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MANAGING CAPACITY AND FLOW AT THEME PARKS 

REZA H. AHMADI 
University of Califomia at Los Angeles, Los Angeles, California 

(Received February 1995; revision received September 1995; accepted April 1996) 

The growth of service industries and their impact on the U.S. economy have attracted considerable attention in recent years. While 
some service sectors, most notably airline and telecommunication industries, have been in the forefront of model development, the 
industry is rather fragmented, and similar rigor is lacking in most other sectors. 

This paper describes an application of a model-based approach to some of the short-term ride capacity and visitor flow issues faced 
by the Six Flags Magic Mountain (SFMM), a major national theme park. Specifically, we consider daily operations at the theme park 
and focus on the generation and evaluation of alternative strategies for managing ride capacities and visitor flow. Management of 
demand involves two aspects: (a) understanding customer preferences as revealed by routing behavior, and (b) using the model to 
evaluate the implications of changes in transition-behavior. 

A crucial component of the study relates to the empirical data collected. Besides verifying the validity of the models, these data 
provide several insights for developing schemes to manage the day-to-day operations of the park. The SFMM management was 
actively involved in various phases of this study and as a result has been introducing the proposed models in a phased manner. 

The theme park studied here, Six Flags Magic Moun- 
tain (SFMM) located in southern California, provides 

a day-long total entertainment package. Theme parks pos- 
sess several interesting characteristics that influence both 
analysis and management of their operations. First, the ser- 
vice package is not homogeneous-the experience includes 
thrill rides, shows, arcade games, and food and beverages. 
Second, customer preferences are not uniform, and the mar- 
ket could be segmented into several groups. Third, the 
park attendance level fluctuates significantly, according to 
the season, day of the week, and time of day. Fourth, 
customer perceptions (e.g., about delays and queues) play 
an important role in evaluations of the park's operations. 
Even more important, the interdependence between these 
measures is not obvious and requires insights into custom- 
ers' needs and expectations. 

For example, the correlation between capacity utiliza- 
tion and waiting time is well recognized, and the tradeofs 
between capacity, operating costs, and waiting times have 
been addressed in a wide range of applications. However, 
the impact of waiting times on customer satisfaction is not 
very clear. Traditionally waiting has been viewed as a neg- 
ative measure, and studies in the operations management 
literature typically assume a monotonic relationship be- 
tween waiting times and customer satisfaction. However, 
there is some evidence to suggest that this may not be 
universally true in all instances in service industries. While 
few customers tolerate or desire long waits, it appears that 
in some situations customer experience and perception of 
service is enhanced by some waiting, and thus minimizing 

the waiting time is not necessarily a desirable objective. 
For example Larson (1987) argues that for fast food cus- 
tomers, satisfaction in a single-queue system may be higher 
than in a multi-queue system, even though customers wait 
longer in a single-queue system. Also, in a theme park, 
waiting may contribute to the experience; this notion was 
verified by the result of a customer satisfaction survey at 
the park. Although excessive waiting times are quite unde- 
sirable, low waiting times tend to have a negative impact as 
well. Another customer survey commissioned by the theme 
park suggested that beyond a threshold level of average 
number of rides, further rides provided little improvement 
in customer satisfaction. These are interesting issues and 
are subjects for further research. 

In this paper, we describe an application of a model- 
based approach to some of the short-term operational is- 
sues faced by the SFMM. Specifically, we consider daily 
operations at the park and focus on optimally setting a 
ride's nominal capacity, analyzing and managing the park's 
visitors transition patterns, and developing models to sug- 
gest routing tours. A crucial component of our study re- 
lates to the empirical data collected. In addition to 
verifying the validity of the models developed, these data 
provide insights for improving the day-to-day operations of 
the park. 

The remainder of the paper is organized as follows. In 
the next section we describe the park and discuss different 
customer classes and their service experiences at the park. 
Section 2 provides a mathematical model for managing 
ride capacity, a model for generating the desired transition 
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pattern, for influencing future customers' movements in 
the park, and a model for providing a routing sequence 
based on specific customers preferences for the rides. 
Also, we develop a neural network model to estimate the 
observed capacity of the rides for any given nominal capac- 
ity. In Section 3 we describe the results of our data collec- 
tion and related analysis. Detailed analysis of the ride 
capacity model, its potential for improving park opera- 
tional performance, and other related managerial consid- 
erations are addressed in Section 4. In Section 5 we focus 
on the implementation aspects of influencing customers 
transition patterns in the park. We characterize transition 
patterns that lead to improved park performance, and pro- 
pose several policies to influence visitors' behavior while 
they are touring the park. In Section 6 we conclude our 
study and discuss issues to be investigated in future work. 

1. BACKGROUND 

The primary attraction of the SFMM theme park lies in its 
thrilling roller coaster rides, which have catchy names like 
Viper, Colossus, and Ninja. The rides are complemented 
by a variety of special shows such as the Dolphin act, the 
U.S. high diving team, and the Batman stunt show. A wide 
selection of arcades, gift shops, and eating establishments 
completes the entertainment services provided by the park. 
From an operations perspective, the rides offered at the 
park can be classified broadly into three categories-(1) 
group rides, (2) continuous rides, and (3) individual rides. 
Colossus and Flashback are examples of rides in which 
customers are grouped together for a roller coaster ride. 
In contrast to the group rides, Metro and Orient Express 
are examples of continuous rides, and the ride pace is well 
regulated. Buccaneer and Granny Grand Prix are exam- 
ples of individual rides in which the pace is less controlled. 

Effective management of the rides requires clear under- 
standing of ride capacity. Generally, a ride's nominal ca- 
pacity is determined by the number of operating units 
(cars, boats, trains, etc.), the number of seats per operating 
unit, its trip time, and loading and unloading time. For 
example, Jet stream could be operating with either 20, 25, 
28, or 32 boats. The ride cycle time is estimated to be 
seven minutes, with 4.5 minutes for trip time and the re- 
mainder for loading and unloading customers. Each boat 
can accommodate five passengers; consequently the ride 
nominal capacity could vary from 850 to 1360 customers 
per hour. Typically, the cycle time for the rides is constant, 
and the capacity is adjusted by altering the number of 
carts. Park management changes the ride capacity based 
on the park attendance level and queue lengths at different 
rides. 

