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In 2006, 28% of U.S. residents visited a theme park, and the number one reason given for visiting was

“the rides.” The rides are central to their attraction, and new ones can cost over $100 million to develop,

and yet and they have never been studied in the OR/MS literature. We study amusement park rides as

closed queueing networks, dividing them into “carousels,” “roller coasters,” and ”tightly coupled” rides. We

estimate throughput as a function of the number of cars, the time to load and unload riders, the ride time,

and the number of parallel loading and unloading zones, and develop formulas that can easily be built into a

spreadsheet tool to help ride designers see how potential changes to the ride could increase rider throughput.

We begin with the deterministic case, continue to the stochastic case, and consider a case study of California

Screamin’, the marquee ride at Disney’s California Adventure, before concluding with a computational study.
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1. Introduction

Amusement parks are a huge business. In the 2002 U.S. Economic Census, amusement and theme

parks in the U.S. had estimated revenues of $8.3 billion (U.S. Census Bureau 2004). In 2006, the

Walt Disney theme parks alone had global revenues of nearly $10b (Disney 2006). According to

the International Association of Amusement Parks & Attractions (IAAPA) there were 335 million

visitors to U.S. amusement parks in 2006, in which 1.5 billion rides were taken. Twenty-eight

percent of the U.S. population visited an amusement park in 2006, and 50% planned to visit one

in the next year (IAAPA 2007).

Amusement parks have been little studied in the OR/MS literature, despite their size and impor-

tance in popular culture, and despite the fact that the operation of the rides and other attractions

is clearly central to the parks’ ability to draw visitors. IAAPA surveys show that rides are the
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number one reason people visit amusement parks, and 46% say roller coasters are their favorite

ride (IAAPA 2007).

New roller coasters can cost as much as $10-12 million (O’Brien 1996), and major new rides

like Universal Studio’s “Spiderman” ride cost $100 million to build, and Disney World’s “Mission:

Space” cost $150 million (Krisner 2002). Disneyland recently spent $100 million just to change

the theme of a submarine ride from Captain Nemo to Finding Nemo (Jefferson 2007). For major

investments like this, the parks must carefully plan the capacity of the rides to gain as much benefit

for the park as possible. The formulas derived in this paper can easily be used in a spreadsheet, to

allow ride designers to see how, for example, a modification that reduces average loading time, or

separating unloading and loading into separate zones will affect ride throughput, even taking into

account variability in loading and unloading time. When combined with estimated construction

costs of the various changes, the engineers can then easily determine the most cost-effective ways

to increase rider throughput.

All major American amusement parks charge a flat daily rate for admission, or sell multi-day

or annual passes. The park gets paid the same, regardless of how many rides each guest takes.

However, amusement parks clearly have an incentive to maximize the number of rides a guest can

take per day: time spent queueing cannot be spent buying souvenirs or eating in restaurants, and

more rides taken should lead to better customer satisfaction and greater future profits. Disneyland

believes that if patrons cannot experience at least 9 attractions, spending on souvenirs goes down,

because people “feel cheated out of experiencing a full range of attractions,” and “are walking out

unhappy and not buying souvenirs” (Reckard 2001).

In general, the capacity of a ride is not a fixed number. As demand varies during the day, more

workers are placed on a ride as needed to help riders load and unload faster and increase throughput

(Rajaram and Ahmadi 2003), and more cars may be brought online (Ahmadi 1997). We assume

that each ride is moving as many people as possible, given its current configuration, and address

the issue of improving the ride’s maximum throughput.
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If we define the loading time for a ride as TL, the riding time as TR, and the unloading time as

TU , then we may define a total changeover time for a car as TC = TU + TL. If a ride has multiple

cars, for safety reasons, there is likely a minimum allowable time between successive cars, which

we will call TS . If TC < TS , cars will be ready to leave in less time than TS , and if the previous car

left recently, the second car will have to wait until TS has passed since it departed. During that

time, it cannot leave the loading zone, and the unloading/loading zone will be blocked. As we will

see, this safety condition has a profound impact on the way the rides are modeled, because the

inter-departure times do not have the memoryless property.

In a roller coaster, TS is likely determined based on the time required to safely stop cars, should

the car before it unexpectedly stop on the tracks. TS could not be reduced unless the ride were

made less exciting or reconfigured in some other way. Also, ASTM standard F-2291, Section 6

(ASTM 2006, p. 1348) requires the cars be far enough apart that a rider cannot be injured by

hitting the ride or another rider, say by sticking an arm outside the car.

Spacing may also be affected by concerns about the quality of the ride experience. In many rides,

not being too close to the cars before you adds to the enjoyment (so when the monster jumps out

at the person in front of you, you don’t see it, for example), so the minimum spacing of cars would

be depend on the ride layout. We can express the minimum car spacing either in terms of time,

TS, or distance, dS. If the ride travels at speed s, the two are equivalent: TS = dS/s.

Below, we calculate the cycle time between subsequent cars for most types of rides. Once we

estimate the cycle time per car, CT, the total throughput (measured in the number of cars per time

period) TH = 1/CT. If p is the average number of passengers per car, the throughput measured

in the number of passengers per time period. can easily be determined: THp = p ∗TH.

The results presented apply of course not only to amusement park rides, but to any closed

queueing network in a service or production environment with a similar operating structure. In a

heat-treat, drying, baking, or painting tunnel operation, a minimum time between departing pieces

could be required, for quality control. However, as amusement park rides were the impetus for the

research, we will use them as motivating examples throughout.
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In §2, we describe the literature and in §3 discuss rider behavior and attempts to increase TH.

In §4, we consider rides as deterministic closed queueing networks, and in §5 we include stochastic

changeover times. In §6 we present a case study of California Screamin’ from Disney’s California

Adventure, and in §7 we present a computational study. Finally, in §8 we summarize and present

suggestions for future research.

2. Literature

We study a tandem network consisting of a small number of stations, some of which may have

multiple parallel stations. With unloading, loading, and the riding portion, we have only three

stations. Routings are deterministic, with the only possibility for variation coming if there are

multiple unloading and/or loading stations. We begin with deterministic models, and move to

stochastic models, but as Haxholdt et al. (2003) show, even deterministic models can be difficult

to study.

Because our networks are very simple in comparison to the models studied in the stochastics

literature, our review will be brief. Study of closed queueing networks began with Jackson (1957,

1963), and Koenigsberg (1958), who studies it in the context of mining. Gordon and Newell (1967)

show the equivalence between closed and open networks. Buzein (1973) presents computational

methods. Koenigsberg (1982) presents an overview of the previous 25 years’ worth of results on

closed queueing networks.

