
Scheduling Employees in Quebec's Liquor Stores with Integer Programming
Author(s): Bernard Gendron
Reviewed work(s):
Source: Interfaces, Vol. 35, No. 5 (Sep. - Oct., 2005), pp. 402-410
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/20141325 .
Accessed: 18/08/2012 16:18

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Interfaces.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/20141325?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

Interfaces inf3JES@
Vol. 35, No. 5, September-October 2005, pp. 402-410 DOI1Q 1287/inte 1050 0154
ISSN 0092-21021 EissN 1526-551X105 1350510402

'
@ 2005 INFORMS

Scheduling Employees in Quebec's Liquor
Stores with Integer Programming

Bernard Gendron
D?partement d'informatique et de recherche op?rationnelle, Universit? de Montr?al, C.P. 6128, succursale Centre-ville,

Montr?al, Qu?bec, Canada H3C 3J7, gendron@iro.umontreal.ca

The SAQ (in French, Soci?t? des alcools du Qu?bec) is a public corporation of the Province of Quebec respon
sible for distributing and selling alcohol-based products in its territory through a large network of more than
400 stores and warehouses. Every week, the SAQ has to schedule more than 3,000 employees. Until 2002, it

handled this process manually, incurring estimated expenses of $1,300,000 (CAN). I developed a solution engine
that interacts with a Web-based database system developed in house to

produce the desired schedules. This

solution engine implements an integer-programming (IP) model using ILOG Concert Technology and solves the
IP formulation with ILOG CPLEX. The project has contributed to increasing the efficiency of the organization by
reducing the costs of producing the schedules and by improving the SAQ's management of human resources.

Overall, the SAQ estimates that automated scheduling has saved over $1,000,000 (CAN) annually.

Key words: organizational studies: manpower planning; programming: integer.

The

SAQ (in French, Soci?t? des alcools du Qu?bec)
is a public corporation of the Province of Quebec

responsible for distributing and selling alcohol-based

products in its territory through a large network of

more than 400 stores and warehouses. The SAQ oper
ates different types of stores: some stores offer a large
selection of products (for instance, those located in

densely populated areas), while others have a lim

ited selection (for example, those located near restau

rants where customers can bring their own wine).
The stores have various hours of operation depend

ing on the day, but also on their type and location:

they open between 9:30 am and 12:00 am, and close

between 5:00 pm and 10:00 pm. The warehouses oper
ate overnight.

Every week, the SAQ has to schedule more than

3,000 employees. Until 2002, it handled this process

manually, incurring estimated annual salary expenses
of almost $1,000,000 (CAN). Using the manual pro

cess, schedulers made many errors, because they
were unable to produce solutions that respected all

the complex rules of the union agreement. To deal

with the complaints employees filed, the company
estimates it paid costs of approximately $300,000

(CAN) annually. After carefully examining the avail

able computer-based workforce scheduling products,

the company realized that none of them could handle

its union agreement rules properly.
In March 2000, the SAQ asked me to develop a

solution engine that would interact with a Web-based

database system developed in house to produce the

schedules the SAQ needed. I chose integer program

ming (IP) as the methodology of choice and imple
mented it using a state-of-the-art IP software package

(ILOG CPLEX). This choice allowed me to develop a

robust program that produces optimal schedules, that

is, schedules that strictly adhere to all union agree
ment rules.

Although it often happens that complex personnel

scheduling problems cannot be dealt with using

compact IP formulations (most notably in the air

line industry), this problem is quite different from

many scheduling problems in that it decomposes by

employee. The union agreement imposes a sequen
tial assignment: The SAQ must assign the most senior

employee the best schedule; then, using the remaining
shifts, it must assign the best schedule to the second

most senior employee, and so on. This sequential pro
cess is guaranteed to produce a feasible schedule, as

there are always enough employees on the availability
list to fill the requirements of all the stores (thus, there

is no need to back-track on prior schedules). In spite

402

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
Interfaces 35(5), pp. 402-410, ?2005 INFORMS

'
403

of this interesting feature, formulating the problem for

each employee is challenging. In particular, one rule

allows the SAQ to split shifts of six hours or more

between two employees. Alone, this rule can be for

mulated quite easily using IP, but when coupled to

another rule that forces employees to take one-hour

unpaid lunch or dinner breaks, it produces complex
situations. I had to take into account several other

complicating rules: multiple types of shift across mul

tiple stores can be assigned to each employee (thus,
there are travel time constraints between stores). In

addition to maximizing the number of work hours,
I had to consider several secondary objectives, and

I had to model limits on daily and weekly work

hours, as well as many other constraints.