A ride's observed capacity may differ from its nominal 
capacity. For the continuous and individual rides, the ob- 
served and nominal capacities are primarily the same. But 
for the group rides, the observed capacity is a function of 
how the visitors are "grouped" and "loaded" on the oper- 
ating units of the ride. Individual customers may wish to be 

seated alone, thus occupying a whole unit by themselves, 
and families and small groups may do the same thing. As a 
result, the ride's observed capacity may vary significantly 
from the nominal capacity, and for some rides it may be as 
low as 60% of the nominal capacity. For example, the 
observed capacity at Log Jammer, operating with 32 logs, 
has typically been around 1,200, whereas the nominal ca- 
pacity is 1920 rides per hour for weekends. 

The variety of special shows offered is the second class 
of attraction at the theme park. From an operational view- 
point these can be viewed as batch processes with the cycle 
time determined by the show's characteristics. The batch 
capacity essentially is fixed, and short-term operational de- 
cisions concern the number of shows and the correspond- 
ing schedule. 

The complexity in managing the operations of the park 
is primarily due to the wide variation in the customers' 
arrival pattern and their entertainment preferences. The 
customers exhibit a wide variation in their preferences, 
and their perceptions of service can be classified into three 
main groups: (1) younger visitors, especially teenagers, (2) 
family visitors, and (3) senior citizens. The primary attrac- 
tion for younger visitors lies in thrill rides, and teenagers 
appear to be less sensitive to long waits. In contrast, senior 
citizens are influenced by waiting times and tend to plan 
the sequence of rides in order to reduce their waiting 
times. Families often are constrained by height limitations 
that exclude certain rides. Family groups tend to have a 
lower tolerance for long waits than teenagers. At an aggre- 
gate level, the behavior of the three customer groups may 
be characterized by their transition behavior within the 
park, tolerance to waiting, and threshold level for the num- 
ber of rides per visit. 

2. MODELS FOR RIDE MANAGEMENT AT 
THEME PARKS 

In this section we provide a set of models for managing the 
ride capacity and demand in the short-term operations at 
the park. As mentioned earlier, capacity changes are ef- 
fected primarily by changing the number of operating units 
on each ride. However, management of ride demand in- 
volves two aspects: (1) understanding customers' prefer- 
ence through their transition behavior, and (2) using the 
model to evaluate the implications of changes in transition 
behavior. Thus we do not attempt to characterize the 
trade-offs between customer satisfaction and waiting times. 
Instead, we assume that a desired average number of rides 
is targeted (based on such trade-offs), and that the model is 
used to determine the optimal ride nominal capacity and 
to propose strategies to achieve this target. For the first 
level of analysis we aggregate the customer classes into 
one class. In addition, we focus on the rides and ignore the 
shows and other attractions offered by the park. Figure 1 
provides a schematic of the network of rides in the park, 
where many small and adjacent rides have been grouped 
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Figure 2. Overall configuration of models used. 

together. Next, we describe the general characteristics of 
each model. 

(I) A neural network model, Ride Capacity Model 
(RCM), is constructed to determine observed ride capacity 
for any group ride, where "customer grouping" is critical. 
In general, the neural network uses the historical arrivals 
and departures and the ride's nominal capacity to deter- 
mine the customer grouping pattern and learn the dynam- 
ics of grouping. Based on these observations, the model 
estimates the ride's observed capacity. 

(II) Visitors' arrival patterns at the rides, the transition 
patterns within the park, and the rides' observed capacity 
are used to determine the optimal nominal capacity level 
for the rides. The objective of the Capacity Management 
Model (CMM) is to maximize the park service level sub- 
ject to park operating budget, customer threshold value for 
the desired number of rides, and maximum tolerable 
queue lengths at the rides. 

(III) Existing transition patterns within the park often 
result in various levels of demand for different rides. This 
demand variation manifests itself in large fluctuations in 
the queue lengths for some rides at different hours. To 
influence the park transition pattern, we develop the Flow 
Pattern Model (FPM), in which the transition pattern is 

also a decision variable and the model simultaneously sets 
the ride's capacity and defines the transition within the 
park. Based on the "optimum" transition matrix we gener- 
ate several policies to influence demands for the rides. 

(IV) Finally, we construct two mathematical models to 
design touring plans of the park to avoid congestion. The 
Ride Selection Problem (RSP) decides on the set of rides 
with high customer utility. The Ride Visiting Problem 
(RVP) sequences the set of rides to be visited, given the 
anticipated waiting times for the rides during the day. Fig- 
ure 2 shows the relationship of these models. 

2.1. Ride Capacity Model 

In this section, we describe the neural network model used 
to approximate a ride's observed capacity. The output of 
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the RCM is used in both the capacity and flow pattern 
models. The neural network is used to approximate the 
group rides, such as Colossus, Jet Stream, Log Jammer, 
Metro, Ninja, Psyclone, and Revolution. For the other cat- 
egories of rides, the "observed capacity" was provided by 
the management. 

We first discuss how the ride throughput (i.e., the num- 
ber of customers served at each ride) is approximated. In 
our model, the ride throughput is estimated by the mini- 
mum of the observed ride capacity and the number of 
customers waiting in the ride queues, specifically: 

Sit = Min(Qit, Cig) , (1) 

where Si, is the throughput of ride i at time period t and 
Qit is the ride queue length. The ride observed capacity, 
Cig, is defined by the neural network approximation of the 
operating characteristics of the rides. Approximation (1) 
was motivated by the observation that the number of rides 
taken was mainly based on how customers were grouped 
to get on the rides. But in instances when the queue length 
is smaller than the existing number of operating vehicle 
units available at the ride, the impact of customer group- 
ing is negligible. The quality of approximation (1) is de- 
scribed in Section 3. 

We have constructed a simple neural network for each 
type of ride. The networks consist of one input, one hidden 
layer, and one output layer which has only one node at the 
output layer. For further information on neural networks 
the reader is referred to Masson and Wang (1990) and 
Fort (1988). The amplification (2) and transformation (3) 
functions of the network may be described by the following 
equations: 

A 

U E WAXA (2) 
A=1 

(1 + e -(3) 

where wk is the weight at the output node via the connec- 
tions from the hidden layer node A, X. is the input from 
hidden layer processing element A, and Y is the actual 
output of the network. The sigmoid nonlinear transforma- 
tion function is given by (3), where a is a measure of noise 
in the system. The sigmoid function is continuous and 
monotone and is used in many applications. The objective 
of the model is to train the network such that the error in 
the output is minimized. Let E = D - Y represent the 
error at the output node during the training session, where 
D is the desired output (the observed capacity). The data 
set for training the networks was collected by the data collec- 
tion team. We set the change in the weights to be propor- 
tional to the negative of the derivative of the cost function, 
C, with respect to the connection weights, such that AwA = 
- aC/law. From the chain rule we get: 

AwA = -aC/aWl = -a ciaY * aY/aU * aU/awl . (4) 

In our model we have set C = f(D - Y) = (D - Y)3, which 
through our experimentation was found to be quite suit- 
able. Equation (4) determines how to change the weights 
along the connections in the network, where the partial 
derivatives are easily computed. After training the network 
with sample data we freeze the weights, and then for any 
input vector we can get the predicted output algebraically. 