Although amusement parks have been studied in the leisure and travel literature (e.g. Formica

and Olson 1998), very little has appeared in the OR/MS literature. Ahmadi (1997) presents a model

for determining how much capacity each ride should have, and how to influence customers’ routing

through the park. Although Ahmadi seeks to maximize the minimum number of rides a customer

would be able to take, he notes that a survey done by the theme park he was working with showed

that “beyond a threshold level of average number of rides, further rides provided little improvement

in customer satisfaction” (Ahmadi 1997, p.1), an interesting finding he suggests worthy of further

research. Despite that survey result, we will continue with the assumption that parks would like to
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get as much throughput as possible out of their multi-million-dollar rides. Rajaram and Ahmadi

(2003) determine which rides to increase capacity of, at different times of day, based on the rates

at which customers go from one area of the park to another, to drive customers to the areas of the

park where they spend more money on souvenirs and food.

Ahmadi (1997) notes that ride capacity is typically linear in the number of cars (p. 2), but his

model does not make this assumption, assuming that the cost for a given level of capacity is known.

Rajaram and Ahmadi (2003) make a similar assumption, that the number of employees needed to

achieve a given level of capacity is known. As we will show, for many rides, ride throughput will

not in general be linear in the number of cars used.

It is very difficult to determine exactly how capacity decisions are currently made, because many

rides are designed by in-house engineers (called “Imagineers” at Disney), or by independent ride

engineering firms, and both are highly secretive (Kirsner 2002).

3. Rider Behavior and Throughput

In the author’s experience, what constitutes an acceptable wait seems to be relative to the number

of visitors in the park. Unfortunately, riders cannot accurately estimate the wait time because the

queue area is often not directly observable. An estimated wait time is often posted at the entrance,

but guests often doubt their reliability. As a result, although the number of people who would like

to take a ride may vary throughout the day with park attendance, the number of people who ride

the ride will likely vary quite differently. However, it is said that nature abhors a vacuum, and an

amusement park equivalent may be “every ride will have a line.”

Assumption 1. Every ride will always have a queue of riders waiting for it: in queueing termi-

nology, no server will ever starve.

If a park doubled the throughput of a marquee ride, the shorter line would attract more riders.

Perhaps people consciously or unconsciously conclude that a ride is worth waiting in line a certain

amount of time for, and the line grows to reflect that valuation. If there typically is no line, a

rational park would modify or replace the ride to meet guests’ tastes. Given Assumption 1, we

assume an inexhaustible supply of riders and do not consider their queueing behavior.
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3.1. Loading and Unloading

As we will see, TL and TU are crucial determinants of CT. The loading process can be broken into

several steps. In the language of just-in-time, any steps that can be done “offline” (while the ride

is going) instead of “inline” (while the ride is stopped), will reduce the changeover time, and get

the ride moving again more quickly.

First, exactly which customers will be riding on the next ride need to be identified, including

which customers will be riding together. At the Disneyland Dumbo ride, while the ride is operating,

an employee walks along those waiting, asking who is riding together, handing one plastic feather

to each group. Before the ride has stopped, everyone who will be loading knows they will be on

the next ride. By contrast, at Disneyland’s Astro Orbiter, a ride nearly identical in structure, (but

with rockets instead of flying elephants), once the ride stops, the operator lets people into the

ride, and as each person comes up to the gate, asks whom they will be riding with. The operator

attempts to keep track mentally of the number of groups that have been allowed in, but often, once

all of the passengers allowed in have been seated, it is discovered one more group is needed. These

differences in procedure are a large part of the reason the author observed an average TC of 3.75

minutes for the Astro Orbiter, compared with 2.4 for Dumbo. As we will see below, differences in

TC make a huge difference in carousel TH.

The Astro Orbiter example also shows how attempts to increase p by finding more riders may

increase TL so much that THp declines, overall. For some rides, single rider lines can increase p

with no impact on TL.

After determining who will be riding, each customer must be assigned to a car. In most roller

coasters, customers stand in front of the gate for their assigned car, before the cars arrive. For

most carousels, customers run for the car they want, and then look around for a different one, if

someone else arrives first. Once riders select a car, they climb in, stow any belongings, fasten the

safety restraint, and the operator needs to make sure each person is safely restrained. In Dumbo, a

simple lap belt is used, which is easily verified by the operator, but the notched leather belt on the
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Figure 1 Ride from Cars’ Perspective

Astro Orbiter is more difficult to snug, and requires the operator to lean inside the car to verify

safety. These differences also contribute to the TC differences of the rides.

Other operational differences between employees can also have significant impact on total

throughput. For example, the author observed one carousel operating with a cycle time of 4 min-

utes. When a different operator began, the cycle time went down to 3.5 minutes, with no observable

decrease in p, because the second crew was able to safely load the riders in less time.

3.2. Rides from the Cars’ Perspective

From the perspective of the riders, they first load, then ride, then unload. For example, if TL = 40

sec., TR = 120 sec., and TU = 15 sec., then clearly the run time for the ride is 175 seconds. If we

look at the ride from the perspective of a car, as in Figure 1, it returns from a ride, unloads, then

loads and goes out on another ride. Clearly, the run time for a one-car ride remains the same at

175 seconds, regardless of the perspective we look at it from. Since we focus on the throughput of

the cars, not the riders’ queueing experience, we will use the cars’ perspective.

We will consider ride capacity in terms of the number of cars it can process per hour, defining

a “car” as the set of riders who board at the same time. For a roller coaster, one car is all of the

people who get on and depart at the same time, which might actually look like a short train. For

a carousel, a car is all of the people who get on the carousel and ride it at the same time.

4. Rides as Deterministic Closed Queueing Networks

In this section, we consider rides as deterministic closed queueing networks. In the next section,

we consider stochastic times.

4.1. Carousels: Single-Car Rides

The simplest ride to analyze consists of a single car: on a carousel, there is only one carousel.

Everybody gets on and rides at the same time, and when the ride is over, everyone gets off. As
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Load Unload Ride Load Unload Ride Load Ride 

Figure 2 Multiple Carousel Rides

listed in the Appendix, many other rides operate in the same way: bumper cars, stage shows, or

any other attraction where everyone enters together, rides together, and exits at the same time.

If a ride has several cars that operate independently, with independent personnel running them,

then we may consider them as several independent carousels. For example, a “moon shot” type

ride (of which the Maliboomer is an example at Disney’s California Adventure) may have several

different towers, each with its own cars. If each tower has its own personnel to help with loading

and unloading and to run it, they run independently, and we should treat them as independent

carousels. However, on a roller coaster, the cars are not independent, because they interact through

their use of a common track and loading and unloading area.

Figure 2 shows a timeline for a carousel. A wavy line represents the loading period, a straight

line represents the ride time, and a zig-zag line represents unloading. In the figure, we see two

complete rides, and a third ride load and begin but not complete.

Clearly the run time for each load of passengers is RT = TR +TC . Because there is only one car

(n = 1), the cycle time is equal to the run time, and CT = RT.

CT(n = 1) = TR +TC (1)

Because there is only one car, TH = 1/(TR +TC), and THp = p/(TR +TC). Assuming the ride length

is not reduced, ride throughput is maximized by minimizing TC = TU +TL.