Problem Description
The problem is to generate a weekly schedule per

employee, given the following constraints:

?the employee cannot work more than 10 hours

per day, and 38 hours over the whole week;
?a week starts on a Sunday and ends on the next

Saturday;
?the union agreement specifies that the schedule

be generated a day at a time, starting from the end

of the week (Saturday) and going backward until

Sunday: this rule is called the backward-assignment
rule;

?the objective is to maximize the number of hours

the employee works on each day by taking into

account the shifts to be assigned and the availabilities

the employee expresses.

Thus, the SAQ produces a weekly schedule for each

employee by assigning a schedule for each day, start

ing from the end of the week and going backward

to its beginning. The rationale behind the backward

assignment rule is to push the days off towards the

beginning of the week (Sunday and Monday) and ide

ally to grant (the most senior) employees an addi

tional day off (Tuesday). If it did not follow this rule,
which maximizes the number of work hours on each

day, but not over the whole week, the SAQ could pro
duce schedules that contain more work hours over the

whole week. I was not allowed to modify this rule,

because my solution method had to strictly adhere to

all union agreement rules.

Each day is divided into 15-minute periods. I call

a set of consecutive time periods an interval and an

interval worked entirely by the employee a work inter

val. The union agreement specifies that each work

interval must consist of at least three hours. Although
most workers are available only during the daytime to

work in stores, some workers also work overnight in

warehouses. Typically, an employee working at night
should not work during the preceding or following

day: the rest rule requires at least eight hours of

rest after and before an overnight work interval. The

SAQ classifies the work intervals in three categories:

daytime, for those between 8:00 am and 11:00 pm;

overnight, for those between 9:00 pm on one day and

8:00 am on the next; and mixed, for those that cross

over the time intervals defining the two other cat

egories (for example, the work interval 6:00 am to

11:00 am is mixed). Thus, when planning the sched

ule for a given day, in addition to the 24 hours of the

day, one must also consider the last three hours of

the day before. Because of the backward-assignment
rule, it is easy to enforce the rest rule for every day of

the week, including Sunday, provided that one knows

when the employee stopped working on the preced

ing Saturday. For example, if the employee finished

working at 9:00 pm on Saturday the week before, one

cannot assign an overnight shift to that employee on

Sunday.

The substitution rule specifies that on any given

day, one can assign the employee to a guaranteed
shift, unless one can identify another schedule that

produces
more work hours of the same work-interval

category and in the same store. For example, sup

pose that the employee has a guaranteed daytime
shift with six hours in store A, and that the maxi

mum number of work hours is nine when the sched

uler assigns the guaranteed shift. If a schedule with

10 work hours exists, including seven daytime work

hours in store A, then substitution will take place.
In this example, if one could replace "seven day
time work hours in store A" with "six daytime work

hours in store A," or with "seven mixed work hours

in store A," or with "seven daytime work hours in

store B," substitution will not take place in any of

these three cases, because the resulting schedules do

not produce more than six daytime work hours in

store A.