The neural network used in our implementation con- 
sisted of 14 nodes in the input, 13 in the hidden layer, and 
one node in the output layer. The nodes in the input layer 
correspond to the number of vehicles (one node for each 
capacity level), ride trip time, ride loading and unloading 
time, seats per unit, type of ride (batch, discrete or contin- 
uous), number of waiting lines, popularity of the ride, and 
a bias node. The nodes in the input and output layer are 
fully connected. The additional node in the input layer 
corresponds to the bias node, which is generally included 
in backpropogation networks. All the available rides data 
were used to train and to stop training the network, to 
avoid over-training. For further discussion on how to train 
neural network see Masson and Wang. 

2.2. Capacity Management Model 

The capacity management model (CMM) determines the 
capacity levels for the rides in the park during different 
time periods. The model utilizes the transition probabili- 
ties as the input parameters of the model. Notation used in 
the formulations is given in Table I. The CMM can be 
formally presented as follows: 

T' 
n\ 

Max Min wisit) 

Qit =Qit - 1 + I it- sit 1 1 (i, t), (5) 

n 

Iit = iOtPO Pji+ k Sj- 1 V (i, k), t E Tk , (6) 
j=1 

Sit =Min( Qit, E CigYigk) V (i, k), t E Tk , (7) 

G 

E Yigki=l V(i,k), (8) 
g=1 

n G K 

E , x ITkI AigYigk < B, (9) 
i=1 g=1 k=1 

n T T 

E E Sit -- (1 + y) TV E Iot, (1 0) 
i=1 t=1 t=1 

Q it QXit Vfi, t),(1 

Yigk E (0, 1) V (i, g, k) , (12) 

Qit, Iit, sit 0 U(, t) . (13) 

The CMM maximizes the minimum weighted number of 
rides given in any time period. This measure, as discussed 
further in Section 3, is a more relevant measure of park 
performance and provides uniformity in delivery of service 
rather than the total number of rides given throughout the 
day. The objective is achieved by changing the capacity of 
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Table I 
Notation 

i, j: index of the rides, ij = 1 ... , n 
g: index for capacity level, g 1, .. G 
t: index of time periods, t = 1,..., T 
k: index of transition patterns, k = 1, ... , K 
1: index of time periods in Tour Design Model, I = 1, ..., L 
F set of pairs of rides that are far apart 
Tk a set defining the time periods in transition pattern k 
Qi, length of the queue at ride i at the beginning of time period t 
Poik = probability of customers going to ride i upon their arrival during transition pattern k 
PR = probability of customers going to ride j from ride i during transition pattern k 
F1it = number of customers going to ride j from ride i during time period t 
it = number of customers arriving at -ride i at the beginning of time period t 

Iot = number of customers arriving at the park at time period t 
Sit= number of customers served by ride i during time period t 
Yigk - if capacity level g is used at ride i during the transition pattern k, 0 otherwise 
Ril expected waiting time for ride i during time interval 1 given the attendance level 
Zl= 1 if ride i is visited in time interval 1, 0 otherwise 
QXit = maximum acceptable queue length, defined by management 
qxit minimum desirable queue length, defined by management 
Gig = actual capacity of ride i operating at level g, computed through neural network model 
Aig = cost of operating ride i at capacity level g 
Wv customer preference associated with ride i 
B - budgetary operating limit 
TV = visitors' ride threshold value 
y = a safety factor for ride threshold value, 1 > y 0 0 

the rides at different time intervals. Constraint (5) com- 
putes the queue length at each ride for every time period. 
In constraint (6) we capture the movement of park visitors 
by the number of customers that arrive at ride i in time 
period t. Visitors either go directly to ride i upon their 
arrival at the park or join ride i from other rides based on 
the transition matrix. Constraint (7) determines the num- 
ber of customers receiving service at ride i and time t. The 
ride capacity level is determined by constraint (8). Con- 
straints (9), (10), and (11) define, respectively, the bound 
on the operating budget, the total rides given, and the 
maximum tolerable queue lengths for the rides. Constraint 
(10) is motivated by our empirical analysis, which indicates 
that customers have a threshold value for the number of 
rides they take during their visit to the park. Constraints 
(9) and (11) are managerial inputs and significantly influ- 
ence the service package delivered to the park visitors. 

The CMM is a mixed integer linear program of moder- 
ate size and was used in the first phase of our implemen- 
tation. Details of model verification and implementation 
are discussed in Section 4. A variation of CMM in which 
arrival probabilities are also decision variables may be con- 
structed by adding constraint (14). 

n 

EPoik=1 V(k). (14) 
i=l 

The results of this model were used as the first step in 
influencing the transition patterns around the park. Next 
we discuss the flow pattern model. 

2.3. Flow Pattern Model 

In the Flow Pattern Model (FPM), in addition to identify- 
ing the capacity level of each ride, we focus on capturing 
the desired transition probabilities and movement of visi- 
tors in the park. The FPM also seeks to find the optimum 
distribution of customer arrivals at the park. 

T n 
Max Mn | WiSit (RSP) 

t=1 

s.t. 

Qit =Qit - 1 + IOtPOik Sit - 1 

n 

+ >Fj1t V(i, k)jt ETk, (15) 
j=1 

n 

Sit = >Fit V (i, t), (16) 
j=1 

Pijk 0= O Fijt = O V (i, j, k), t E= Tk (17) 

qxit Qit ffi Qxit V (i t) , (18) 

(7), (8), (9), (10), (12), (14), 

Fsj, Q!t, Iit :> n v (i j. t) (1 9) 



6 / AHMADI 

100 

80 10:OOAM - 11:00AM 

w 60- 

40- 

20 - 
LEGEND 

1. Metro 
2. Orient Express 0 glN MmJ U P 
3. Sky Tower 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829 3. Sky Tower ~~~~~~~RIDE NUMBER 
4. Buccaneer 
5. Circus Wheel 100 
6. Grand Carousel 
7. Granny Gran Prix 
8. Jet Stream 803:00PM - 4:00PM 
9. Jolly Roger 
10. Log Jammer 
11. Scrambler 
12. Spin Out 
13. Ninja 
14. Reactor ? 40 
15. Roaring Rapids 
16. Sandblasters 
17. Subway 20 

18. Swashbuckler 
19. Swiss Twist 
20. Tidal Wave 1 2 3 4 s 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22232425 26272829 
21. Turbo RIDE NUMBER 
22. Colossus 100 
23. Flashback 
24. Freefall 
25. Goldrusher 80 - 9:00PM - 10:OOPM 
26. Psyclone 
27. Revolution 
28. Viper W 60 
29. Z-Force 

40 

20 

1 2 3 4 5 6 7 8 9 101112131415161718192021 223242526272829 
RIDE NUMBER 

Figure 3. Ride waiting times. 