4.2. Roller Coasters: Multiple-Car Rides

If multiple cars can load or operate simultaneously, the analysis is more complicated. Any ride

with multiple separate cars that share some resources we will call a roller coaster. As the Appendix

shows, many kinds of rides may be included in this category.

In this section, we assume the time required to ride the course is greater than the changeover

time TR > TC , which is probably typical. (We consider the other case, which we call “short-ride”
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Figure 3 Two-Car Roller Coaster

roller coasters, in § 4.4.) Given this relationship, there are three possible ranges of values for TS . If

TR > TC ≥ TS , the safety time required between cars is shorter than or equal to the time it takes

the next cars to get ready, so the safety factor is not significant. We will consider this case first,

below. The second case is when TR > TS > TC , which we consider in § 4.3. Finally, if TS ≥ TR > TC ,

the safety time is greater than or equal to the time it takes the car to take the ride, so there can

only be one car on the ride at any time, and we consider this with the short-ride roller coaster.

Lemma 1. If ride and changeover times are deterministic, and TC ≥ TS, that is, safety is not a

factor, the throughput of the ride is given by

CT(TR > TC ≥ TS) =

{

(TR +TC)/n if n < (TR +TC)/TC

TC if n≥ (TR +TC)/TC

(2)

Proof: Consider n = 2, with TR > TC ≥ TS. In Figure 3, the top timeline represents car 1, and the

bottom is car 2. While the first car is out on the course, the second car reloads and leaves before

the first car returns. The run time for each car is RT = TR +TC . In any time period of length RT,

two cars unload, so the average time between rides is CT = RT/2 = (TR + TC)/2. For n cars, if

TR ≥ (n− 1) ∗TC, the cars will still not have to wait, and CT = TR/n.

If more cars added, cars will have to wait for each other at some point. Because TC ≥ TS, cars

will accumulate waiting to unload. With n cars on the ride, cars will accumulate when the ride

time, TR, is less than the time for the other n− 1 cars to unload and load, when TR ≤ (n− 1) ∗TC.

Rearranging, cars will accumulate when n≥ (TR +TC)/TC .

For the sake of example, assume that this happens for a three cars as illustrated in Figure 4,

where TC < TR < 2TC . As soon as the first car leaves, the second car reloads and goes out. Finally,

the third car comes in, reloads, and goes out again. Because TR < 2TC , when the first car returns,
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Figure 4 Three-Car Roller Coaster with Queueing
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Figure 5 Two-Car Roller Coaster with Safety Time and no Safety Delays

it will face a waiting time TW = 2TC − TR. Total run time is now given by the sum of loading,

unloading, riding, and waiting time: RT = TC + TR + TW = 3TC. In general, the run time for a car

is its changeover time TC , plus the changeover time of the other n−1 cars, for a total of RT = nTC .

In any period RT, n cars return, so CT = RT/n = TC .

Buying additional cars is probably easier and cheaper than making other substantial changes

to the ride. Thus, when safety is not an issue, ride throughput is maximized by making sure

n≥ (TR +TC)/TC. Assuming the park wants to avoid the substantial cost and service implications

of reducing TR, further increases in TH will depend upon reductions in TC . If TC is reduced enough,

it could happen that TC < TS , and the results of the next section will need to be used.

4.3. Safety is a Factor

If safety is a factor, (that is TR > TS > TC), cars may have to wait before departing, and we assume

any waiting cars block the reloading zone until the safety interval has passed. However, if the ride

time is long, relative to the safety time, and there are only a few cars, it is possible that the cars

may not have to wait at all because of TS .

In Figure 5, there are two cars with a safety factor that is considerably shorter than TR, but still

longer than TC . At the start, car 2 is on the ride, and car 1 reloads and leaves. When the safety



Tibben-Lembke: Maximum Happiness

Article submitted to Management Science; manuscript no. MS-0xxx-2007.1 11

TR     TU     TL 
 

TS 
TR 

TS 

TW1 

TS 

TW2 

TS 

TR 

TR 

TS 

TW1     TU     TL 
 

    TU     TL 
 

    TU     TL 
 

    TU     TL 
 

Car 1: 

Car 2: 

Figure 6 Two-Car Roller Coaster with Safety Time

interval after car 1’s departure has ended, car 2 is just unloading, so TS does not delay car 2. Car

2 leaves, and the safety interval after its departure expires before car 1 has even returned. In any

interval RT = TC + TR, two cars unload, so CT = RT/2. If there are n cars on the ride, and the

departure of one car is never delayed because of the safety interval after another car’s departure,

in any interval RT, n cars will unload, so CT = RT/n.

Lemma 2. If ride and changeover times are deterministic, and TR > TS > TC , that is, safety

concerns are a factor, the throughput of the ride is given by

CT(TR > TS > TC) =

{

(TR +TC)/n if n < (TR +TC)/TS

TS if n≥ (TR +TC)/TS

(3)

Proof: If there is only one car on the ride, clearly, every TR + TC , one car finishes. As cars are

added, eventually there will be enough cars that the bottleneck never starves, because cars will

always queue before reloading, and TH will equal the bottleneck rate, in this case, CT = TS . If the

other n− 1 cars can reload during the time it takes any one car to go on the ride, TR, there will

be no queueing because (n−1)∗TC < TR. For large n, n−1 cars cannot reload during TR, and the

server never starves. This occurs when (n− 1) ∗ TC ≥ TR, or n ≥ (TR + TC)/TC. For smaller n, in

any interval TC +TR, all n cars complete the ride, giving average CT = (TC +TR)/n.

Figure 5 illustrates how TH is determined by (TR + TC)/n when n < (TR + TC)/TS. Figure 6

shows two cars where the safety factor is larger, relative to TR, and n = 2 > (TC +TR)/TS. The first

car re-loads and leaves. Car 2 arrives as quickly as possible, TS after car 1, and departs TS after

car 1. Car 1 returns and is ready to leave TR +TC after its first departure, but it cannot re-depart
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until TS has passed since car 2 left. Car 2 left TS after car 1, so car 1 cannot leave until 2TS after its

last departure, so it will wait TW1 = 2TS − (TR +TC). Time 2TS passed between car 2’s departures,

and it spent TR on the ride and TC changing, so it also waited 2TS − (TR + TC). For either car,

RT = TC +TR +TW = 2TS, and there are two arrivals in that period, so CT = 2TS/2 = TS . Because

2TS > TC +TR, we know n = 2 > (TC +TR)/TS. As predicted by eq. (3), CT = TS .

Again we see that throughput is maximized by ensuring that the number of cars is large enough.

Beyond that, increases in TH will also come from reductions in TC . Reducing TS would also increase

TH, but that may require expensive to accomplish.

Although it seemed unlikely at the outset, by determining the CT separately, depending on the

relative size of TS and TC , the two CT equations (2) and (3) may be combined.