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
404 Interfaces 35(5), pp. 402-410, ?2005 INFORMS

The employee might work in several stores on the

same day; hence, one must enforce the travel-time

rule, which guarantees the employee time to travel

between the stores. When an employee is scheduled

for two disjoint work intervals (for example, when

the employee works in two stores), it creates a dis

continuity. The rules permit no more than two such

discontinuities (corresponding to three disjoint work

intervals). In addition, the SAQ should not create

schedules with discontinuities, unless they contain

at least 1.25 work hours more than any schedules

without discontinuities. For example, a schedule with

seven hours and no discontinuity is preferred to a

schedule with eight hours and one discontinuity, but

not to a schedule that contains 8.25 work hours (irre

spective of its number of discontinuities).
The employee must take a one-hour lunch break at

noon if the work interval entirely contains the inter

val 10:30 am to 3:30 pm: this is the lunch-break rule

(similar rules apply for dinner, defined by the interval

3:30 pm to 8:30 pm, and for overnight shifts). Because

the employee is not paid for this one-hour break, it

is not counted as a work hour. This rule is easy to

implement on its own but not when it is coupled to

another rule that allows shifts to be split between two

employees.

The split-shift rule allows the SAQ to break split
able shifts into two parts: the piece, which is assigned
to the employee under consideration, and the resid

ual, which subsequently will be assigned to another

employee. Given that each work interval must contain

at least three hours, splitable shifts must consist of at

least six hours, so that both the piece and the resid

ual have at least three work hours. The split-shift rule

was designed to help the SAQ to create schedules that

come close to reaching the daily limit on work hours.

For example, if an employee has a guaranteed shift

from 9:00 am to 4:00 pm (six work hours) and there

is a splitable shift from 12:00 am to 7:00 pm (creating
a shift of seven work hours), the piece from 4:00 pm

to 7:00 pm should be assigned to that employee, leav

ing nine work hours and a residual from 12:00 am to

4:00 pm.

The employees and the union appreciate the advan

tages the split-shift rule provides; it is, however, a

nightmare for management. It also makes the schedul

ing problem very complex to formulate and solve.

It is a challenge to accurately model the split-shift
rule on its own; combining it with the lunch-break

rule creates unpleasant interactions. First, in coupling
the two rules, one must manage the residuals to keep
track of the work hours. The principle is simple: if the

employee is assigned a work interval of p work hours,
created by splitting some shifts whose total number

of work hours is ft, then the residuals should not total

more than n ?
p work hours. This way, the employer

pays for no more work hours than required. Although

simple in principle, this rule is not so easy to manage
in practice; in three cases, the scheduler must adjust
the residual to satisfy it:

1. In the first case, it must remove one hour from

the residual. For example, assume that it can assign

only one shift, from 10:30 am to 8:30 pm, for a total

of eight work hours (lunch and dinner breaks are

imposed). The employee being scheduled is avail

able only from 10:30 am to 4:00 pm; by splitting the

shift, the scheduler assigns 4.5 work hours to that

employee (plus the lunch break). The residual cannot

start at 4:00 pm, because the resulting shift would con

tain 4.5 work hours (with no dinner break allowed

because the work interval would not contain the inter

val 3:30 pm to 8:30 pm). The piece and the residual

would then sum up to nine work hours, which would

exceed the total of eight work hours for the origi
nal splitable shift. We thus have to remove one hour

from the residual, creating a new shift from 5:00 pm

to 8:30 pm.

2. In the second case, it must remove two hours

from the residual. If we consider the same example,
but we change the hours in which the employee is

available to 10:30 am to 3:00 pm, we would assign
the employee the piece from 10:30 am to 3:00 pm,

for a total of 4.5 work hours (with no lunch break,

because the work interval would not contain the inter

val 10:30 am to 3:30 pm). The residual cannot start

at either 3:00 pm or 4:00 pm, because in both cases,

it would then contain 4.5 work hours (in the first

case, the dinner break would be given, but not in

the second case). Thus, the scheduler would have to

remove two hours from the residual, leaving a shift

from 5:00 pm to 8:30 pm.