The FPM maximizes the minimum weighted number of 
rides given in any time period. Constraint (15) identifies 
the queue length for various rides, at the beginning of each 
time period. Constraint (16) captures the conservation of 
flow at each ride and in each time period. Constraint (17) 
ensures that flows for which the existing transition proba- 
bilities are zero are forced to be zero, i.e., visitors do not 
travel along those links. This constraint also avoids having 
the visitors travel a greater distance than required to get to 
a ride and limits their behavior to their existing movement 
in the park. Constraint (18) imposes, a lower and upper 
bound on the queue lengths for the rides. This constraint is 
designed to influence the visitors' perception of the rides. 

Influencing the time-dependent transition patterns is a 
challenging and difficult task. Therefore, we used the out- 
put of the FPM model to obtain an average time indepen- 
dent transition matrix. This matrix can be obtained from 
the optimal flows along the links of the park network (Fijt) 
and the optimum number of customers receiving service at 
different rides (Si,). The optimum transition probabilities, 
that generate the optimum flow according to FPM, are 
given by the following equation: 

K F. 
P-= IT T E 1 

zJt V(i,]). 
k=1 tETk Sit 

The optimum transition matrix provides a guideline for 
park managers to seek measures to decrease or increase 
the flows of visitors across different links in the park. In 
Section 5 we describe the implementation of this model in 
detail. 

2.4. Tour Design Model 

Tour design is concerned with developing alternate touring 
plans of the park, and keeping visits as much as possible 
within the timeframes given and time spent waiting in the 
lines or traveling from one ride to another. These plans 
are designed to avoid congestions on days with moderate 
or heavy attendance. On lighter days these plans will save 
time, but will not be as essential to successful park visits as 
on crowded days. Customers experience distinct waiting 
times at rides during different time intervals of the day. 
This information is essential in designing a good tour (see 
Figure 3 for variations in rides' waiting times). We solve 
the tour problem in two stages. In the first stage we deter- 
mine which rides are to be visited in each time interval. 
This problem is referred to as the Ride Selection Problem 
(RSP). In the second stage we provide a sequence for the 
rides to be visited, called the Ride Visiting Problem 
(RVP). The RSP is formulated as follows: 

n L 

Max E > WiZil (FPM) 
t=l 1=l 

s.t. 

n 

L 

Zil = 1 V(i), (21) 
1=1 

Z51 + Z{l = 1, 8 and u GEF V (1), (22) 

ZilEe(0, 1) V(i,l). (23) 

The objective function maximizes the weighted number 
of rides visited, a surrogate for customer satisfaction. Con- 
straint (20) decides on the set of rides that could be visited 
within each time interval. Based on the forecast of the 
attendance level, the expected waiting time for each ride 
(Ril) is computed from the CMM. In constraint (21) we 
define the preferred rides to be visited. With constraint 
(22) we impose a limit of one trip between rides that are 
quite far apart because their inclusion in the same time 
interval would force visitors to travel across the park in 
every time interval. This constraint would limit the travel 
time imposed for the rides selected. 

The RSP is similar in structure to the multiple-choice 
knapsack problem, and the solution procedure provided by 
Gavish and Pirkul (1991) was modified to incorporate con- 
straint (22), where a set of knapsack subproblems had to 
be solved. This approach generates many feasible solutions 
and effectively solves this class of problems. Solutions to 
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the RSP define the set of rides along with the time inter- 
vals in which they have to be visited. 

To complete the touring plan we need to'find the order- 
ing of the rides that minimizes the visitors' travel time. The 
problem of finding the ride visiting order (RVP) can be 
modeled as a variation of the Traveling Salesman Problem 
with group precedence. The rides in each period must be 
completed prior to the rides in the next time period.. 

Crucial to the implementation of our proposed solution 
procedure is the computation time needed to obtain a 
good solution. Consequently, we focus on generating fast 
solutions. Spacefilling curves are a natural tool to effi- 
ciently solve combinatorial optimization problems in 
Euclidean space (see Bartholdi and Platzman 1988). Heu- 
ristics based on this technique are quite fast in execution 
and are particularly suited for environments where time or 
computing resources are limited. An interesting feature of 
this approach is that clusters of points in the original space 
maintain their closeness in the reduced space. Combinato- 
rial problems are much easier to solve in the reduced 
space. We use the following procedure to solve RVP: 

Procedure to Solve RVP: 

Step 1. Let the spacefilling curve 0 map the unit interval 
onto the unit square. For the set of rides selected in the 
time interval 1, say N1, compute the inverse image of rides 
in N1 under 0-1. Let 0-1(N1) denote the corresponding 
points. 

Step 2. For each 1 E L, sort 0-1 (N1)'s according to 
their positions on the unit interval and identify the first 
and last ride to be visited in each time interval. Let a1 and 
f31 denote these rides. 

Step 3. Construct a layered network G = (N, E) with the 
following characteristics 
(I) Layers: The number of layers in the network is L + 2. 
Layers 0 and L + 1 are the source (S) and the terminal 
node (T). 
(II) Nodes: There are two nodes in each layer 1, except the 
source and terminal, referred to as a1 and I3l. 
(III) Arcs: Directed arcs in the network fully connect every 
adjacent layer. Node S is connected to all nodes in layer 1. 
Node T is connected to all nodes in layer L. 
(IV) Costs: Let g(x) denote the cost of arc x in the net- 
work. The cost of each arc is computed as follows: 

g(S -> al3fl]) = time to get to node al[31] 
g(a1[f31] -> al+[f31+1]) = total time needed to go from 

node a1[fl3] to node 013+1[a1+1] to node 01+i [a,+1] and 
visit all the rides designated in time interval 1 + 1, 
starting at node f3l+1[al+1] and ending at node 
at1+JP[1+ 1]. 

g(a1[31] -> f31+1[a1+1]) = total time needed to go from 
node 0a1[R31] to node ay1+1[131+F ] and visit all the rides 
designated in time interval 1 + 1, starting at node 
?a1+1[f31?1] and ending at node fl31+1[oa1?1]. 

g(alL[fL] -> T) = travel time from ride aL[L] to the 
entrance. 

