analysis - computation of metrics

• Interpretation - evaluation of metrics

• Feedback - recommendations made

Metric Principles
• A metric should have desirable mathematical

properties.

• When a metric represents a software characteristic
that increases when positive traits occur or decreases
when undesirable traits are encountered, the value of
the metric should increase or decrease in the same
manner

• Each metric should be validated empirically in a wide
variety of contexts before being published or used to
make decisions.

Effective Metrics
• Simple and Computable

• Empirically and intuitively persuasive

• Consistent in the use of units and
dimensions

• Programming language independent

• Effective mechanism for high-quality
feedback.

Major Archetypes
• Analysis Model - functionally derived, system

size, specification quality

• Design Model - interface design, component-
level, architectural, OO design

• Source Code - Complexity, Length

• Testing - statement and branch cover,
effectiveness, defect-related

Analysis Model - Function Based Metrics

• Function Point Metric - can be used to
estimate the cost or effort to design, code
and test the software, predict the number of
errors, forecast the number of components/
source lines needed.

Function Point Metric
• EI - number of external inputs

• EO - external output

• EQ - external inquiry

• ILF - internal logical file

• EIF - external interface file

• These are multiplied by a complexity factor then
summed.

Function Point Metric
• Along with this, there are 14 questions

(noted in your book) that should be
answered to determine VAF or value
adjustment factors.

• Does the system require on-line data entry?

• Are the inputs, outputs, files or inquiries
complex?

Specification Quality
• Generally dealt with as a qualitative

assessment.

• Have reviewers review the requirement,
determine consistency across reviewers.

• nr = nf + nnf

• Q1 = nui / nr

• Q2 = nu / [ni x ns]

Specification Quality
• First equation - # of requirements (nf - non

functional requirements)

• Second equation - specificity of the
requirements (ui - number of requirements
with identical interpretations)

• Third equation - completeness (i - inputs, s -
states)

Architectural Design

• Card and Glass define three software design
complexity measures:

• structural complexity

• data complexity

• system complexity

Structural Complexity

• for a module i -

S(i) = f2out(i)

• fout is the fan-out, or the number of modules
directly subordinate

Data Complexity

• D(i) = v(i)/[fout(i) + 1]

• v(i) is the number of input and output
variables passed to and from i

• System complexity is the sum of D(i) and
S(i)

Alternate

• Fenton suggests a number of shape-based
metrics.

• size = n + a

• n is the number of nodes and a is the
number of arcs (read: edges)

More Fenton

• depth - longest path from root to a leaf

• width - maximum number of nodes at any
level

• arc to node ratio - r = a/n

• r is a measure of the connectivity density

Alternate part 2

• The US Air Force Systems Command has
architectural metrics based on the IEEE Std.
928.1-1988.

• Uses information obtained from data and
architectural design to derive a design
structure quality index (DSQI) that ranges
from 0 to 1.

Air Force
• Values needed:

S1 - total number of modules
S2 - modules needing outside input
S3 - modules needing prior processing
S4 - number of database items
S5 - total number of unique db items
S6 - number of database segments
S7 - number of modules with single entry
and exit.

Air Force
• Intermediate Values:

• Program Structure (D1) - if the architectural
design was developed using a distinct
method, then D1 = 1, otherwise 0.

• Module independence D2 = 1 - (S2/S1)

• Module not dependent on prior processing -
D3 = 1 - (S3/S1)

Air Force

• Database size - D4 = 1 - (S5/S4)

• Database compartmentalization -
D5 = 1 - (S6/S4)

• Module entrance/exit characteristics -
D6 = 1 - (S7/S1)

Air Force

• Once calculated sum D values utilizing
weights. If all D values are equally important
then the weight should be 0.167.

Friday and Monday

• Friday - work to get the project documents
completed. I will check in and take
attendance.

• Monday - Black Box Testing, Project update

SEE YA