Theorem 1. If ride and changeover times are deterministic, TH is given by

CT(TR > TC) =

{

(TR +TC)/n if n < (TR +TC)/max{TC , TS}
max{TC , TS} if n≥ (TR +TC)/max{TC , TS} .

(4)

Proof: Consider Equation (4). If TC ≥ TS, (as is the case in Lemma 1), then the break point

(TR +TC)/max{TC , TS} evaluates to (TR +TC)/TC, the same as in Lemma 1. For such values of n,

CT = (TC + TR)/n, also as Lemma 1. For larger n, CT = max{TC , TS} = TC , also as in Lemma 1.

Both CT expressions and the breakpoint are the same as in Lemma 1. Thus Equation (4) returns

the correct values for TC ≥ TS .

If TC < TS , (TR + TC)/max{TC , TS} = (TR + TC)/TS, the same as in Lemma 2. For n < (TR +

TC)/TS, CT = (TC +TR)/n, the same as in Lemma 2. For larger n, CT = max{TC , TS}= TS, also as

Lemma 2. Both CT expressions and the breakpoint are the same as in Lemma 2. Thus Equation (4)

returns the correct values for TS > TC .

4.4. Short-Ride Roller Coasters

Above, we assumed that the ride time is longer than the changeover time, which seems reasonable,

because most roller coasters take only a matter of seconds to load and unload, and the rides last
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Figure 7 Two-Car Short-Ride Roller Coaster (TC > TS)

longer than that. If TR ≤ TC , the ride time is very short. Such a ride may seem unlikely. However,

it is possible to imagine a brief but intense ride which requires a longer loading time for the staff to

make sure the riders are secure, for example, something like a “flying” roller coaster, where riders

lay down and “fly” like Superman.

If there is only one car, such a ride is clearly a carousel. A two-car roller coaster would look

like Figure 7. After the first car leaves, the second car reloads and leaves. While the second car is

loading, the first car returns and waits (because TR ≤ TC) a time of TW = TC −TR. The ride time

for n = 2 becomes RT = TC + TR + TW = 2TC , and CT = RT/2 = TC . Since the first car returns

before the second car is ready to leave, safety time cannot be an issue.

Theorem 2. For short ride roller coasters (TR < TC),

CT(TR ≤ TC) =

{

TR +TC if n = 1
TC if n≥ 2.

(5)

Proof: Follows from the above.

Because TH is maximized by n = 2, it seems unlikely additional cars would be added. Additional

TH would need to be gained from reductions in TC .

For completeness, we briefly consider TS ≥ TR > TC . It seems hard to imagine a ride where say

TR = 30, and TS = 45 seconds, so a car returns after 30 seconds, but for safety reasons, cars can

only depart every 45 seconds. Perhaps if some equipment has to reset itself or cool off, such a case

could arise. It is quite similar to the short-ride case, in that there can be at most one car on the

ride at any time. If there is only one car, it is a carousel, but CT = max{TS , TR +TC}. In general,

CT(TS ≥ TR > TC) =

{

max{TS , TR +TC} if n = 1
TS if n≥ 2.

(6)
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4.5. Separate Loading and Unloading Zones

Loading and unloading involves humans climbing into and out of ride cars. Many changes may be

made to reduce these times as much as possible, but eventually each ride must reach a point where

no further reductions in either time can be made cost-effectively. The next logical step (or perhaps

an earlier logical step) to consider is to separate the loading and unloading zones, so one car can

be unloading while the car before it is loading.

Thus far, we assumed loading and unloading happen in the same place, so the total time to change

riders is the sum of the unloading and the loading time, TC = TU + TL. If separate loading and

unloading zones are created, the time between subsequent cars being ready to depart the unloading

and loading zones is equal to the maximum of the unloading and loading times: TC = max{TU , TL}.

For a carousel, there is no change in CT, because there is only one car. By creating examples

similar to Figures 3-7 above, but with separate unloading and loading zones, it can easily be shown

that equations (2)-(6) continue to be valid, using TC = max{TU , TL}.

Because the definition of when safety is a factor or not depends whether or not TS > TC , reducing

TC by creating separate zones may mean that safety will become a factor where it previously was

not a factor. For short-ride roller coasters, the reduction in TC brought by separating loading and

unloading may mean TR 6≤ TC , and the ride would no longer fall into the short-ride category. Finally,

regardless of which equation is used, a different term in these equations may become relevant, as

the reduction in TC changes the values of the conditions for which term is to be used.

This process of separation, can, of course, be taken even further. On the Space Mountain ride at

Disneyland, the loading process is broken into two separate loading zones: in the first, riders climb

in and out and pull down the safety harnesses. In the second zone, an employee verifies that the

safety harnesses are snugly down over the riders. As more separate loading and unloading zones

are added, their process times must be added to the TC calculation: TC = max{TU , TL1, TL2, . . .}.

Adding additional loading and unloading zones may require significant expense, but depending

on the relative sizes of TU , TL and TS, may lead to increases in TH sufficent to justify the expense.
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Figure 8 Parallel Unloading/Loading Zones for Roller Coaster

4.6. Parallel Unloading/Loading Zones

Instead of separate loading and unloading zones, another option is to create parallel loading and

unloading zones, where more than one car can unload and/or load at the same time, as in Figure 8.

Any incoming cars finding the unloading zones occupied wait for the first available unloading zone.

If the cars are on separate tracks, each with its own dedicated unloading/loading zone, (as is

the case with the Matterhorn at Disneyland, where they even have separate lines), the two are

independent roller coasters. Assuming the cars share a common set of tracks, after each car loads,

it may move to an outbound queue, to wait for TS to pass so that it may depart.

Let m be the number of parallel (identical) loading/unloading zones, and assume only one car

may be in each zone at one time (i.e., there are not separate loading and unloading zones) with

changeover time of TC seconds. The m zones together can turn out a maximum rate of one car

every TC/m seconds. If TC/m≥ TS , then the changeover process determines the throughput.

Lemma 3. For n cars and m parallel unloading/loading zones, if TR > TC/m≥ TS the CT of the

ride is given by

CT(TR > TC/m≥ TS) =

{

(TR +TC)/n if n < m(TR +TC)/TC

TC/m if n≥m(TR +TC)/TC.
(7)

Proof: Assume that safety is a not factor, that is, the time between subsequent cars being ready

for departure is longer than the safety interval. With m parallel servers and deterministic processing

time of TC , the inter-departure time is TC/m seconds, so this is equivalent to assuming TC/m > TS .

Also assume sufficient cars are present to prevent the bottleneck re-loading processes from starving.

From Little’s Law, there must be TR/(TC/m) cars out riding on the ride at any time. We know
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that m cars are in the loading zones, so a total of at least m ∗ TR/TC + m = m(TR + TC)/TC cars

must be in use to maximize throughput.