Step 4. The shortest path from the source node S to the 
terminal node T determines the tour for visiting the rides. 
Step 2 of the procedure finds a Hamiltonian path for the 
rides in each time interval. The open tours in this step are 
improved by the implementation of a simple P-OPT pro- 
cedure. Step 3 joins the L Hamiltonian paths optimally. In 
our implementation, we solve the RVP problem for each 
feasible solution found for the RSP. This iterative ap- 
proach enables us to find the grouping of the rides that 
provides maximum utility, based on the preference for 
each ride and the total number of rides. Implementation 
of the tour design model is discussed in Section 5. 

3. DATA COLLECTION AND ANALYSES 

In this section we describe the results of our data col- 
lection and related analysis that were undertaken as a part 
of the study reported in this paper. The primary purpose of 
the empirical study was to obtain the requisite data to 
implement the models presented in Section 2. In addition, 
this phase of our study was used to develop some insights 
into the operations of the theme park. This additional 
data, some of which was qualitative, played a key role in 
establishing credibility with the management of the park 
and facilitated implementation efforts. Managerial implica- 
tions of our empirical study are discussed later in this 
section. 

To generate a data base to support our study we relied 
on direct observations as well as routine information col- 
lected by the park over an extended period of time. For 
the sake of brevity, we do not present the details of this 
data. Instead we provide illustrative examples and describe 
the results of the study. As the reader will appreciate, 
some of the raw data is proprietary information and is not 
available in the public domain. 

3.1. Primary Data 

Determining the transition pattern within the park was the 
focus of the primary data collection in this study. Specifi- 
cally, a survey was administrated to 6,101 customers to 
obtain information related to their movements within the 
park. Essentially, a questionnaire elicited three pieces of 
information from each respondent individual or group: (a) 
the preceding ride visited by the customer, (b) the subse- 
quent ride proposed to be visited, and (c) the age range of 
the group. The data on the subsequent ride to be visited 
was found to be unreliable since the customers did not 
always follow their plans and hence (b) was not used in the 
remainder of the analysis. The data on preceding ride visit 
was used to construct the transition matrix Pijk described in 
Section 2. Since the survey was administered throughout 
the entire day, we were able to identify the time- 
dependent transitions. Our results indicate that it is possi- 
ble to distinguish three different time-of-day-dependent 
transition patterns--one each in the morning, alfternoon, 
and evening. The morning transition pattern covered three 
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time periods, from 10 a.m. to 1 p.m. The afternoon tran- 
sition pattern occurred until 7 p.m., and the evening 
transition covered the remaining time intervals until 
10 p.m. An aggregate transition matrix of the entire day was 
obtained by averaging the three transition matrices. Based 
on the survey data, we were able to identify some domi- 
nant flow patterns with implications for the park manage- 
ment. These findings are discussed later in Section 3.3. 

3.2. Secondary Data 

The extensive data base of the park provided supplemen- 
tary information for our study. The data in this data base, 
which was developed over a period of 20 months, between 
January 1990 and August 1992, may be broadly classified 
into two groups: ride or operations-related and customer- 
related data. 

(a) Ride or operations-related data. For each of the major 
rides and shows, the park management collects the follow- 
ing information on an hourly basis: (1) ride nominal capac- 
ity, (2) hourly throughput, (3) wait times, (4) queue 
lengths. These data were used to define the performance 
functions for each ride. The empirical data were used to 
validate modeling efforts to capture the dynamics of rides. 
In our implementation we focused on two measures- 
throughput and queue lengths. The expressions for these 
two measures, given by Equation (1), are rather straight- 
forward and were found to be acceptable for our study. 
We used the above data to assess the popularity of each 
ride. The index for capturing customer preferences was 
used to define the weights Wi in the objective function of 
the models described in Section 2. The index was also used 
to develop an ABC classification of rides similar to 
schemes commonly found in inventory control. Based on 
customer preferences and ride capacity, we classified the 
rides into four groups. Class A, with four rides (Colossus, 
Viper, Ninja, and Goldrusher), accounted for 20% of the 
total rides. As discussed later, this qualitative insight was 
useful in designing implementation schemes to influence 
transition patterns in the park as well as in developing 
routing schemes for group visitors. Also, based on this 
classification of the rides and customer transition behavior, 
the park was able to evaluate the impact of closing a spe- 
cific ride, relocating a ride, or adding new ride. 
We were also provided with information about the variable 
cost of operating the rides at different capacity levels. 
These cost functions include the staffing, electricity, and 
maintenance charges. In general, three different cost func- 
tions describe the operations costs of the rides. For a sub- 
set of the rides, the operating cost is independent of the 
capacity level, and for other rides the operating cost varies 
with every capacity level. 

(b) Customer-related data. The following data collected 
by the park formed a major input into our analysis and pro- 
vided the necessary information to operationalize the models 
of Section 2: daily park attendance, hourly arrival and de- 
parture counts, number of hours park was open, and 

queue lengths at the rides. An important aspect of 
customer-related data is the distribution of customer arriv- 
als at the park. Although the park attendance level varies 
significantly throughout the year and shows considerable 
seasonality, the percentage of total arrivals at different 
hours of the day is quite predictable. An empirical distri- 
bution was constructed (see Law and Kelton 1982) based 
on this data set and was used in the capacity and flow 
pattern models in Sections 4 and 5. The distribution of 
visitors' arrival times along with the distribution of the 
number of visitors in the park at any given hour was used 
for short-term work force scheduling of the park. 

3.3. Preliminary Data Analyses and Their 
Implications for the Theme Park 

In this section we describe our initial analyses with empir- 
ical data and discuss briefly the implications for the park 
management. For ease of exposition, the material has been 
classified into two categories. 