3. In the third case, it would have to add one

hour to the residual. For example, assume that the

employee is available from 8:00 am to 11:00 pm

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
Interfaces 35(5), pp. 402-410, ?2005 INFORMS 405

and there are two splitable shifts, one from 8:00 am

to 2:00 pm (six work hours) and the other from

11:00 am to 6:00 pm (seven work hours). We assign the

employee the work interval from 8:00 am to 6:00 pm

by splitting the first shift at 11:00 am and combin

ing the piece 8:00 am to 11:00 am with the second

shift of 11:00 am to 6:00 pm. This work interval cor

responds to nine work hours; by combining the two

shifts, we created a lunch break, while neither of the

two splitable shifts contained one. Because the resid

ual runs from 11:00 am to 2:00 pm, the total number of

work hours would be 12, while the two original shifts

totalled 13 work hours. Thus, the scheduler must add

one hour to the residual and make it start at 10:00 am.

These three cases affect the mathematical formula

tion of the problem, because the model must ensure

that residuals always contain at least three hours.

Apart from managing the residuals, the SAQ must

manage another complex situation created by the

interaction of the split-shift rule and the lunch-break

rule. As a simple example, suppose that an employee
is available from 10:30 am to 4:00 pm and that the

scheduler can assign only one shift, which starts at

10:30 am and ends at 7:30 pm, to that employee. Nor

mally it would split the shift at 4:00 pm and assign
4.5 work hours (from 10:30 am to 4:00 pm minus a

one-hour lunch break) to the employee. But there is

a "better schedule," which consists of splitting the

shift at 3:15 pm and assigning 4.75 work hours to the

employee (10:30 am to 3:15 pm with no lunch break

because the work hours do not entirely cover the

interval 10:30 am to 3:30 pm). The model has to forbid

this type of split, called an opportunistic split.

Although the objective is to maximize the num

ber of work hours, the model must include a penalty
to capture the existence of at least one discontinuity
in the schedule (a discontinuity is created when the

employee is scheduled for two disjoint work inter

vals). To discriminate between two equivalent sched

ules, the SAQ defined seven secondary objectives, by
order of importance:

1. Favor the preferred type of shift: Each employee
can be assigned two different types of shift but prefers
one over the other. If two schedules provide the same

number of work hours, the model should select the

one that favors the employee's preferred type of shift.

2. Minimize discontinuities: If the previous objec
tive does not allow the model to discriminate between

two schedules, it should favor the schedule with the

fewest discontinuities. When one schedule has one

discontinuity and the other (otherwise equivalent) has

two discontinuities, both schedules would receive a

one-hour penalty for having at least one discontinuity,
but the model would choose the first.

3. Minimize the number of stores: If the previous

objective does not allow the model to discriminate

between two equivalent schedules, it will favor the

one with the fewest stores assigned to the employee.
4. Minimize the number of split shifts: If the pre

vious objective does not allow the model to discrim

inate between two equivalent schedules, it will favor

the one with the fewest split shifts.

5. Favor preferred stores: Each employee provides
the SAQ with a list of preferred stores in order of pref
erence. The model attempts to satisfy this preference;
if it cannot, the model changes the order of prefer
ence for the next day to favor the stores associated

with the assigned shifts. This rule allows the model to

improve the continuity of the schedule from one day
to the next.

6. Favor the earliest periods: If all the above objec
tives do not allow the model to discriminate between

two schedules, it will select the schedule consisting of

work periods early in the day (starting at 8:00 am; the

employees like the overnight periods the least).
7. Maximize the number of shifts: If all the above

objectives do not allow the model to choose between

two possible schedules for an employee, the model

will choose the one that maximizes the number of

assigned shifts; the rationale is that doing so reduces

the effort needed to produce the schedule for the next

employee.

Implementation
I programmed a C++ code that interacts with the

Web-based database system the SAQ developed to

acquire and store data on its employees. The SAQ

system creates three data files representing (1) the

shifts each employee can work, (2) each employee's
availabilities and preferences, and (3) a list of param
eters (daily and weekly limits on the number of work

hours, a limit on discontinuities, and so forth), which

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
406 Interfaces 35(5), pp. 402-410, ?2005 INFORMS

are fixed and identical for all employees. The third

data file helps the SAQ to analyze the impact of

changes in the values of the parameters and to adapt
the program when some values change. The C++

code implements the mathematical model using ILOG

Concert Technology and then solves the IP formula

tion with ILOG CPLEX. I calibrated the parameters
of CPLEX to optimize performance. I observed one

striking example of the effect of fine tuning CPLEX

parameters when the time CPLEX (version 7.1) took

to solve a particular instance dropped from 20 min

utes to 20 seconds.