If n < m(TR +TC)/TC, the bottleneck starves on occasion. In any time TR, one car will travel the

whole ride, and by the time it reloads and is ready to go, the other n−1 cars will have departed, and

be out of its way. Thus, in any period TR +TC , n cars depart, so CT = (TR +TC)/n. As a continuity

check, it can be easily verified both expressions give the same value when n = m(TR +TC)/TC.

Thus, we see that Lemma 1 is just a special case of Lemma 3, where m = 1.

Lemma 4. For n cars and m parallel unloading/loading zones, if TR > TS > TC/m the CT of the

ride is given by

CT(TR > TS > TC/m) =

{

(TR +TC)/n if n < (TR +TC)/TS

TS if n≥ (TR +TC)/TS.
(8)

Proof: Assume safety is a factor, that is TS > TC/m. When there are enough cars on the ride

to ensure that the departure process never starves, and a car is always ready to depart every TS

seconds, CT = TS. The time for one car to reload and take the ride is TR +TC . If cars depart every

TS seconds, a total of (TR + TC)/TS cars could depart during that time. If n ≥ (TR + TC)/TS, the

departure process will never starve, and CT = TS. When n < (TR + TC)/TS, we know CT > TS. In

any period TR +TC , only n cars can be output, so CT = (TR +TC)/n.

Theorem 3. If ride and changeover times are deterministic, n cars are used, and m parallel

unloading/loading stations, the throughput of the ride is given by

CT(TR > TC/m) =

{

(TR +TC)/n if n < (TR +TC)/max{TC/m,TS}
max{TC/m,TS} if n≥ (TR +TC)/max{TC/m,TS} .

(9)

Proof: Similar to proof of Theorem 1.

Thus we see that Theorem 1 is really a special case of Theorem 3, where m = 1.
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Figure 9 Tightly-Coupled Cars

4.7. Tightly Coupled Cars (“Peoplemovers”)

In some rides the cars are tightly coupled in a chain or moving beltway, and never stop moving: the

only way to stop a car is to stop the whole ride. For example, at Disneyland, the Buzz Lightyear

Astro Blasters ride is configured this way. See Figure 9 for a diagram. To load, riders step onto a

moving walkway going the same speed as the cars, and climb in. At the end, they step out of the

cars onto the other end of the same walkway. The car then travels to the loading zone. Let TT be

the cars’ travel time between loading and unloading.

A moving sidewalk or “peoplemover” would seem necessary for cars to be this tightly coupled,

because the cars must be stationary relative to the unloading/loading surface. Otherwise, the whole

ride would need to stop every few seconds for loading and unloading. Although these rides generally

move at a constant speed, it would seem possible to configure them to move slower in loading and

unloading and faster during the ride, like a high-speed ski lift.

Multiple cars can be in the loading or unloading process at the same time. Because all of the

cars are tightly coupled, there is no time spent waiting for the previous car to unload. Every

RT = TU + TT + TL + TR seconds, each car returns to the unloading zone, and another carload of

passengers climbs out, so CT = RT/n = (TU +TT +TL +TR)/n.

Given the length of the loading and unloading zones, the time can easily be calculated. For

example, if s = 5 ft./sec., the cars would pass through a 50 ft. unloading zone in 10 seconds.

If a passenger is unable to board the car during the time the car is in the loading zone, the ride will

have to be stopped until the rider has safely boarded. Stopping the ride obviously inconveniences

all of the other riders, and loses throughput. The same is true of the unloading zone. Therefore, the
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park would reasonably want to construct the unloading and loading zones to be large enough to

ensure that some percentage of passengers will be able to load in it, say p = Pr{rider safely exits}.

If dU is the distance (length) of the unloading zone, and dL is that of loading zone, then the

time the car is in the unloading zone, TU = du/s, and TL = dL/s. If loading rate is exponentially

distributed with mean λL, then the probability of a rider getting loaded, and the ride not needing

to stop, is 1− e−λLTL . If pmin is the desired probability of not stopping the ride, it is easy to show

that for a given value of s,

dL ≥
− ln(1− pmin)

λL

s =
p′

λL

s

where we define p′ =− ln(1− pmin). An equivalent expression is derived for dU .

The goal in designing the ride is to minimize CT = RT/n. Defining D as the total distance the

car travels, D = dL + dR + dU + dT . Because RT = D/s, we will try to make dL and dU as short as

possible, given s, and set dL = p′ ∗s/λL, and dU = p′ ∗s/λU . The values of λU and λL are a function

of the ride design, so we assume them as small as feasible, and take them as given.

At some rides, the space dT is used to start boarding riders who will are identified as needing

additional time, (for example, riders arriving in a wheelchair, who bypass the regular line) who

then have TT +TL to load. The extra TT can greatly reduce the odds that the entire ride will need

to be stopped. This space can also be used for additional unloading time if needed. Because of this

important purpose, the park may specify a minimum time TT , or TT min. Minimizing dT lowers CT,

and there is no reason to extend it greater than the minimum, so TT = TT min, and dT = TT min ∗ s.

For customer satisfaction purposes, there is likely a minimum time that the entertainment portion

of the ride should last, TR min. Reducing TR lowers CT, so it will be set at its lowest value, TR =

TRmin, and dR = TRmin ∗ s Combining these results, we then have run time

RT = TRmin +TT min +
p′

λL

+
p′

λU

.

At a speed of s, each car travels the total distance of the ride in RT, so the total distance is RT∗s.

We may write the total distance D of the ride as

D = RT ∗ s =

(

TR min +TT min +
p′

λL

+
p′

λU

)

∗ s (10)
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Given the minimum distance dS, the distance between cars, D/n, must be D/n≥ dS, or n≤D/dS,

which we can write as n≤RT ∗ s/dS. Because n must be integer, it will not always be possible to

set n = RT ∗ s/dS. In general, n = ⌊RT ∗ s/dS⌋. Thus, we have

CT = RT/n =
RT

⌊RT ∗ s/dS⌋
≈

dS

s
, (11)

TH = 1/CT =
⌊RT ∗ s/dS⌋

RT
≈

s

dS

. (12)

Strictly speaking, CT≥ dS/s and TH≤ s/dS, but the error in the approximation can be shown to

be (RT ∗ s/dS)/⌊RT ∗ s/dS⌋. For n = 80 (as the case in the Buzz Lightyear ride), the error from

the approximation is ≤ 81/80 = 1.25%, which may not be a major difference.

From equation (12), the park can increase TH as much as it wants to, by increasing the speed, s.

As equation (10) shows, the required length of the ride is directly proportional to s. Doubling the

speed of the ride therefore means doubling the length of the ride, which likely means a doubling of

the cost of building the ride. Actually, doubling the speed would likely more than double the cost,

because a faster-moving ride would likely require sturdier tracks and wheels, etc., which would

increase the cost per linear foot to build.