(a) Transition matrix, performance functions, and in-park 
flows. One of the objectives of the data analysis was to 
validate the transition matrix and the performance of the 
transition functions used in the formulation of the models 
described in Section 2. This was achieved by observing the 
queue lengths and waiting times and comparing them with 
the results provided by the approximation functions and 
through the neural network model. The minimum, aver- 
age, and maximum average waiting time differences were 
found to be 0, 6, and 14 minutes, respectively. While the 
sample of three days used in this experiment is too small to 
permit statistically significant conclusions, the results were 
encouraging and the park management was satisfied with 
the credibility of the proposed model of the functional 
equations. 

In addition, our preliminary analysis identified dominant 
flow paths and gave some insights for developing imple- 
mentation schemes to influence customer flows. We found 
that: 

(i) Visitors to the park typically maintain a clockwise 
(60%) or counterclockwise (nearly 40%) direction for vis- 
iting the various rides/shows. This behavior was more 
prominent in the mornings and tended to weaken in the 
afternoon. The later behavior is not very surprising. Since, 
the most popular rides are farther along the clockwise 
path, and for some customers the afternoon trip is not the 
first one and hence they are less willing to go around the park 
to visit the less attractive rides/shows. 

(ii) Visitors tend to remain in the same vicinity. Typi- 
cally more than 50% tended to stay in the same area as the 
previous ride. 

(iii) Within a vicinity, customers tend to visit A and 
B category rides first rather than the less popular C and D 
category rides. 

(iv) A very small fraction of customers are willing to 
choose a ride twice in a row. 
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(v) There was a substantial variation (between rides and 
time of day) in the wait times. For example, the average 
wait times for the more popular rides such as Viper varied 
between 15 and 20 minutes in the evenings (after 7:00 
p.m.) to between 40 and 55 minutes in the peak time 
(12:00 noon-4:00 p.m.). Charts in Figure 3 show the aver- 
age wait time for the rides on Saturdays, at three different 
times of the day. The wait times for children's rides are 
small and keep decreasing until the park closes. The wait 
times for Freefall, Ninja, Flashback, Goldrusher, and Psy- 
clone have their peak at mid-day. Park visitors wait the 
longest in the afternoon, between 2 p.m. to 6 p.m., before 
they can experience this group of rides. But the queues 
and wait times for Revolution, Viper, and Roaring Rapids 
are much higher in the morning than at other times during 
the day. 

(vi) Customers do not move on from A and B rides to 
the other A and B rides more often than to other kinds of 
rides. However, certain pairs of rides show high traffic 
flows. For example 77% of visitors leave Turbo for Sub- 
way, 73% leave Orient Express for Sky Tower, 62% go 
from Grand Carousel to Log Jammer, and 53% of visitors 
at Swashbuckler go to Colossus. Other significant traffic 
flow can be derived from the aggregate transition pattern. 
In no case did a significant traffic flow occur between two 
C and D rides in different areas of the park. Also, more 
people prefer to ride on Viper immediately after the park 
opens than any other ride. Finally, few people are willing 
to ride on the same A and B ride twice in a row, indicating 
that only a small proportion (less than 6.8%) of the cus- 
tomers would repeat a long line after enduring the first 
one. 

(vii) As discussed in Section 1 and indicated by the park 
management, operating profits are positively correlated 
with the duration of visitors' in-park stay. But the average 
in-park stay does not continuously increase with the num- 
ber of rides given per person per day. Further analysis of 
average in-park stay indicates that there is a threshold 
value for average number of rides of about 12 rides per 
person per day. Although this ride threshold value could 
not be reached on many crowded days, on days when it 
could be reached and surpassed, customers chose not to 
stay any longer in the park, indicating that the extra benefit 
of an additional ride is almost nil, except in customer per- 
ception of the park. Also, an increase in the total number 
of guests attending the park tends to increase the length of 
in-park stay, since it will take customers longer to reach 
their ride threshold or, otherwise put, to "get their mon- 
ey's worth." When expecting high customer attendance, 
the park management can also increase the duration of the 
park's open hours to provide a higher level of service to 
visitors. 

(b) Park performance measure. The Operations Depart- 
ment within the theme park corporation uses "number of 
rides per person per day," to measure park performance. 
This is the industry standard for determining the operating 

efficiency of all theme park locations. Our preliminary 
analysis indicated the deficiencies of this performance 
measure. Theme parks operate in different environments 
with different customer demographics, various park sched- 
ules, and different lengths of open season. Also, distinct 
customer classes may have different ride threshold values; 
thus, merely counting the number of rides given is seldom 
a sole measure of customer satisfaction. The problem of 
service measurement is further complicated by noticing 
that many service systems do not experience a homoge- 
neous input and thereby may not have a single crucial 
measure by which to evaluate their performance. Some of 
our findings in this respect can briefly be described as 
follows: 

(i) Customers tend to spend more time in the park- 
about 30 minutes-for every additional hour that the park 
is open. 

(ii) The average number of hours spent in the park 
increases by 1.4 hours for every increase of one in the 
logarithm of the total number of guests. 

(iii) The rides/person/hour decreases with the logarithm 
of the total number of guests. 

(iv) Average number of rides per person per hour is a 
better measure of customer satisfaction than avertage num- 
ber of rides per person per day, and consequently a better 
measure of efficient park operation. This measure moti- 
vated the objective function for the models in Section 2. 

These findings served as a basis for achieving improved 
operational performance at the park. The models con- 
structed in Section 2 were also influenced by these analy- 
ses. The ride threshold value and average ride per person 
per hour were used by the park management to construct a 
new tracking system for customer satisfaction. The analysis 
in this section has led to the search for a more definitive 
measure of service performance, to include other dimen- 
sions of the service package delivered by the park. 

4. MANAGING RIDES CAPACITY 

Poor management of theme park capacity may result in 
considerable undesirable customer waiting or under- 
utilization of the available capacity. Capacity management 
at the theme park is exacerbated not only by low utiliza- 
tion of some rides but also by lengthy queues for other 
rides, during distinct hours of the day. Customers also 
have varying degrees of tolerance for waiting for thrill 
rides during different hours of the day-adding further to 
the complexity of park management. In this section we 
discuss different aspects of ride capacity management at 
the park. These analyses include discussion of various pol- 
icies and their implications for improving theme park per- 
formance. First we verify the quality of the models 
developed. 