The SAQ obtains most schedules very quickly

(a few minutes at most). However, for some senior

employees working in large subdivisions with many

stores, the IP models for the end of the week (Friday
and Saturday) can take hours to solve. Usually, the

number of splitable shifts is a good indicator of the

difficulty of the problems; typically, if one day con

tains more than 10 splitable shifts, the resulting model

will be very hard to solve. To produce the schedule on

time every week, the SAQ has acquired two CPLEX

licenses and has implemented a simple queueing sys
tem that ensures that it solves only one of these diffi

cult instances at a time.

Typically, the store managers enter data for the

coming week on Wednesday nights, and the SAQ

sends schedules to the employees on Thursdays

(sometimes, on Friday mornings). Three employees
dedicate part of their time to the project: a computer

analyst maintains the database and interface system
and updates the CPLEX versions; an employee from

the human resources department and a representative
of the union ensure that schedules respect all rules of

the union agreement and answer the store managers'

and the employees' questions about the schedules the

system produces.
The project started in March 2000, when the con

sultant in charge of implementing the Web-based

database system approached me to see if I could

produce a complete solution to the scheduling prob
lem. My early developments focused on modeling
the splitable shifts. I produced a first release of the

C++ code in May 2000.1 then discovered several dif

ficulties related to the interaction of split shifts and

unpaid breaks; I fixed these problems in the follow

ing months. After 13 releases that required multiple

bug fixes, I released version 1.0 in December 2000:

the format of the data files was very close to the

actual existing format, and it implemented most rules.

Between December 2000 and July 2001, I produced
11 other releases and then developed version 3.0: it

included several rules that were not in the previ
ous versions, including the substitution rule and the

rules governing preferred types of shift and overnight
shifts. After 12 other minor releases, I produced ver

sion 4.0 in August 2002; it allows users to stop the

execution for an employee after some time and to

restart it later using the schedule generated so far for

that employee. This feature is used by the queueing

system developed by the SAQ to make sure that no

single employee becomes a bottleneck to the whole

scheduling process. That same month, I released Ver

sion 5.0, which is compatible with CPLEX version 8.0.

The SAQ also implemented the system in all the

stores in the Province of Quebec during the summer

of 2002. Prior to that, the SAQ gradually tested the

system on a limited set of stores. The current version

is 6.1, released in March 2005.

Impact on the Organization
The project has contributed in many ways to increas

ing the SAQ's efficiency by reducing its scheduling
costs and by improving its management of human

resources.
By replacing manual scheduling, the auto

mated process saves an estimated $750,000 (CAN)
or more annually (about 80 percent of the total

prior salary expenses). In addition, because the pro

gram produces accurate schedules that respect all the

rules of the union agreement, employees make very
few complaints; this reduction in complaints trans

lates into annual savings estimated at about $250,000

(CAN) (90 percent of the total prior expenses related

to employees' complaints). Overall, the SAQ esti

mates that the automated scheduling program saves

over $1,000,000 (CAN) annually. Because develop

ing the new scheduling system (over 2.5 years) cost

around $1,300,000 (CAN), the payback period is less

than two years.

In the stores, the system has greatly simplified
the work of the managers and union representa
tives by eliminating paperwork, by simplifying the

management of data, and overall by reducing the

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
Interfaces 35(5), pp. 402-410, ?2005 INFORMS 407

time dedicated to scheduling. In addition, the system

interprets the union agreement rules in a uniform way
in all stores across the province, which has eliminated

many of the complaints union representatives made

prior to its implementation.
From its beginning, the project involved all the peo

ple concerned: store managers, union representatives,

and human resources personnel. These three groups
have worked together to reach consensus and help
the consultants in their quest for successful imple

mentation and results. The project enhanced work

ing relationships all across the organization: between

the employees and the managers in the stores, and

between the union and the human resources depart
ment. The solution method I developed contributed

to this success.