Using equations (12) and (10), the park can see how increasing s increases TH, but increases

the cost. Depending on how much the park is willing to pay for increases in TH, it can use the

equations to find its optimal TH.

If the park wants to define a minimum time TS between riders, so that, for example, the monster

that pops out can get safely back into place in time to surprise the next car, it must set n =

⌊RT/TS⌋ ≤RT /TS, and equations (11) and (12) become

CT = RT/n =
RT

⌊RT/TS⌋
≈ TS, (13)

TH = 1/CT =
⌊RT/TS⌋

RT
≈

1

TS

. (14)

If the park specifies a minimum time between cars TS, CT cannot be reduced below TS.
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5. Stochastic Closed Queueing Networks

To consider rides as stochastic closed queueing networks, we assume that changeover times, TC are

exponentially distributed, with rate λ. We assume m = 1, and one zone for loading and loading.

In the case of loading and unloading of humans from an amusement park ride, the exponential

distribution would seem easy to defend: one can never tell when one person will take longer to get

in the car, get the safety harness fastened, etc., or to collect any personal items and get out of the

car, coming back to look for something they think they left, etc. Once a car is in motion, the time

to complete the ride TR should be nearly deterministic, regulated by the laws of physics and the

machinery of the ride, including computerized ride control systems.

If cars depart according to an exponential distribution, and return to unload a fixed amount of

time later, clearly those inter-arrival times have an exponential distribution (Burke 1956). If there

is only one car on the ride, there is no need to worry about a safety interval, TS .

Theorem 4. If a ride consists of one car, and the changeover time, TC, is exponentially dis-

tributed with mean 1/λ, total ride TH = λ.

Proof: The changeover process is a single-server Poisson process. With a single car, safety is

not a concern, so TS is not a factor in departure times, and throughput is that of a single-server

Poisson process.

However, if the number of cars, n, is greater than 1, TS must be taken into account. We define

τ as the time between the departure of one car and the arrival of the next car. For a given value

of τ , the probability density function of the inter-departure times is a truncated exponential:

f(t|τ) =







0 : t < TS − τ
1− e−λ(TS−τ) : t = TS − τ

e−λt : t > TS − τ.
(15)

It is not possible for a car depart less than TS − τ after the previous car. Any car that is ready in

less time than that is held for that time, so the probability of leaving after TS − τ is the probability

that the car is ready in TS − τ or less. For times longer than that, the probability is just the

exponential distribution.
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We define TD as the time to departure, the time a car occupies the server, performing the

changeover and then waiting for TS − τ to pass. For a given realization of the changeover time, TC ,

and τ , we find TD = min{TC , TS − τ}.

Theorem 5. If a car enters the server time τ after the previous car left, the expected time to

departure (the time it occupies the server), E[TD|τ ] is given by:

E[TD |τ ] =
1

λ
e−λ(TS−τ) +TS − τ. (16)

Proof: Given the definitions of f(t|τ), and TD, E[TD|τ ] =
∫

∞

TC=0
min{TC , TS − τ}f(TC|τ)dTC

becomes:

E[TD|τ ] = (TS − τ)

∫ TS−τ

TC=0

f(TC|τ)dTC +

∫

∞

TC=TS−τ

TCf(TC |τ)dTC

= (TS − τ)
(

1− e−λ(TS−τ)
)

+

∫

∞

TC=TS−τ

TCf(TC|τ)dTC .

Given the memoryless nature of exponential service times, this easily becomes

E[TD |τ ] = (TS − τ)
(

1− e−λ(TS−τ)
)

+

(

1

λ
+TS − τ

)

e−λ(TS−τ)

which simplifies to the desired result.

To compute E[CT], we need to determine E[TD] = E [E[TD |τ ]] . Unfortunately, E [E[TD |τ ]] =

∫

∞

τ=0
E[TD |τ ]fτ (τ)dτ cannot be computed unless we can express fτ (τ), the probability that a car

arrives τ after the other left. In a closed queueing network with deterministic ride time, fτ(τ) is

equivalent to the probability of the inter-departure time. Unfortunately, TD, violates the memory-

less property, because the time until the next car departs depends on, τ , how long ago the previous

car departed. This makes the system difficult to study using traditional queueing tools. However,

when τ is known, equation (15) can be used. If there are enough cars in the system to keep the

ride at 100% capacity, a queue will always be present in front of unloading, and τ = 0 for all cars.

Lemma 5. If the number of cars, n, is such that n ≥ n∗ = (TR + TS)/TS, then the p.d.f. of

inter-departure times is a truncated exponential distribution, as in equation (15), with f(t|τ = 0).
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Proof: Assume n is great enough to guarantee the server always has a queue of waiting cars.

Cars will enter the server immediately upon the departure of the previous car, and τ = 0 for all

cars, so the probability of interdeparture times is given by f(t|τ = 0).

While a car goes on the ride, the other n− 1 cars will occupy the server for at least (n− 1) ∗TS

seconds before the first car can re-enter the server. If (n − 1) ∗ TS ≥ TR, the server will still be

blocked when the first car returns, and there will still be a queue, and τ will still be 0. Thus, τ will

always be 0 if n ∗TS ≥ TR +TS .

Theorem 6. If the number of cars, n, is such that n≥ n∗ = (TR +TS)/TS, then

CT =
1

λ
e−λTS +TS .

Proof: From Lemma 5, if n≥ n∗ = (TR +TS)/TS, the interdeparture time is given by f(t|τ = 0).

Each car will block the server for at least TS, and on average will block the server for E[TD |τ = 0].

On average, CT = E[TD |τ = 0], so TH = 1/E[TD|τ = 0]. Evaluating E[TD |τ = 0], we obtain the

desired result.

Setting n = n∗ from Theorem 6, we guarantee that the server will be busy when a car returns. If

τ = 0 for all cars, while a car goes on the ride, the other n− 1 cars will actually occupy the server

for an average time of (n− 1) ∗E[TD|τ = 0]≥ (n− 1)TS. We could attempt to set n to ensure that,

on average, the server is just finishing the last previous car as a car returns, and re-derive Lemma 5

using (n− 1) ∗E[TD|τ = 0]≥ TR instead of (n− 1) ∗TS ≥ TR. To do so, it would be argued that, on

average, the previous n− 1 cars would just be finishing as any given car arrived, and, on average,

no capacity would be lost. Unfortunately, because of the non-memoryless nature of the problem,

that would not be valid. The dependent nature of the safety window means that fluctuations of

faster and slower changeover times are not allowed to cancel each other out. If some cars leave more

quickly than expected, the server can sit idle, and capacity is lost. In the computational results

section, we will also see that this value of n does not produce maximum TH.
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Thus, n≥ n∗ = (TR +TS)/TS cars will guarantee maximum possible throughput. For such n, the

expected time for n− 1 cars to reload is (n− 1) ∗E[TD |τ = 0] = (n− 1) ∗
(

1
λ
e−λTS +TS

)

. Once a

car leaves, the other n− 1 will occupy the server this long. Subtracting the run time from this, we

find the expected queue time E[TQ]:

E[TQ] = (n− 1) ∗

(

1

λ
e−λTS +TS

)

−TR. (17)

For n ≥ n∗, summing the expected queue time, ride time and departure time, we can find the

expected run time RT for each car, the total time the passengers spend on a ride:

E[RT] = E[TQ] +TR +E[TD |τ = 0]

= n ∗

(

1

λ
e−λTS +TS

)

. (18)

To summarize these results, when n = 1, the problem is trivial. When n ≥ n∗, the process is

definitely not memoryless, but we can still compute CT, E[RT], and E[TQ]. If 1 < n < n∗, the

problem cannot be solved theoretically, and throughput can only be estimated through simulation.