4.1. Model Verification and Potentials 

In Section 3 we established the validity of the approxima- 
tion functions and verified the quality of the transition 
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Figure 6. Comparison of different capacity policies. 

functions used in our mathematical models. To verify the 
CMM's potential contribution empirically, we extracted 
hourly information on actual capacity levels and number of 
rides given throughout the period from February 22, 1993 
to August 8, 1993. The attendance level for these days 
ranged from 9,261 to 35,646 and the cumulative number of 
rides given in one day (excluding the shows) ranged from 
101,518 to 206,724. We simulated the park environment by 
using the same arrival patterns, park operating hours, and 
capacity levels used during the day for each ride. Figure 4 
compares the actual service provided versus the model 
predictions. The average error was +0.79% and the maxi- 
mum error was +2.75%. Although the model overesti- 
mates the park performance, the magnitude of percentage 
of error is well within the acceptable range. This step of 
model verification provided further justification for using 
three transition matrices throughout the day to capture the 
movement of customers while in the park. 

In addition to verifying the model's prediction power, 
we also had to establish the degree of improvement that 
management could expect to obtain from implementing the 
CMM, instead of the existing ad hoc way of changing the ride 
capacity level. Additionally, we performed an experiment 
in which the operating budget and the maximum queue 
lengths at various rides were forced to be similar to the ex- 
periment discussed at the beginning of this section, while 
the capacity was allowed to change with the changes in the 
customer transitions intervals. The result shows that, on 
average, a 6.89% improvement was gained by the CMM, 
ranging from 2.6% to 15.2% over the current myopic prac- 
tice. Adjusting for the model's average overestimating ten- 
dency of 0.79%, the improvement amounts to 0.87 
additional ride per person per day. To place the CMM's 
improvement in the appropriate context, we derived lower 
and upper bounds on park performance by setting the 
operating budget constraint (9) to minimum and maximum 
levels possible. The average improvements amounted to 
37% of the gap between the upper and lower bound values 
for the test data. Figure 5 depicts the improvements. 

4.2. Capacity Management Policies: 
Three capacity planning strategies were examined. These 
strategies vary in terms of ride capacity usage and imply 
different work-force scheduling for operating the rides. 
The policies are referred to as static, dynamic, and flexible 

policies. In the static policy we attempt to obtain the opti- 
mal-but constant-ride capacity throughout the day. In 
this version of the model, constraint (8) is replaced with 
(24). 

G K 

E E Yigk = 1 V (iM (24) 
g=1 k=1 

The obvious advantage of this policy is its stable work- 
force requirement for operating the rides. For the dynamic 
policy, K, the number of time intervals in which the ride 
capacity could change (in constraint (9)) was set to three 
to correspond to the changes in the number of customer 
transition patterns. Although this policy requires variable 
work-force sizes, the schedules could be easily accommo- 
dated within the existing park operating performance 
and/or by redeployment of operators among the rides. In 
the flexible policy, K was set equal to T (the number of 
hours the park was open), to evaluate the extent of ride 
capacity changes during the day. 

We simulated these alternative scenarios for different 
attendance levels at the park. The attendance level was 
changed from 10,000 to 34,000 to provide a larger and 
more uniform spectrum of attendance statistics. The em- 
pirical distribution of percentage of arrivals was used to 
get the estimated hourly arrivals. Furthermore, the operat- 
ing budget, which was set by the park management, was 
approximately 75% above the minimum operating budget 
needed, and the queue lengths were limited by the maxi- 
mum queue lengths found in Section 4.1. Figure 6 plots 
the performance of various policies. The results have sev- 
eral significant managerial implications: 
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(i) With low park attendance-less than 15,000-park 
visitors reach their ride threshold values with the park 
simply operating at minimum capacity level. 

(ii) With high levels of attendance-more than 27,000- 
the park needs to operate at maximum capacity level. In 
addition, show schedules have to be increased to achieve 
the desired customer service level. 

(iii) Maximum benefit from CMM is achieved in the 
range of 15,000 to 27,500 customers attending the park. 
This range covered 42% of the days in our data set. 

(iv) The performances of dynamic and flexible policies 
are quite close. The flexible model only results in 0.29% 
additional improvement. The static model causes 4.85% 
lower performance. 

The operating budget in the preceding simulation was 
based on the park management's decision. To evaluate the 
impact of this managerial decision on park performance, 
we developed a budget-service trade-off curve, which pro- 
vides an estimate of the expected service level delivered 
for different levels of total operating budget. Figure 7 
shows the budget-service plot. The trade-off curves are 
shown for three different attendance levels-15,000, 
20,000, and 25,000-for which the capacity management 
model was most effective. These trade-off curves were cru- 
cial in bringing the park service delivery closer to customer 
expectation and desired threshold value, since the park 
managers could evaluate the impact of budget allocation 
on park performance. 

4.3. Implementation Aspects 

The park attendance level varies significantly throughout 
the year and shows considerable seasonality. The disparity 
in forecast and actual attendance level complicates the imple- 
mentation of the CMM. Although the average forecast error 
was negligible, the forecasting system currently in place 
results in significant forecast errors, either in overesti- 
mating or underestimating the actual attendance. This 
observation was compelling enough to abandon the idea of 
setting ride capacity based solely on the park's forecast 
of attendance level. Instead we developed a hybrid pol- 
icy that uses both the forecast of arrival for the day and 
the actual information about the visitors' arrival up to 
11 a.m. 

The hybrid policy was motivated by the observation that 
total park attendance is highly correlated with the total 

arrivals in the first two hours. The squared correlation 
coefficient was 0.896. We developed a regression model to 
obtain an updated estimate of the cumulative arrivals, 
which was used to readjust the ride capacities for the re- 
mainder of the day. Estimates of remaining hourly arrivals 
were obtained by using the empirical distribution of per- 
centage of arrival during the day. Correspondingly, the 
capacity model had to be run twice to set the ride capacity 
levels, once prior to the opening of the park and then after 
the statistics of the second hour were available. 

Lindo's (1992) industrial optimization package was used 
to solve all the resulting mixed integer programs in our 
experimentations. The average time for solving the prob- 
lems examined was 18 minutes (excluding the generation 
of input matrix), and the maximum time was 37 minutes. 
All the problems were solved on HP Vectra 486 machine 
with 32-bit processor and 66-MHZ speed. 

5. MANAGING FLOWS IN THE PARK 

In Section 3 we described the existing transition patterns 
and concentrated on identifying how visitors move 
throughout the park. We identified three dominant transi- 
tion patterns and analyzed their implications for the theme 
park. In this section we focus on characterizing the opti- 
mum transition patterns and develop managerial policies 
to influence customer behavior in order to improve the 
park's service level. 

