
COSC 201 – Lab #6
Look Ma, I’m a Job Scheduler!

Purpose: to practice using Priority Queues to do a core OS task

Tasks:

1.) Open Eclipse and start a new Java Project called Queue Project

2.) Add a new class called Job. Job will have two fields, a String called
command and two integers, one called priority and one called
timerequired. priority indicates what level of priority that the Job has.
timerequired notes how much time is required for the job to finish.

3.) Add a new class called JobScheduler. JobScheduler will have one

field, a PriorityQueue and three methods, one called ScheduleThis
which will add elements to the Queue, RunFIFO which will run the
jobs in priority order until complete and RunAdjusted which will run
the jobs using an adjusted shared CPU time algorithm (see below).
For each, you should print at what time a job completes (we assume
that we’re starting at a 0 time point) and then the average completion
time. Main can go here if you’d like.

4.) The adjusted shared CPU time algorithm will work as follows: a job,

once selected can only run up to 25 time ticks before having to give
up the CPU. This means that if a job needs 45 ticks, it’ll have to go
through the queue twice. If a job needs less than the full 25 time ticks
it simply forfeits the rest of its time and we dequeue something else
and start it “running”. To handle priorities, we will first sort everyone
by priority (using the PriorityQueue) then allot each job 25*n time
where n is the priority level of the job. If the job has a priority 2, this
means the job can use 50 time ticks. Priority ordering should only be
used to initially decide the order, otherwise it should ignore priority
for ordering. Due to this, you may need an additional data structure
to mimic a “normal” queue.

5.) Turn in your code via the Digital Dropbox in Blackboard.