Appendix

The IP Model

I formulated all the rules within the IP model. To

avoid overloading the presentation, I describe only a

subset of these rules to illustrate some of the main

modeling difficulties and to emphasize the flexibility
of the modeling approach.

I first introduce the notation for sets: I denotes the

set of time periods; /, the set of shifts, partitioned into

splitable shifts, }D, and unsplitable shifts, Ju; S is the

set of stores; K is the set of breaks (lunch, dinner, and

overnight); and /(!') and 1(F) denote the earliest and

latest periods in interval F.

Constraints

Assignment constraints: I introduce three types of

binary variables:

yl;
= 1: if period / is assigned;

Zj
= 1: if shift j is assigned;

Xjj
= 1: if splitable shift j is assigned at period /.

The assignment constraints then take the follow

ing form:

where J" and jP are the sets of unsplitable and

splitable shifts, respectively, that include period i.

These constraints ensure that no more than one shift

can be assigned at each period.

Break constraints: I introduce the following binary
variables:

rk = l: if the employee takes break k.

The constraints can then be written as follows:

'*>!>/-141 + 1, keK,
ielk

where Ik is the set of periods corresponding to break k.

These constraints simply state that the employee
deserves a break if all periods in Ik are assigned. This

is a simplified form of the break constraints, because

other considerations must be taken into account.

For example, overnight breaks are allowed if the

employee works at least 8.5 hours at night, including
all the periods in the interval 11:30 pm to 5:30 am; the

constraints must then be adapted by including addi

tional variables to handle this case.

Work-hour constraints: I introduce the binary
variables:

yf
= V. if period i is worked.

The constraints that define work hours can then be

written as follows:

Ei/rJ
=

T.y^-Phr keK,
ielk ielk

y,w
=

y,> keK,i?Ik,

where p = 4 is the number of periods in a one-hour

break. It would have been possible to avoid introduc

ing the variables yf; however, they help in defining
the objective, specifically the criteria related to pref
erences. Using these variables, the constraint limiting
the number of daily work hours can be written as

follows:

iel

where k is the upper bound on the number of work

time periods, based on the limits of 10 work hours

per day and 38 work hours per week.

Discontinuity constraints: I first introduce variables

for each period that corresponds to the beginning of

a work interval:

ui
= V. if the employee is assigned to period i but

not period i ? \.

These variables are defined by the following series

of inequalities:

Mi>y/-y,--i/ izi, *V/(i),

ux<ylf i el,

M,-<l-y/-i, iel,i?f(l).

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
408 Interfaces 35(5), pp. 402-410, ?2005 INFORMS

These variables serve multiple purposes. First, they
can be used to enforce the rule stating that each work

interval must contain at least three hours:

Uj < y?, i el, i < i' < min(z + r - 1,1(1)),

where r = 12 is the number of time periods in each

work interval. These constraints are valid under the

assumption that no work interval can start after

9:00 pm, which is always satisfied because shifts start

ing after 9:00 pm are overnight shifts, which are sched

uled as part of the next day.
I also use variable u{ to define discontinuities,

because there is a discontinuity at period i if a work

interval starts at period i and another work interval

starts at some period ? < i:

uD > ux + uv
-

1, ie I, f(I) < ? < i,

where uf
= 1 if there is a discontinuity at period i.

No further constraints are necessary to define these

variables, because the objective contains a criterion to

minimize the number of discontinuities.

Using these variables, I specify the constraint that

limits the number of discontinuities:

iel

where cf)
= 2 is the maximum number of disconti

nuities. I also define a variable uD, which assumes

value 1 if there is at least one discontinuity:

Uq>ud, iel.

This variable will be used to penalize a schedule that

contains at least one discontinuity.
Travel time constraints: I define the following bin

ary variables:

pis
= 1: if period i is assigned to a shift in store s.

These variables are defined by the following
constraints:

E z/+ E *?/=P?5/ ieI> seSi>
/e/,un/s jejPnjs

where }s is the set of shifts in store s and S? is the set

of stores that can be assigned at period i.