5.1. Optimum Transition Patterns 

The FPM developed in Section 2 is used to capture the 
desired transition probabilities and movement of visitors in 
the park. The FPM, in addition to identifying the optimum 
transition patterns, also configures the capacity level at 
each ride. To make the results amenable to implementa- 
tion, the following measures were taken. The queue length 
of each ride was restricted to 80% of the maximum queue 
length observed at different attendance levels. This con- 
straint reflects the visitors' waiting behavior and the theme 
park's desire to reduce the visitors' waiting times. Also, the 
flow patterns in the park were restricted to the routes 
taken by the customers, so that they would not have to 
travel long distances to get to their next rides. The effect of 
this constraint is to limit the managerial measures to ef- 
forts at increasing or decreasing the flow of visitors within 
the present customer transition patterns. The budgetary 
constraints and the rides threshold were defined by the 
park managers. 

To understand the extent of the optimum transition pat- 
terns' influence on park performance and number of rides 
given, we plot the results of our simulation in which the 
attendance level at the park was varied from 10,000 to 
34,000. We also report the results obtained from the re- 
vised version of the CMM, in which the arriving transition 
probabilities are decided in addition to the ride capacities. 
These results are compared with the results obtained from 
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the CMM, which would indicate the additional improve- 
ment expected over and above what the CMM model 
would provide. In all the models the budgetary limits were 
the same and time-of-the-day transition patterns were sim- 
ilar to the transition intervals identified in Section 3. Fig- 
ure 8 depicts the results obtained. On average, a 17% 
improvement over the optimum results obtained from the 
CMM was obtained. However, 57% improvement could be 
expected by alternating the overall flow patterns. The aggre- 
gate transition flow is obtained over different attendance 
levels ranging from 15,000 to 25,000. Comparing the cur- 
rent and the desired transition patterns identified the 
paths along which the flow has to be adjusted to achieve 
the preferred behavior. Some of the significant flows to be 
increased are: Spin-out > Roaring Rapids, Swashbuckler 
> Scrambler, Roaring Rapids > Revolution, and Orient 

Express > Spin-out. The major flows to be decreased are: 
Z-force > Reactor, Orient Express > Sky Tower, Grand 
Prix > Flashback, and Psyclone z> Jet Stream. 

With the current transition patterns, the customers' ride 
threshold value could be reached when the attendance 
level is less than 15,000. With the optimum arrival pat- 
terns, the ride threshold values could be attained with up 
to 19,000 customers arriving at the park. Given the opti- 
mum movement within and upon arrival at the park, the 
ride threshold value was attained at all the various atten- 
dance levels. With a relaxed operating budget and the new 
arrival patterns, the ride threshold could be reached up to 
the 25,000 level, indicating the need to influence the flow 
patterns within the park. 

5.2. Policies to Influence Transition Patterns 

Several policies were designed to induce visitor behavior 
toward the optimum patterns. In this section we present 
one of these options in detail and address its likely impact 
the park performance. 

The scheduling (number and timing) of the shows and 
other entertainment in the park is crucial to park perfor- 
mance. Although they create additional dimensions to the 
service package offered by the park, these activities are 
designed to improve the operational efficiency of the park 
and alleviate the loads on the rides with long queue 
lengths during the day. Generally, shows and theatrical 

attractions are viewed as less attractive and popular than 
the thrill rides offered by the park. The longest wait for a 
show usually does not exceed the duration of one complete 
performance. In addition, our interviews indicated that 
many visitors defer their plans to attend the shows until 
later in the afternoon, hoping to use the early part of the 
day for the most attractive rides. This observation moti- 
vates the scheduling of the shows with higher frequencies 
in the afternoons from 2 p.m. to 6 p.m. Colossus, Ninja, 
Flashback, Goldrusher, and Psyclone experience their 
longest queues during this time interval. 

Shows attract visitors away from the crowded rides, in 
effect reducing park congestion levels. To appraise the 
likely impact of the shows and generate plausible schedules, 
we modified the transition probabilities accordingly to accom- 
modate the shows. Given the proposed show schedules in any 
time period, the functional equations provide new estimates 
of the queue lengths at major rides. Developing an optimiza- 
tion model that yields the optimum schedule and frequency 
of the shows is part of our ongoing research. 

Additionally, the communication devices (TV monitors, 
signs, etc.) in the park could be used favorably to alter the 
existing transition patterns. TV monitors at each location 
could provide information about waiting time, show sched- 
ules, and indicate rides with shorter queue lengths. Signs 
posted at the waiting line areas could indicate the approx- 
imate waiting time to deter customers who have low toler- 
ances for experiencing long waiting times. This practice 
points toward a different queue management: rather than 
hiding the actual queue length, which makes the wait more 
uncertain, reduce the visitor's anxiety by providing reliable 
information about expected waiting time, thereby reducing 
stress while waiting (Maister 1984). Lastly, moving attrac- 
tions such as magicians and hypnotists could also direct 
customers toward less congested parts of the park. 

5.3. Designing Planning Tours 

Until recently, the theme park provided few suggestions 
for visitors to better plan their tour of the park. These 
suggestions basically indicated the peak hours for water 
rides, coasters, restaurants, shows, and gift shops. These 
recommendations fell short of a comprehensive touring 
plan. The tour design models (RSP and RVP) have stimu- 
lated the park management to seek ways to operationalize 
of these procedures for all park visitors. These models are 
now in use for generating touring schedules for guided 
group tours, which are provided by the park. 

The touring problem was used to create various alterna- 
tive tours for different categories of visitors, where toler- 
ance to waiting time, preference for rides, and height 
limitations, as well as the length of the tour, were taken 
into account. 

6. CONCLUSIONS AND FURTHER RESEARCH 

We have described a preliminary application of a model- 
based approach to managing the capacity and flow at 
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theme parks. The management of the park was actively 
involved in various phases of this study and provided con- 
siderable guidelines for shaping the direction of the 
research. 

An interesting research aspect of theme parks and other 
service systems in which customers experience long queues 
lies in understanding different aspects of customer percep- 
tions of the waiting times. It would be particularly interest- 
ing to explore how the capacity and flow management 
problems should be modeled, such that visitors' perception 
of acceptable waiting times as well as the throughput of 
the rides is incorporated. Such analysis requires additional 
data on visitor perceptions of ride waiting times in order to 
improve customer satisfaction with the service delivery 
system. 

Finally, the analysis presented in this paper has used a 
single customer class and we did not incorporate the de- 
mography of the customers in the park transition patterns. 
Our questionnaire included the age categories of the cus- 
tomers, but further data regarding the distribution of dif- 
ferent customer classes at different times of the year need 
to be collected to facilitate extension of our models. 
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