5.1. Tightly-Coupled Rides

In section 4.7, the length of the loading and unloading zones was determined by the minimum

probability pmin of not having to stop the ride. But the calculations of TH and CT were done

assuming the ride never stopped. For a given target TH, there will be TH ∗ (1− pmin) riders who

do not load successfully, and cause the ride to stop. The average delay for each of these riders will

be 1/λL, so expected TH lost due to riders not loading in time TL will be TH ∗ (1− pmin)/λL.

For unloading riders, TU is set to guarantee pmin percent of riders will successfully unload in time

TU . However, the ride actually will only stop if the riders do not successfully unload in time TU +TT .

The probability of not unloading in that time is e−(TU+TT )λU . Each of these riders will cause a delay

of 1/λU , so the total throughput lost from riders not unloading is TH∗e−(TU+TT )λU /λU . Combining

these results with equation (12), the expected TH is

E[TH] ≈
s

dS

(

1−
(1− pmin)

λL

)(

1−
e−(TU +TT )λU

λU

)

. (19)



Tibben-Lembke: Maximum Happiness

24 Article submitted to Management Science; manuscript no. MS-0xxx-2007.1

6. Case Study: California Screamin’

California Screamin’ was built at a cost of $50 million, and is the marquee ride of Disney’s Cal-

ifornia Adventure, Disney’s newest U.S. park (Muller 2003). The ride was selected because of its

prominence, but also because as an outdoor roller coaster, the departures are easy to time, because

after waiting for TS, cars blast off from a standing start, right next to the boardwalk, unlike

Disneyland’s marquee roller coaster, Space Mountain, which is an indoor ride.

The author timed 96 departures: 41 runs with 4 cars running, and 55 with 5 cars running. The

ride has 7 cars, up to 6 of which can be running at any one time. Five of the cars can hold 24

riders, and 2 can hold 23 (ulitimaterollercoaster.com 2007). We will use 24 riders per car in our

calculations. Data were not collected on p̄, but an unadvertised single rider line appears to help

keep p̄ quite high.

With 4 cars, the ride had an average departure time of 53.68 seconds, for THp = 1,609 riders

per hour. With 5 cars, the average departure time was 40.75 seconds, for THp = 2,120, an increase

of 32%. The stated ride capacity is 2,200 per hour (LAT 2001), which would require an average

departure time of 39.27 seconds. With 4 cars, the ride appeared to be operating with TS = 40 sec.

With 5 cars, it appeared to be operating with TS = 37, which helps to explain how a 25% increase

in n could lead to a 32% in THp.

The ride has two m = 2 unloading/loading zones, but as the stochastic case for m > 1 is outside

the scope of the current paper, we will estimate CT using the deterministic formula. The average

time to unload was approximately 6 seconds, and roughly 45 seconds were required to load and

perform the safety check, and we will assume TC = 51 seconds. The ride is listed as lasting 2:36, or

TR = 156 seconds, which is in line with the author’s experience.

From Theorem 3, if TS = 37 seconds, TR = 156, TC = 51, and m = 2, we get n∗ = 6, and it would

seem Disneyland was correct in building the ride to accommodate 6 cars. For n = 6, CT = TS = 37.

For n = 5, CT = 41.4, which is quite close to the observed value of 40.75. For n = 4, assuming

TS = 40, CT = 51.2 seconds, which is also close to the observed value of 53.68.
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Theoretical Observed Stated
n CT TH CT TH TH
6 37.0 2,335 2,200
5 41.4 2,087 40.8 2,120
4 51.2 1,688 53.7 1,609

Table 1 Theoretical, Observed and Stated Throughput for California Screamin’

The theoretical and observed CT and THp values for California Screamin’ are summarized in

Table 1. Because we are using the deterministic formula, we would expect changeover variability

to result in actual THp being lower than predicted. For n = 4, observed THp is 4.68% less than

predicted. For n = 5, observed THp is 1.48% higher than predicted. Because TC is based on a very

small sample size, it may be an overestimate, which would explain this difference. The ride was

never observed with n = 6, but for the deterministic formula, CT = TS = 37, and TH=2,335. Disney

claims trains depart every 36 seconds (rcdb.com 2007, Marden 2007), which would give the ride

capacity of 2,400 riders/hour.

For TH = 2,335, Disney underestimates THp by 5.8%. If TS = 36, their estimate underestimates

capacity by 9.1%. Attempts to learn how Disney creates its estimates were unsuccessful. Clearly,

future work is needed to more accurately predict TH of these rides in a stochastic environment.

7. Computational Study

As shown, we cannot determine a closed-form expression for the throughput with stochastic

changeover times, except for the two extreme points where n = 1 and n≥ n∗ = (TR + TS)/TS. The

result for n = 1 is unlikely to be useful, although Gadget’s Go Coaster in Disneyland was often

observed to operate this way. At the other extreme, n∗ is the minimum number of cars needed to

guarantee maximum possible TH for the ride. Using n∗ cars will guarantee maximum throughput,

but it is possible that this number of cars will lead to a long queue time before unloading, which

will hurt rider satisfaction. If a smaller number of cars would cause a very small reduction in

throughput, but a significant reduction in queue time, the parks may decide to use n < n∗.

In order to study the ride throughput as a function of n, we must turn to simulation. For example,

suppose 1/λ = E[TC ] = 0.375 min., and TS = 0.25 min. From Theorem 6, we obtain n∗ = 9. If
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 Figure 10 TH as n increases, 1/λ = E[TC ] = 0.375, TS=0.25, E[TD]=0.443
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Figure 11 Exponential Inter-Departure Times when n = n∗ = 9

n≥ n∗, then E[TD|τ = 0] = 0.443. If we set n using n = (TR +E[TD |τ = 0])/E[TD|τ = 0], we would

obtain n = ⌈5.52⌉ = 6. We simulated 6,000 car rides, and ran each simulation 5 times, and the

TH for different levels of n is shown in Figure 10. We calculated a 90% confidence interval for

the average throughput values (shown by the dashed lines), based on the standard deviations of

the throughput values. As the graph clearly shows, 6 cars has less throughput than 9. Maximum

throughput is achieved by using n≥ n∗ from Theorem 6, and anything else is clearly suboptimal.