Given that 8SS, is the minimum travel time between

stores s and s', the travel time constraints can be sim

ply written as follows:

Pis + Pi's>
< 1/ iel, se S?, i < i' <

min(z + 8SS,, 1(1)),

s' e Sif/ s' =?s.

These constraints ensure that two stores cannot be

assigned within the time window defined by the min

imum travel time between the two stores.

Split shift constraints: I define two types of vari

ables representing split shifts:

v?j
= 1: if splitable shift ; is split "forward" at

period i, i.e., xi;
= 1 and x(/_1);

= 0;

w?j
= 1: if splitable shift j is split "backward" at

period i
?

1, i.e., x/;
= 0 and

*(z_1);
= 1.

The following set of equations completely charac

terizes these variables:

Xi,
-

Vij
-

x(l_1); + Wij
= 0, ie I, jetfn]f_x, i ? f(I).

It is easy to state the constraint guaranteeing that

each splitable shift can be split only once:

2>fy + H7f/)<l, i^f'
lelj

where
Jy

is the set of time periods containing shift ;.

Finally, I give a simplified version of the constraints

that allow a shift to be split only if the residual con

tains at least three hours:

F>?; + TEta/ + w//) < \h\' ie /D' \KiI
= ?'

ielj ielj

where
K;

is the set of breaks associated with shift ;

(for example, a shift from 10:30 am to 8:30 pm has two

associated breaks, lunch and dinner). It is easy to ver

ify that these constraints are valid when the shift con

tains no breaks. The situation is, however, much more

complex when one or two breaks are associated with

the shift, because I then need to introduce auxiliary
variables and to adapt the constraints to accurately

represent the cases I described earlier. For the sake of

clarity, I omit the details related to the formulation of

these constraints, as well as those of the constraints

necessary to eliminate the opportunistic splits, which

are also complex.

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
Interfaces 35(5), pp. 402-410, ?2005 INFORMS 409

Objective
I present only the first four components of the objec
tive function. Assuming that we are maximizing,
these four components can be described as follows.

Maximize the number of work hours: This is simply
written as

iel

Penalize discontinuity: When there is at least one

discontinuity, the following term is penalized, so as

to favor a schedule with at most one hour less, but

no discontinuity (the penalty term is specified at the

end of this section):
-uD

Favor the preferred type of shift: The more the

employee is assigned to a preferred type of shift, the

better the schedule. Hence, first I need to define vari

ables representing the assignment by type of shift for

each period:

oit
= 1: if period / is assigned to type of shift t.

These variables are characterized by the following
constraints:

E zj+ E xij
= oit, ?ei, telx,

jej"n]t ; jPnj,

where Jt is the set of shifts associated with type of

shift t and Tt is the set of types of shift that can be

assigned at period i.

These variables are not sufficient, because we want

to maximize the number of work hours for which the

preferred type of shift is assigned. Thus, I need a vari

able that counts the number of work periods assigned
to type t:

o = 1: if period i is worked and assigned to type
of shift t.

I simply define these variables in terms of the oit
and yxw variables:

o^<ytw, ieI,teTt,

o$<oit, iel, teTx.

By associating with each type of shift a preference
number dt (0t ~\T\ for the most preferred type and

6t
= 1 for the least preferred one), I can now model

the term of the objective related to the preferred types
of shift as follows:

EE^C (i)
iel teTj

The formulation of the criterion related to store pref
erence is very similar.

Minimize discontinuities: This term is simply de

fined as follows:

-Eu?.
iel

Global objective: The four terms are assembled

together in a single objective that respects the hierar

chy among the criteria:

MEyr-M^+EE^s + ^-E"?
iel iel teTj iel

In this expression, M3 represents a strict upper bound

on the value of the term J^iei u?'' I use M3
=

<p + I,

because J^iei u? - (t)- Similarly, I define Mx so that it

gives a strict upper bound on the term J2iei ^2teT? (M3 +

0t)oft
. Because k is an upper bound on the number of

work periods (thus an upper bound on J^iei JlteT ?u)
and 6t

<
\T\, I use Mx

=
k(M3 + \T\) +1.1 use the same

value to define M2 except that I must add a penalty

corresponding to one hour in case of a discontinuity:

M2
=

(? + e)Mlf where ? = 4 and e is any small posi
tive number, to ensure that any schedule with at least

one discontinuity is dominated, unless it has more

than one work hour more than any other schedule.

Acknowledgments
I am

grateful to the following individuals, who contributed

in so many ways to the success of the project: Robert

Beaulieu, union representative; Jean-Fran?ois Boucher, com

puter analyst; Luc Bourgeault, consultant; Jean-Philippe

Brianchon, computer analyst; Patrick Dion, computer ana

lyst; Brian Gibb, director of information technology; Sylvain
Laroque, human resources representative; Claude Nadeau,

store managers' representative; and V?ronique Lucas, com

puter analyst. I express my apologies to any other persons
that I may have forgotten and who were involved in one

way or another in achieving the success of the project.

Lynda Nadeau, Director of Information Technology

Applications Expertise Center, Soci?t? des alcools du

Qu?bec, 7501, rue Tellier, 2e ?tage, Montr?al, Qu?bec,
Canada HIN 3W2, writes: "The purpose of this let

ter is to acknowledge the contribution of Professor

Bernard Gendron to the success of a computer sys
tem called GASPER that produces the working sched

ules of all our employees across Quebec (some 3,000

employees working in more than 400 stores). Profes

sor Gendron has designed a computer code that inter

acts with the Web-based database engine in GASPER

Gendron: Scheduling Employees in Quebec's Liquor Stores with Integer Programming
410 Interfaces 35(5), pp. 402-410, ?2005 INFORMS

to generate working schedules that adhere to all

union agreement rules. Since its implementation in

2002, we estimate that GASPER has generated annual

savings of the order of 1,000,000$. In addition, this

project was the result of a close collaboration with

the union and has greatly contributed to improve the

working relations all across the organization.

"We are indebted to Professor Gendron for his con

tribution to the success of GASPER. We fully support
his candidature for the Daniel H. Wagner Prize for

Excellence in Operations Research Practice and we

give him the authorization to present his work for the

Soci?t? des alcools du Qu?bec during the course of

the competition."

	Article Contents
	p. 402
	p. 403
	p. 404
	p. 405
	p. 406
	p. 407
	p. 408
	p. 409
	p. 410

	Issue Table of Contents
	Interfaces, Vol. 35, No. 5 (Sep. - Oct., 2005), pp. 349-448
	Front Matter
	Special Section: Wagner Prize Papers
	The Daniel H. Wagner Prize for Excellence in Operations Research Practice [pp. 349-352]
	Merrill Lynch Improves Liquidity Risk Management for Revolving Credit Lines [pp. 353-369]
	GE Asset Management, Genworth Financial, and GE Insurance Use a Sequential-Linear-Programming Algorithm to Optimize Portfolios [pp. 370-380]
	Maximizing Federal Natural Gas Royalties [pp. 381-392]
	Reinventing Crew Scheduling at Netherlands Railways [pp. 393-401]
	Scheduling Employees in Quebec's Liquor Stores with Integer Programming [pp. 402-410]
	Ensuring Access to Emergency Services in the Presence of Long Internet Dial-up Calls [pp. 411-422]

	Practice Abstracts
	Epocrates Inc. Optimizes the Duration and Frequency of Medical-Content Messages on Personal Digital Assistants [pp. 423-424]

	Editorial: The Sixth "Interfaces" Ranking of Universities' Contributions to the Practice Literature [pp. 425-428]
	Model World: Tales from the Time Line: The Definition of OR and the Origins of Monte Carlo Simulation [pp. 429-435]
	Book Reviews
	Review: untitled [pp. 436-437]
	Review: untitled [pp. 437-439]
	Review: untitled [pp. 439-440]
	Review: untitled [pp. 440-441]
	Review: untitled [pp. 441-442]
	Review: untitled [pp. 442-444]

	Back Matter