The need to simulate arises from the fact that we cannot characterize the arrival rate. Figure 11

shows the results from simulating 6,000 car rides, with TS = 0.25, E[TC ] = 0.25, and TR = 2.

We used n = n∗ = 9. As predicted by Lemma 5, the inter-departure times clearly approximate a

truncated exponential distribution. In Figure 12, we see that inter-departure times may be very

non-exponential. In this case, TS = 0.5, E[TC ] = 0.25, and TR = 6, which yields n∗ = 13. In the



Tibben-Lembke: Maximum Happiness

Article submitted to Management Science; manuscript no. MS-0xxx-2007.1 27

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Inter-Departure Time (minutes)

P
ro

b
ab

ili
ty

 

Figure 12 Non-Exponential Inter-Departure Times when n < n∗

simulation, n = 2, and 6,000 car rides were simulated. Clearly, the times are far from exponential,

almost uniformly distributed. Thus, always assuming an exponential distribution would not appear

to be a good approximation, further strengthening the argument for simulation.

Figure 13 shows car queue time from simulations of 6,000 rides. For each, we used TS = 0.5 min,

and TR = 2.0 min. In the top line we assumed E[TC ] = 0.25 min. The middle line has E[TC ] =

0.5 min, and the bottom line has E[TC ] = 1 min. For these parameters, n∗ = 5. As n increases, the

average queue time for re-loading increases. For each line, a heavy black line shows the queueing

time predicted by equation (17). The equation is only valid for n≥ n∗ = 5, but it clearly matches

the simulation results perfectly.

For these values, if E[TC ] = TS = 0.5, and we use n = n∗ = 5, the queue time is 0.74 min, perhaps

longer than riders might prefer for a 2 minute ride, but probably not unacceptable. If E[TC ] = 0.25

min, maximum TH is attained with an average queue time of 0.14 min. But if E[TC ] = 1.0 min, in

order to achieve maximum throughput, the queue time balloons to 2.4 minutes, which is probably

much longer than customers would be willing to tolerate for a 2 minute ride. Simulation is invaluable

in this situation to consider the tradeoff between throughput and car queue time, and to see the

potential benefits of reducing changeover time, TC .

In Figure 14, the results of several sets of experiments are summarized. It shows the throughput

per minute for different values of TC . For all experiments, we assumed TS = 2 and TR = 4, which

yields n∗ = (TR + TS)/TS = 3. For a given number of cars, n, the ratio of E[TC ]/TS was increased
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Figure 13 Queue time vs. n for 1/λ = 0.25,0.5, and 1.0, with TS = 0.5, TR = 2.0

from 0.1 to 2.0, by increasing E[TC ] from 0.2 to 4. The lines represent the throughput of different n.

Not surprisingly, more cars means greater throughput, and n > n∗ leads to no additional increase.

Also not surprisingly, faster changeover means greater throughput.

What is perhaps surprising is that the shape of the curve changes as n increases. For n = 1 or

n = 2, the TH curve is convex. For n ≥ n∗ = 3, the lines are identical, and are convex for large

values of TC/TS, and concave for small values. For larger values of n, a small reduction in TC brings

less TH increase than the same reduction would for fewer cars.

The most important lesson, perhaps, from the graph is that reducing TC to below TS can have sig-

nificant benefits. Even for n≥ n∗, when E[TC ] = TS, the throughput is only 60% of the throughput

that could be achieved if E[TC ] were reduced even to just 0.4TS.

Simulation is the only way to estimate the throughput for a 2≤ n < n∗, or to determine the bene-

fits of reductions in changeover times. Using simulation, any of the many configuration possibilities

for rides presented in this paper can be studied, to find the throughput to be gained by increasing

the number of cars, separating the loading and unloading stations, adding parallel loading stations,

or adding queueing areas after loading to prevent the station from becoming blocked by TS .

8. Summary and Future Research

In this paper, we have derived formulas to estimate the throughput of many different amusement

park rides. These formulas should be of use to any amusement park or ride engineering firm wanting
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Figure 14 Throughput for n = 1− 4, when TS = 2, TR = 4, E[TC ] = 0.2 . . .4.0

to estimate the throughput of a proposed ride, or to increase the throughput of an existing ride.

The formulas can easily be incorporated into a spreadsheet, so that the throughput impact of TS ,

TL, or TU reductions can easily be seen, as well as the impact of creating separate loading and

unloading zones, or of adding parallel unloading/loading zones. If the firm can estimate the cost

of various changes, it can use that information together with the formulas to easily determine the

most cost-effective ways to increase rider throughput.

We have studied deterministic models of a number of structures of rides, but have only been

able to study stochastic versions of a small number of those rides. Future research is needed to

study these rides for 1 < n < n∗ in a stochastic environment, and to estimate the impact of adding

a queue before or after loading, observing the impact of separate unloading/loading zones, and/or

parallel zones.

The biggest obstacle to further theoretical results is the fact that the memoryless property does

not always hold for roller coasters, because of the safety interval. Theoretical results are needed to

determine approximations for closed queueing networks with minimum intervals between jobs.

In the real world, differences in weight of passengers, the distribution of weight in the car etc., can

lead to variations in ride time, and it seems likely that any actual observed differences in ride time

would have a normal distribution. It would seem that this would be especially true on water-borne

rides. For example, at Disneyland, the log flume ride (Splash Mountain) and the whitewater rafting

ride (Grizzly’s River Run) have queues in the middle of the ride, apparently to ensure that the
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necessary safety intervals are followed at key points in the ride, because of the greater variability

in water-borne rides. Methods should be developed to study these types of rides, as well.
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9. Appendix

To show how all of the rides and attractions in an amusement park may be fit into the classification

scheme we have used, we present a list of many of the rides and attractions in Disneyland and

Disney’s California Adventure.
Carousels Roller Coasters
Astro Orbiter Autopia
Dumbo the Flying Elephant Buzz Lightyear Astro-Blasters*
The Enchanted Tiki Room California Screamin’
Flik’s Flyers Casey Jr. Circus Train
Francis’ Ladybug Boogie Grizzly River Run
It’s Tough to Be a Bug Heimlich’s Choo-Choo
Jumpin’ Jellyfish It’s a Small World
King Arthur Carousel Jungle Cruise
King Triton’s Carousel The Matterhorn
Mad Tea Party Monsters, Inc.
Maliboomer Mr. Toad’s Wild Ride
Orange Stinger Mulholland Madness
Soarin’ Over California Peter Pan’s Flight
Tuck and Roll’s Drive ‘Em Buggies Pinocchio’s Daring Journey
Zephyr Pirates of the Caribbean

Space Mountain
Splash Mountain
Snow White’s Scary Adventures
Storybook Land Canal Boats
Thunder Mountain

* = Tightly Coupled Ride
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